JPS6078240A - Air conditioning by controlling carrying system - Google Patents

Air conditioning by controlling carrying system

Info

Publication number
JPS6078240A
JPS6078240A JP58187353A JP18735383A JPS6078240A JP S6078240 A JPS6078240 A JP S6078240A JP 58187353 A JP58187353 A JP 58187353A JP 18735383 A JP18735383 A JP 18735383A JP S6078240 A JPS6078240 A JP S6078240A
Authority
JP
Japan
Prior art keywords
temperature
heat source
air
water
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58187353A
Other languages
Japanese (ja)
Other versions
JPH0356380B2 (en
Inventor
Toshio Hayashi
利雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP58187353A priority Critical patent/JPS6078240A/en
Publication of JPS6078240A publication Critical patent/JPS6078240A/en
Publication of JPH0356380B2 publication Critical patent/JPH0356380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers

Abstract

PURPOSE:To establish a great amount of energy saving by a method wherein the carrying system of water serving as heat source and the carrying system of air are properly controlled in an air conditioning system employing water as heat source. CONSTITUTION:A temperature detector 9 to detect the temperature of the water serving as heat source passing through the coil 3 of each system is mounted on the branch pipe 10 of a return pipe of the water serving as heat source. When cold water operation or hot water operation is intended, the coil, from which the water serving as heat source with the highest temperature or lowest temperature leaves, is detected out of the coils 3 of the respective air conditioners. If the temperature of the detected coil 3 exceeds the set value or is below the set value, the water feeding capacity of a pump 6 is increased so as to bring said temperature to the set value. In addition, an air passage 16, through which air is sucked in a fan 4 by by-passing the coil 3, is provided parallel to the coil 3 and a damper 17 is interposed in the passage 16. The damper 17 is open and closed so as to control the air temperature on the discharge side of the fan 4 to be brought to the set temperature.

Description

【発明の詳細な説明】 本発明は水熱源空調システムにおいてその熱源水の搬送
系さらには空気搬送系で適切な制御を行うことによって
多大の省エネルギーを達成する空調方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioning method that achieves great energy savings by appropriately controlling the heat source water conveyance system and the air conveyance system in a water heat source air conditioning system.

従来より、省エネルギーを図る空調システムとして、い
わゆる” VAV方式”がある。このVAV方式におけ
る送風機の能力制御は、送風機出口側の“ある一点”の
圧力を一定に制御するものである。
BACKGROUND ART Conventionally, there is a so-called "VAV system" as an air conditioning system that aims to save energy. The capacity control of the blower in this VAV method is to control the pressure at "a certain point" on the outlet side of the blower to be constant.

一方、熱源水を熱源とする空調システムにおいてもその
熱源水循環系で同様に省エネルギーを図る方式が提案さ
れている。すなわち、ポンプ吐出側の“ある一点”の圧
力を一定に制御しようとする技術である。
On the other hand, even in air conditioning systems that use heat source water as a heat source, methods have been proposed to similarly save energy in the heat source water circulation system. In other words, this is a technique that attempts to control the pressure at a "certain point" on the pump discharge side to be constant.

しかし、いづれにしても、流体の機械出口側での圧力を
一定にしようとするものであるから、負荷側における制
御弁等で余裕圧力を消費することは避けられない。した
がって、その省エネルギー効果には自ずと限界がある。
However, in any case, since the pressure of the fluid on the machine outlet side is to be kept constant, it is inevitable that the excess pressure will be consumed by the control valve, etc. on the load side. Therefore, there is naturally a limit to its energy saving effect.

