JPS6078322A - Vortex flow meter - Google Patents

Vortex flow meter

Info

Publication number
JPS6078322A
JPS6078322A JP18619583A JP18619583A JPS6078322A JP S6078322 A JPS6078322 A JP S6078322A JP 18619583 A JP18619583 A JP 18619583A JP 18619583 A JP18619583 A JP 18619583A JP S6078322 A JPS6078322 A JP S6078322A
Authority
JP
Japan
Prior art keywords
vortex
sectional area
flow
flowmeter
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18619583A
Other languages
Japanese (ja)
Other versions
JPH0410571B2 (en
Inventor
Yutaka Ogawa
小川 胖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Original Assignee
Oval Kiki Kogyo KK
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Kiki Kogyo KK, Oval Engineering Co Ltd filed Critical Oval Kiki Kogyo KK
Priority to JP18619583A priority Critical patent/JPS6078322A/en
Publication of JPS6078322A publication Critical patent/JPS6078322A/en
Publication of JPH0410571B2 publication Critical patent/JPH0410571B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To improve the accuracy and extend the application range by equalizing approximately lengths of a vortex flow meter body part and a vortex generating body part in the flow direction to each other to correct a coefficient of the meter with a ratio of the sectional area of a flow duct to the sectional area of the inside of the vortex flow meter body. CONSTITUTION:A vortex flow meter 3 consists of a vortex flow meter body 3a having an inside diameter DM, length DB and a vortex generating body 3b whose length DL in the flow direction is approximately equal to the length DB of the flow meter body. This flangeless vortex flow meter 3 is sealed by packings 6 and is held between flanges 1 and 2 by bolts and nuts 4. Since the coefficient of the meter can be corrected with a ratio of the sectional area of the flow duct to the sectional area of the inside of the vortex flow meter in such constitution, the accuracy of the flow meter is improved, and the application range is extended.

Description

【発明の詳細な説明】 技術分野 本発明は、フランジレス渦流量計により流星を計測する
場合、同一呼び径においても呼び厚さが違うことによっ
て生ずる流量計の器差変化を推定できるようにした渦流
量計に関する。
[Detailed Description of the Invention] Technical Field The present invention makes it possible to estimate the instrumental error change of the flowmeter caused by different nominal thicknesses even if the nominal diameter is the same when measuring meteors using a flangeless vortex flowmeter. Regarding vortex flowmeters.

従来技術 フランジレス渦流量計は、流管路フランジ部に挟持する
装着方法をとるため、装着が簡単で保守し易く、単純小
形にできるので廉価にできる等の長所をもっているが、
従来のフランジレス渦流量計は円筒状本体管壁の直径線
上を貫通して渦発生体を装着する構成となっているので
、流れ方向の本体長さを渦発生体長さに対して長くする
必要があった。なお、本体内径はR1測する流体の最高
適用圧力の管規格に基づいて決めているため、低圧力の
流路に装着すると流管内径が渦発生体内径よリも大きい
ため、段差が生し渦発生体を通過する流体は本体前面で
縮流された流れとなり、その結果流量計の器差特性が大
幅に変化した。この変化割合を推定することが困難なた
め、渦流量計を装着する場合は流量計の圧力規格と同一
規格の配管とするか、予め実験により流量M1の器差特
性をめるかを選択する必要があった。
Conventional flangeless vortex flowmeters have advantages such as being easy to install and easy to maintain because they are clamped to the flow pipe flange, and can be made simple and compact, making them inexpensive.
Conventional flangeless vortex flowmeters have a configuration in which the vortex generator is attached to the cylindrical body through the diameter line of the tube wall, so the length of the main body in the flow direction needs to be longer than the length of the vortex generator. was there. Note that the inner diameter of the main body is determined based on the pipe standard for the highest applicable pressure of the fluid to be measured by R1, so when installed in a low-pressure flow path, the inner diameter of the flow tube is larger than the inner diameter of the vortex generator, resulting in a step. The fluid passing through the vortex generator became a contracted flow at the front of the main body, and as a result, the instrumental error characteristics of the flowmeter changed significantly. It is difficult to estimate this rate of change, so when installing a vortex flowmeter, choose whether to use piping that has the same standard as the flowmeter's pressure standard, or to determine the instrumental error characteristics of the flow rate M1 through experiments in advance. There was a need.

目 的 本発明は、上述のごとき実情に鑑みてなされたもので、
特に、メータ係数を流管路断面積と渦流量計本体の内径
断面積との比で補正することにより従来の問題点をなく
して正しく補正できるようにし、もって、高い流量計精
度でかつ適用範囲を拡大することのできる渦流量計を提
供することを目的としてなされたものである。
Purpose The present invention was made in view of the above-mentioned circumstances.
In particular, by correcting the meter coefficient using the ratio of the cross-sectional area of the flow pipe and the internal cross-sectional area of the vortex flowmeter body, we have eliminated the conventional problems and can correct the meter coefficient correctly, thereby achieving high flowmeter accuracy and a wide range of application. The purpose of this design is to provide a vortex flowmeter that can expand the flow rate.

購成 本出願人は、流体の流れ方向における渦流量計本体の長
さと71へ発生体長さをはゾ等しくすることにより、流
量貫」の器差特性が管路内に段差のない正規の場合に対
して流路断面積比に比例して平行移動することを見出し
た。即ち、メータ係数を流管路断面積と渦流量計本体内
径断面積比で補正するようにすることにより、従来の問
題点をなくして正しく補正できるようにし、もって、高
い流量計精度で適用範囲を拡大できるようにしたもので
ある。
By making the length of the vortex flow meter body in the fluid flow direction equal to the length of the generating body 71, the applicant has determined that the instrumental difference characteristic of the flow rate can be adjusted to the normal case where there is no step in the pipe. On the other hand, it was found that the parallel movement occurs in proportion to the channel cross-sectional area ratio. In other words, by correcting the meter coefficient using the flow pipe cross-sectional area and the ratio of the internal diameter cross-sectional area of the vortex flowmeter body, it is possible to eliminate the conventional problems and correct the meter coefficient, thereby increasing the range of application with high flowmeter accuracy. It is designed so that it can be expanded.

第1図は、本発明によるフランジレス渦流量計の一使用
状態を示す側断面図で、図中、1及び2はフランジ部、
3はフランジレス渦流量計、4はポル1−・ナツト、5
は内径り、の流路管、6はパツキンで、渦流量計3は内
径り、イ、長さD8の渦流量計本体3q、及び、流れ方
向の長さDllが本体長さDBと略等しい渦発生体3b
とから成っており、フランジレス渦流置割3は、図示の
ように、ボルト・ナラ1〜4によってフランジ1,2間
にパツキン6によって液シールされて挟持されている。
FIG. 1 is a side sectional view showing one state of use of the flangeless vortex flowmeter according to the present invention, in which 1 and 2 are flange parts;
3 is a flangeless vortex flowmeter, 4 is a pol 1-nut, 5
6 is a packing, the vortex flowmeter 3 has an inner diameter, A, a vortex flowmeter main body 3q with a length D8, and a length Dll in the flow direction, which is approximately equal to the main body length DB. Vortex generator 3b
As shown in the figure, the flange-less eddy current part 3 is held between the flanges 1 and 2 by bolts and nuts 1 to 4 in a fluid-sealed manner by a packing 6.

第2図は、渦流量計の器差特性を示す図で、縦軸には流
量計の器差を、横軸には流量をとってあり、特性Aは流
管路DP−渦流量計本体内径り、1の正規の場合の器差
特性、特性B】はDp>Dl、、、特性B2はDp>D
Iの場合の器差特性で、特性B、、B2の特性Aに対す
る市離は流量側本体内径断面積と流管路断面積との比y
、即ち、y=Dp ” / D H”に比例している。
Figure 2 is a diagram showing the instrumental error characteristics of the vortex flowmeter. The vertical axis shows the instrumental error of the flowmeter, and the horizontal axis shows the flow rate. Characteristic A is the flow pipe DP - the vortex flowmeter body. Inner radius, instrumental error characteristic in the normal case of 1, characteristic B] is Dp>Dl, , characteristic B2 is Dp>D
In the case of I, the distance between characteristics B, B2 and characteristic A is the ratio y of the internal diameter cross-sectional area of the flow rate side main body and the flow pipe cross-sectional area.
, that is, it is proportional to y=Dp''/DH''.

これに反して従来例の場合、即ち本体長さDs>渦発生
体長さDLでは、流管路断面積と流量計本体内径断面積
との比ηの大きい方が特性C1、小さい比の場合が特性
C2であり、ηの大きい方がプラスになる傾向ではある
が、比例関係にはない。
On the other hand, in the case of the conventional example, that is, when the main body length Ds>the vortex generator length DL, the larger the ratio η of the cross-sectional area of the flow pipe to the internal diameter cross-sectional area of the flow meter main body is the characteristic C1, and the smaller ratio is the characteristic C1. This is characteristic C2, and although there is a tendency for the larger η to be positive, there is no proportional relationship.