本発明はこのような従来の方式に代わる省エネルギーシ
ステムとして、室内の温湿度制御を、熱源水循環ポンプ
の能力制御さらには空気調和機送風機の能力制御を適切
に行うことによって実現する方法を提供しようとするも
のである。すなわち本発明は、複数の空調機コイルに熱
源機器から熱源水をポンプによって循環供給する空調設
備において、各空調機コイルを通過した直後の熱源水の
温度を測定し、冷房運転の場合にはその測定値のうちで
最も高い測定点温度が設定水温に近づくように、また暖
房運転の場合にはその測定値のうちで最も低い測定点温
度が設定水温に近づくように熱源水循環ポンプの能力制
御を行うことを基本とし、さらに、各空調機からの給気
の温度が設定値に近づくように各空調機コイルをバイパ
スして給気する空気の量を制御する空気)般送系の制御
と。
The present invention aims to provide a method for realizing indoor temperature and humidity control by appropriately controlling the capacity of the heat source water circulation pump and also the capacity of the air conditioner blower, as an energy-saving system that replaces such conventional methods. It is something to do. That is, the present invention measures the temperature of the heat source water immediately after passing through each air conditioner coil in an air conditioning system in which heat source water is circulated from a heat source device to a plurality of air conditioner coils by a pump, and in the case of cooling operation, the temperature of the heat source water is measured. The capacity of the heat source water circulation pump is controlled so that the temperature at the highest point among the measured values approaches the set water temperature, and in the case of heating operation, the temperature at the lowest point among the measured values approaches the set water temperature. In addition, the general air system control (air) controls the amount of air supplied by bypassing each air conditioner coil so that the temperature of the supply air from each air conditioner approaches the set value.

さらに加えて、室内温度を測定し、この測定値に基づい
て室内温度が設定値に近づくように空調機の送風機能力
を制御する送風機能力制御と、を付加した省エネルギー
空調方法を提供するものである。
In addition, the present invention provides an energy-saving air conditioning method that includes the following: measuring the indoor temperature and controlling the blowing function of the air conditioner so that the indoor temperature approaches a set value based on the measured value. .

以下に本発明の詳細を図面に従って具体的に説明する。The details of the present invention will be specifically explained below with reference to the drawings.

第1図は、一つの水循環系に3系統の空調機を有する場
合を例として本発明法を適用する設備を示したものであ
る。各空調機1は、各々が受け持つ空調ゾーン2に対し
て、常法に従って所要の温湿度の空気を給気し、一方、
空調機1には空調ゾーン2から運気を取り入れると共に
外気も取入れる。本例において空調機1は熱源水が通水
するコイル3と送風機4をもつエアハンドリングユニッ
トの例を示しており、各コイル3には熱源機器5で作ら
れた冷水または温水が循環ポンプ6によってその往管7
より供給され、各コイル3を通過した熱源水は返り管8
を経て熱源機器5に戻る。
FIG. 1 shows equipment to which the method of the present invention is applied, taking as an example a case where one water circulation system has three systems of air conditioners. Each air conditioner 1 supplies air at the required temperature and humidity to the air conditioning zone 2 that it is responsible for, according to a conventional method, and on the other hand,
The air conditioner 1 takes in air from an air conditioning zone 2 and also takes in outside air. In this example, the air conditioner 1 is an air handling unit having a coil 3 through which heat source water flows and a blower 4. Cold or hot water produced by a heat source device 5 is supplied to each coil 3 by a circulation pump 6. The outgoing pipe 7
The heat source water that has passed through each coil 3 is returned to the return pipe 8.
The process then returns to the heat source device 5.

本発明は、かような水熱源空調システムにおいて、循環
ポンプ6の運転を最も省エネルギー的に能力制御するも
のであり、このために、まず各コイル3を通過した熱源
水のそれぞれの温度を検出する温度検出器9を、熱源水
が各コイル3から戻り管9に戻るさいの分岐管10に取
りつける。そして、この各温度検出器9からの信号を制
御用測定値選択盤11に送り、ここで最も低温の信号ま
たは最も高温の信号を選択する。より具体的には、熱源
水が冷水の場合(つまり冷房運転時の場合)には最も高
温の信号を選択し、熱源水が温水の場合(つまり暖房運
転の場合)には最も低温の信号を選択する。ここで選択
された最高測定温度または最低測定温度は、水温調節計
12において、設定水温と比較され、その差がある場合
には、この差が縮まるように、ポンプ6の回転数制御盤
13に制御信号を出力する。すなわち、ポンプ6のモー
タ14の回転数制御を行う。
The present invention controls the operation of the circulation pump 6 in the most energy-saving manner in such a water heat source air conditioning system, and for this purpose, the temperature of each heat source water that has passed through each coil 3 is first detected. A temperature detector 9 is attached to the branch pipe 10 where the heat source water returns from each coil 3 to the return pipe 9. Then, the signals from each temperature detector 9 are sent to the control measured value selection board 11, where the lowest temperature signal or the highest temperature signal is selected. More specifically, when the heat source water is cold water (that is, during cooling operation), the highest temperature signal is selected, and when the heat source water is hot water (that is, during heating operation), the lowest temperature signal is selected. select. The maximum measured temperature or the minimum measured temperature selected here is compared with the set water temperature in the water temperature controller 12, and if there is a difference, the rotation speed control panel 13 of the pump 6 is set so that the difference is reduced. Outputs a control signal. That is, the rotation speed of the motor 14 of the pump 6 is controlled.

例えば、冷水運転(冷房運転)の場合に、各空調機コイ
ル3から出る熱源水温度のうち、あるコイルから出るも
のが最も高い温度であることを検知しこの温度が設定値
を越えるものであるときには、この最高温度が設定温度
にまで低下するように、ポンプ6の給水能力を高める(
モータ14の回転数を高める)動作を行う。また各コイ
ル3から出る熱源水のうちその最高温度のものでも設定
温度より低い場合には、この最高温度が設定温度にまで
上昇するように、ポンプ6の給水能力を低下させる(モ
ータ14の回転数を下げる)動作を行なわせる。つまり
、複数の空調機1に対し一系統の熱源水循環路から冷水
を供給する場合に、各コイル3から出るもののうち、最
も高い水温が設定水温に近づくように、ポンプ6の能力
制御を実施するのである。
For example, in the case of chilled water operation (cooling operation), it is detected that among the heat source water temperatures emitted from each air conditioner coil 3, the water emitted from a certain coil has the highest temperature, and this temperature exceeds the set value. Sometimes, the water supply capacity of the pump 6 is increased so that this maximum temperature drops to the set temperature (
(increasing the rotational speed of the motor 14). In addition, if even the highest temperature of the heat source water coming out of each coil 3 is lower than the set temperature, the water supply capacity of the pump 6 is reduced so that the maximum temperature rises to the set temperature (the rotation of the motor 14 lower the number). In other words, when supplying cold water to multiple air conditioners 1 from one heat source water circulation path, the capacity of the pump 6 is controlled so that the highest water temperature out of each coil 3 approaches the set water temperature. It is.

同様に、温水運転(暖房運転)では、各コイル3から出
る温水のうち最も低い温度のものが設定温度より低い場
合には、この最低温度が設定温度にまで上昇するように
ポンプ6の給水能力を高め(ポンプモータの回転数を増
し)、この最低温度が設定温度を越える場合にはこの最
低温度が設定温度に近づくようにポンプ6の給水能力を
下げる(ポンプモータの回転数を下げる)。つまり、複
数の空調機1に対し一系統の熱源水循環路から温水を供
給する場合に、各コイル3から出るもののうち、最も低
い水温が設定水温に近づくように。
Similarly, in hot water operation (heating operation), if the lowest temperature of the hot water discharged from each coil 3 is lower than the set temperature, the water supply capacity of the pump 6 is adjusted so that this lowest temperature rises to the set temperature. (increase the rotation speed of the pump motor), and if this minimum temperature exceeds the set temperature, lower the water supply capacity of the pump 6 (lower the rotation speed of the pump motor) so that this minimum temperature approaches the set temperature. In other words, when hot water is supplied to a plurality of air conditioners 1 from one heat source water circulation path, the lowest water temperature among the water output from each coil 3 approaches the set water temperature.

ポンプ6の能力制御を実施するのである。この制御フロ
ーの一例を第2図に示した。
The capacity of the pump 6 is controlled. An example of this control flow is shown in FIG.

これにより、要求負荷をまかなうに必要な熱源水を最小
必要限のポンプ動力で空調機に供給できるようになって
十分な空調ができながら、要求負荷が少なくなればこれ
に追従してポンプ動力も少なくなるように動作すること
になるから真の省動力が達成される。
As a result, the heat source water necessary to cover the required load can be supplied to the air conditioner with the minimum required pump power, and while sufficient air conditioning can be achieved, if the required load decreases, the pump power will also increase accordingly. True power savings are achieved since the machine operates with less power.

加えて、空気系においても、以下のような制御を実施す
ると一層の省エネルギーが可能となる。
In addition, even in the air system, further energy savings can be achieved by implementing the following controls.