なお、本発明のフランジレス渦流量R1の流れ方向厚さ
をコーナタップ型オリフィス流量計のJIS規格、DI
N規格等の工業規格に基づく大きさにすることにより、
オリフィス流量計を渦流量計に簡単に変更できる。すな
わち、渦流量計はオリフィス流量計と比較して流量精度
が高く流量測定範囲が大きい等の優れた特性をもってい
るので。
Note that the flow direction thickness of the flangeless vortex flow rate R1 of the present invention is based on the JIS standard for corner tap type orifice flowmeters, DI
By making the size based on industrial standards such as N standard,
Orifice flowmeter can be easily changed to vortex flowmeter. In other words, vortex flowmeters have superior characteristics such as higher flow rate accuracy and a wider flow measurement range than orifice flowmeters.

諸規格に基づくコーナタップ型オリフィス流量計と簡単
に変換することができる。而して、従来は、オリフィス
流量計を渦流量計に変更する場合、配管替えしなければ
ならないため、装置を長時間停止しなければならないな
どの不便、不経済があったが、本発明によればこれらの
問題点は解決される。更に、」1記規格に基づいて作製
された本発明による渦流置割はメータ係数および規格に
よる断面積等は知られているので、配設する流管路の圧
力規格が決まれば両者の断面積比も限定される。
It can be easily converted to a corner tap type orifice flowmeter based on various standards. Conventionally, when changing an orifice flowmeter to a vortex flowmeter, piping had to be replaced, which caused inconvenience and uneconomical effects such as the equipment having to be stopped for a long time. Accordingly, these problems are solved. Furthermore, since the meter coefficient and the cross-sectional area according to the standard of the vortex flow arrangement according to the present invention manufactured based on the standard 1 are known, once the pressure standard of the flow pipe to be installed is determined, the cross-sectional area of both can be determined. The ratio is also limited.

従って、圧力規格によるこれら断面積比とメータ係数と
を記憶し、選択された規格配管に設置することにより、
当該配管におけるメータ係数を乗算できるので簡単に、
しかも正確な流量計測ができる。
Therefore, by memorizing these cross-sectional area ratios and meter coefficients according to pressure standards and installing them in the selected standard piping,
You can easily multiply the meter coefficient for the relevant piping,
Moreover, accurate flow measurement is possible.

効 果 以上の説明から明らかなように、本発明によると、メー
タ係数を流管路断面積と渦流量H1本体の内径断面積の
比で補正することができるので、高い流量計精度でかつ
適用範囲を拡大することのできる渦流量計を提供するこ
とができる。
Effects As is clear from the above explanation, according to the present invention, the meter coefficient can be corrected by the ratio of the cross-sectional area of the flow pipe and the inner diameter cross-sectional area of the vortex flow H1 body. It is possible to provide a vortex flow meter that can extend the range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による渦流凧割の一使用状態を示す側
断面図、第2図は、渦流量計の器差特性を示す図である
。 】、2・・フランジ、3・・渦流星計、3q・・・渦流
置割本体、3b・・・渦発生体、4・・ボルト・ナラ1
1.5 ・流路管、6・・パツキン。
FIG. 1 is a side sectional view showing one usage state of the vortex kite splitter according to the present invention, and FIG. 2 is a diagram showing the instrumental error characteristics of the vortex flowmeter. ], 2...Flange, 3...Vortex meteor meter, 3q...Vortex placement split body, 3b...Vortex generator, 4...Bolt/Nara 1
1.5 ・Flow path pipe, 6. Packing.

Claims (3)