その−は、コイル3を通過する空気量の制御であり、そ
の二は送風ta4の能力制御である。
The second one is control of the amount of air passing through the coil 3, and the second one is the ability control of the air blower ta4.

本発明において、前者のコイル3を通過する空気量の制
御は次のようにして行う。コイル3をバイパスして送風
機4に吸い込まれる空気路16を。
In the present invention, the former control of the amount of air passing through the coil 3 is performed as follows. An air passage 16 that bypasses the coil 3 and is drawn into the blower 4.

コイル3に対して並列に設け、これにダンパ17を介装
する。そして、このダンパ17の開閉を、送風機4の吐
出側の空気温度が設定温度になるように制御する。より
具体的には、各送風機4の吐出側給気路18に温度検出
器19をそれぞれ取付け、この温度検出器19の信号を
給気温度調節計20に送り。
It is provided in parallel to the coil 3, and a damper 17 is interposed therebetween. The opening and closing of this damper 17 is controlled so that the air temperature on the discharge side of the blower 4 reaches the set temperature. More specifically, a temperature detector 19 is attached to the discharge side air supply path 18 of each blower 4, and a signal from this temperature detector 19 is sent to the supply air temperature controller 20.

ここで設定温度と比較し、この差が少なくなるようにダ
ンパ17の開閉制御信号を出力する。例えば冷房運転の
場合には、給気温度が設定温度より低いときにはダンパ
17を開動作させて給気温度が設定温度に近づくように
する。暖房運転では逆に給気温度が設定温度より高いと
きにはダンパ17を開動作させるようにする。この制御
フローの一例を第3図に示した。
Here, the temperature is compared with the set temperature, and an opening/closing control signal for the damper 17 is outputted so as to reduce this difference. For example, in the case of cooling operation, when the supply air temperature is lower than the set temperature, the damper 17 is opened so that the supply air temperature approaches the set temperature. In heating operation, on the other hand, when the supply air temperature is higher than the set temperature, the damper 17 is opened. An example of this control flow is shown in FIG.

このダンパ制御によって、コイル3での無駄な冷熱また
は温熱の消費が回避されることになるから、熱源が節約
されることはもとより、さらには前述のポンプ能力制御
との組合せで一層のポンプ動力の低減が達成されること
になる。
This damper control avoids wasteful consumption of cold or hot heat in the coil 3, which not only saves the heat source, but also further increases pump power when combined with the pump capacity control described above. A reduction will be achieved.

次に、後者の送風機4の能力制御について説明すると1
本発明法においては、室内温度(給気温度ではない)を
検出して室温が設定温度になるように送風tJI!4の
送風量を制御する。より具体的には、各々の室内温度を
検出する温度検出器22の検出信号を室温温度調節計2
3に送り、ここで、設定温度と比較して差があると、送
風機能力制御盤24に制御信号を出力する。制御盤24
は送風機モータ25の回転数を制御する。このモータ2
5の回転数制御に代えて送風機翼ピツチ角制御によっ送
風量を可変にしてもよい。このようにして9例えば冷房
運転では室温が設定温度より高ければ送風能力を高くシ
、逆に低ければ送風能力を低くする制御を実施し、暖房
運転では室温が設定温度より低ければ送風能力を高クシ
、逆に高ければ送風能力を低くする制御を実施する。こ
の制御フローの一例を第4図に示した。
Next, we will explain the latter capacity control of the blower 4.
In the method of the present invention, the room temperature (not the supply air temperature) is detected and air is blown tJI! so that the room temperature reaches the set temperature. Control the amount of air blown in step 4. More specifically, the detection signal of the temperature detector 22 that detects each indoor temperature is sent to the room temperature controller 2.
3, and if there is a difference from the set temperature, a control signal is output to the blower function control panel 24. Control panel 24
controls the rotation speed of the blower motor 25. This motor 2
In place of the rotational speed control in step 5, the amount of air blown may be made variable by controlling the pitch angle of the blower blades. In this way, 9 For example, in cooling operation, if the room temperature is higher than the set temperature, the air blowing capacity is increased, and if the room temperature is lower, the air blowing capacity is lowered.In heating operation, if the room temperature is lower than the set temperature, the air blowing capacity is increased. Conversely, if the air pressure is high, control is implemented to lower the air blowing capacity. An example of this control flow is shown in FIG.