【特許請求の範囲】[Claims] (1)、流管路に設けられた互に対向するフランジ部に
流管路と同心的に挟持されるフランジレス渦流置割にお
いて、渦流量計本体部と渦発生体部の流れ方向長さをは
\等しくすることにより、上記渦流量H1本体部内径を
この渦流置割呼称口径で適用される管規格の選択された
内径とし、渦流置割のメータ係数を上記流管路断面積と
渦流量計内径断面積との比で補正するようにしたことを
特徴とする渦流量計。
(1) In a flangeless vortex flow system that is sandwiched concentrically with the flow pipe by opposing flanges provided in the flow pipe, the length in the flow direction of the vortex flowmeter body and the vortex generator By making H1 equal, the inner diameter of the main body of the vortex flow rate H1 is set to the selected inner diameter of the pipe standard applied with this vortex position division nominal diameter, and the meter coefficient of the vortex position division is equal to the above flow pipe line cross-sectional area and vortex. A vortex flowmeter characterized in that the correction is made based on the ratio of the flowmeter's inner diameter cross-sectional area.
(2)、前記フランジレス渦流量計の流れ方向の厚さを
コーナタップ型オリフィスの工業規格に基づいた大きさ
にしたことを特徴とする特許請求の範囲第(1)項に記
載の渦流量計。
(2) The vortex flow rate according to claim (1), characterized in that the thickness of the flangeless vortex flowmeter in the flow direction is set to a size based on an industrial standard for corner-tapped orifices. Total.
(3)、渦流ニー泪のメータ係数および渦流量計本体と
適用可能な流管路断面積との比を記憶する手段と、この
記憶値のうち適用される断面積比を選択して該断面積比
とメータ係数とを乗算する手段とを有する特許請求の範
囲第(1)項又は第(2)項に記載の渦流量計。
(3) means for storing the meter coefficient of vortex flow rate and the ratio between the vortex flowmeter body and the applicable flow pipe cross-sectional area, and selecting the applicable cross-sectional area ratio from the stored values to A vortex flowmeter according to claim 1 or 2, further comprising means for multiplying an area ratio by a meter coefficient.
JP18619583A 1983-10-05 1983-10-05 Vortex flow meter Granted JPS6078322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18619583A JPS6078322A (en) 1983-10-05 1983-10-05 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18619583A JPS6078322A (en) 1983-10-05 1983-10-05 Vortex flow meter

Publications (2)

Publication Number Publication Date
JPS6078322A true JPS6078322A (en) 1985-05-04
JPH0410571B2 JPH0410571B2 (en) 1992-02-25

Family

ID=16184043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18619583A Granted JPS6078322A (en) 1983-10-05 1983-10-05 Vortex flow meter

Country Status (1)

Country Link
JP (1) JPS6078322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198434A (en) * 1993-11-22 1995-08-01 Georg Fischer Rohrleitungssyst Ag Current meter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034568A (en) * 1973-06-27 1975-04-02
JPS5115468A (en) * 1974-07-29 1976-02-06 Hokushin Electric Works Karumanuzuoryoshita ryuryokeino kisachoseisochi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034568A (en) * 1973-06-27 1975-04-02
JPS5115468A (en) * 1974-07-29 1976-02-06 Hokushin Electric Works Karumanuzuoryoshita ryuryokeino kisachoseisochi

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198434A (en) * 1993-11-22 1995-08-01 Georg Fischer Rohrleitungssyst Ag Current meter

Also Published As

Publication number Publication date
JPH0410571B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
US5392815A (en) Gradational tube bundle flow conditioner for providing a natural flow profile to facilitate accurate orifice metering in fluid filled conduits
CN100424477C (en) Device and method enabling fluid characteristic measurement utilizing fluid acceleration
US7047822B2 (en) Devices, installations and methods for improved fluid flow measurement in a conduit
CN109855691B (en) Differential laminar flow measuring method and device
CN108303149A (en) Orifice union, rectification and flow measurement device
JP2002509243A (en) Friction flow meter
CA2456457A1 (en) Restriction flowmeter
US5656784A (en) Fluid density variation compensation for fluid flow volume measurement
JPH0421809B2 (en)
JPS6078322A (en) Vortex flow meter
KR940007793Y1 (en) Fluid flow meter
CN107167194A (en) A kind of gas pipeline rectifier
JP3002176B2 (en) Replacement built-in set for volumetric flow sensors and corresponding vortex flow sensors
CN111157060B (en) Pipeline flow meter, measuring system and measuring method
CN208043137U (en) Adjusting type flowmeter
JP2004020523A (en) Differential pressure type flow measurement method and differential flowmeter
JP3252187B2 (en) Flowmeter
CN216867637U (en) Self-operated differential pressure valve capable of measuring water flow
CN214308943U (en) Double-tube type Coriolis flowmeter fixing support
WO1983003896A1 (en) Measurement unit for determining gas flow through a conduit and measuring means designed to be included in such a measuring unit
CN110513562B (en) Application method of multi-section type pressure reducing coil device
JPS5965215A (en) Device for measuring air flow rate
CN110031048B (en) Differential pressure signal voltage stabilizer of differential pressure flowmeter
Einhellig et al. Flow measurement opportunities using irrigation pipe elbows
JPH0642178Y2 (en) Vortex flowmeter