この送風機能力制御によって各空調ゾーン毎に室内温度
が制御され且つ最も少ない送風機動力で要求負荷を満た
すように制御されるから消費動力の無駄がなくなるとと
もに、この制御と前記コイル通過空気量制御、さらには
熱源水搬送系の制御との組合せによって、その省エネル
ギー効果は相乗的に高まることになり、従来の送風機や
ポンプの吐出側流体の圧力制御方式で達成される限界を
越えた省エネルギー空調ができることになる。
This air blower function power control controls the indoor temperature for each air conditioning zone and satisfies the required load with the least amount of blower power, eliminating wasted power consumption. When combined with the control of the heat source water conveyance system, the energy-saving effect increases synergistically, making it possible to achieve energy-saving air conditioning that exceeds the limits achieved by conventional pressure control methods for the fluid on the discharge side of blowers and pumps. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施する設備の例を示した機器配置
系統図、第2図は熱源水循環系制御のフロー図、第3図
はコイル通過空気量制御のフロー図、第4図は空調機送
風機の能力制御のフロー図である。 1・・空調機、2・・空調ゾーン、3・・コイル、4・
・空調機の送風機、5・・熱源機器。 6・・循環ポンプ、9.19および22・・温度検出器
、11・・制御用測定値選択盤、12 ・・水温調節針
、13・・回転数制御盤、14・・ポンプモータ、16
 ・・バイパス通路。 17・・バイパスダンパ、20 ・・給気温度調節計、
23・・室温温度調節計、24 ・・送風機能力制御盤
、25・・送風機モータ。
Figure 1 is an equipment layout system diagram showing an example of equipment for carrying out the method of the present invention, Figure 2 is a flow diagram of heat source water circulation system control, Figure 3 is a flow diagram of coil passing air volume control, and Figure 4 is It is a flowchart of capacity control of an air conditioner blower. 1. Air conditioner, 2. Air conditioning zone, 3. Coil, 4.
・Air conditioner blower, 5. Heat source equipment. 6... Circulation pump, 9.19 and 22... Temperature detector, 11... Control measurement value selection panel, 12... Water temperature adjustment needle, 13... Rotation speed control panel, 14... Pump motor, 16
...Bypass passage. 17... Bypass damper, 20... Supply air temperature controller,
23...Room temperature controller, 24...Blower function power control panel, 25...Blower motor.

Claims (3)

【特許請求の範囲】[Claims] (1)、複数の空調機コイルに熱源機器から熱源水をポ
ンプによって循環供給する空調設備において。 各空調機コイルを通過した直後の熱源水の温度を測定し
、冷房運転の場合にはその測定値のうちで最も高い測定
点温度が設定水温に近づくように。 また暖房運転の場合にはその測定値のうちで最も低い測
定点温度が設定水温に近づくように熱源水循環ポンプの
能力制御を行うことを特徴とする空調方法。
(1) In an air conditioning system that circulates heat source water from a heat source device to multiple air conditioner coils using a pump. The temperature of the heat source water immediately after passing through each air conditioner coil is measured, and in the case of cooling operation, the temperature at the highest measurement point among the measured values approaches the set water temperature. Further, in the case of heating operation, the air conditioning method is characterized in that the capacity of the heat source water circulation pump is controlled so that the temperature at the lowest measurement point among the measured values approaches the set water temperature.
(2)、複数の空titsコイルに熱源機器から熱源水
をポンプによって循環供給する空調設備において。 各空調機コイルを通過した直後の熱源水の温度を測定し
、冷房運転の場合にはその測定値のうちで最も高い測定
点温度が設定水−に近づくように。 また暖房運転の場合にはその測定値のうちで最も低い測
定点温度が設定水温に近づくように熱源水循環ポンプの
能力制御を行ない、さらに、各空調機からの給気の温度
が設定値に近づくように各空調機コイルをバイパスして
給気する空気の量を制御することを特徴とする空調方法
(2) In an air conditioning system that circulates heat source water from a heat source device to a plurality of air tits coils using a pump. The temperature of the heat source water immediately after passing through each air conditioner coil is measured, and in the case of cooling operation, the temperature at the highest measurement point among the measured values approaches the set water temperature. In addition, in the case of heating operation, the capacity of the heat source water circulation pump is controlled so that the temperature at the lowest point among the measured values approaches the set water temperature, and the temperature of the supply air from each air conditioner approaches the set value. An air conditioning method characterized by controlling the amount of air supplied by bypassing each air conditioner coil.
(3)、複数の空調機コイルに熱源機器から熱源水をポ
ンプによって循環供給する空調設備において。 各空調機コイルを通過した直後の熱源水の温度を測定し
、冷房運転の場合にはその測定値のうちで最も高い測定
点温度が設定水温に近づくように。 また暖房運転の場合にはその測定値のうちで最も低い測
定点温度が設定水温に近づくように熱源水循環ポンプの
能力制御を行ない、各空調機からの給気の温度が設定値
に近づ(ように各空調機コイルをバイパスして給気する
空気の量を制御し、さらに室内温度を測定し、この測定
値に基づいて室内温度が設定値に近づくように空調機の
送風機能力を制御することを特徴とする空調方法。
(3) In an air conditioning system that circulates heat source water from a heat source device to multiple air conditioner coils using a pump. The temperature of the heat source water immediately after passing through each air conditioner coil is measured, and in the case of cooling operation, the temperature at the highest measurement point among the measured values approaches the set water temperature. In addition, in the case of heating operation, the capacity of the heat source water circulation pump is controlled so that the temperature at the lowest point among the measured values approaches the set water temperature, and the temperature of the supply air from each air conditioner approaches the set value ( It bypasses each air conditioner coil to control the amount of air supplied, measures the indoor temperature, and based on this measurement controls the air conditioner's blowing function so that the indoor temperature approaches the set value. An air conditioning method characterized by:
JP58187353A 1983-10-06 1983-10-06 Air conditioning by controlling carrying system Granted JPS6078240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187353A JPS6078240A (en) 1983-10-06 1983-10-06 Air conditioning by controlling carrying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187353A JPS6078240A (en) 1983-10-06 1983-10-06 Air conditioning by controlling carrying system

Publications (2)

Publication Number Publication Date
JPS6078240A true JPS6078240A (en) 1985-05-02
JPH0356380B2 JPH0356380B2 (en) 1991-08-28

Family

ID=16204502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187353A Granted JPS6078240A (en) 1983-10-06 1983-10-06 Air conditioning by controlling carrying system

Country Status (1)

Country Link
JP (1) JPS6078240A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130367U (en) * 1978-03-01 1979-09-10
JPS54131754U (en) * 1978-03-06 1979-09-12
JPS57127738A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Operating device of refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130367U (en) * 1978-03-01 1979-09-10
JPS54131754U (en) * 1978-03-06 1979-09-12
JPS57127738A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Operating device of refrigerator

Also Published As

Publication number Publication date
JPH0356380B2 (en) 1991-08-28

Similar Documents

Publication Publication Date Title
US4821526A (en) Air conditioning apparatus
US4984433A (en) Air conditioning apparatus having variable sensible heat ratio
US4389853A (en) Method and apparatus for controlling an air conditioning unit with multi-speed fan and economizer
CA1141010A (en) Microcomputer control for supplemental heating in a heat pump
US6089464A (en) Thermal dynamic balancer
US4324288A (en) Level supply air temperature multi-zone heat pump system and method
JP2001241735A (en) Air conditioning system and its controlling method
US3635041A (en) Heating and cooling refrigeration apparatus
JPS62225842A (en) Air conditioner
JP5271656B2 (en) Air conditioning control method and air conditioning control system
JPS6078240A (en) Air conditioning by controlling carrying system
JPH0131877Y2 (en)
JPS622225B2 (en)
JP3964298B2 (en) Control method of air conditioner and air conditioner
GB2245967A (en) Air conditioning system
JP3534048B2 (en) Air conditioning system
JPS6262269B2 (en)
CN218721959U (en) Air conditioning system
JPH02290454A (en) Air conditioner
JPH0229533A (en) Control method for outdoor air intake in vav control system
JPS5811341A (en) Air-conditioning apparatus
JPH05118619A (en) Air conditioner
CN212566135U (en) Air supply control system for operating room
JPH06235546A (en) Controlling method for air conditioning system
JPH08261504A (en) Air-conditioner for coating booth