JPS6077305A - Electrically insulating filling material of superhigh temperature sheathed heater - Google Patents

Electrically insulating filling material of superhigh temperature sheathed heater

Info

Publication number
JPS6077305A
JPS6077305A JP18618283A JP18618283A JPS6077305A JP S6077305 A JPS6077305 A JP S6077305A JP 18618283 A JP18618283 A JP 18618283A JP 18618283 A JP18618283 A JP 18618283A JP S6077305 A JPS6077305 A JP S6077305A
Authority
JP
Japan
Prior art keywords
filling material
sheathed heater
electrically insulating
insulating filling
superhigh temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18618283A
Other languages
Japanese (ja)
Other versions
JPH0124322B2 (en
Inventor
河辺 正
正文 小舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP18618283A priority Critical patent/JPS6077305A/en
Publication of JPS6077305A publication Critical patent/JPS6077305A/en
Publication of JPH0124322B2 publication Critical patent/JPH0124322B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は超高温下で優れた絶縁抵抗ならびに耐電圧を有
するシーズヒータの電気絶縁充填材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrically insulating filling material for sheathed heaters that has excellent insulation resistance and withstand voltage under ultrahigh temperatures.

従来より、シーズヒータ材料としての発熱線および金属
パイプ組成の一部にニッケルが使用されていることは周
知のとおりであり、シーズヒータの金属パイプの表面温
度が850’c以上の高温で長時間使用している間に、
上述のシーズ材料からニッケル蒸気が生じてマグネシア
粉末から酸素を奪い、他方で発熱線の拡散が進行し終局
的に断線現象を引き起こすことが最大の問題とされてい
る。
It is well known that nickel has traditionally been used as part of the heating wire and metal pipe composition as a material for sheathed heaters, and the surface temperature of the metal pipe of the sheathed heater has been kept at high temperatures of 850'C or higher for long periods of time. While using
The biggest problem is that nickel vapor is generated from the above-mentioned seed material and deprives the magnesia powder of oxygen, and on the other hand, the diffusion of the exothermic wire progresses, eventually causing a disconnection phenomenon.

本発明は上述の問題点に鑑み、発明されたものでこれら
の問題点を解決するものである。
The present invention has been invented in view of the above-mentioned problems, and is intended to solve these problems.

本発明者は本発明に用いる電融マグネシア粉末について
既に特願昭58−89746号において工業規模での経
済性ならびに品質の安定性を明らかにしており、本発明
の主旨はこの電気絶縁充填材料に添加剤効果を付与する
ことによりシーズヒータの使用温度を高温域(800〜
850’C)から超高温域(900〜950℃)まで著
しく伸長させる点にある。
The present inventor has already clarified the economic efficiency and quality stability of the electrofused magnesia powder used in the present invention in Japanese Patent Application No. 58-89746 on an industrial scale, and the gist of the present invention is based on this electric insulating filling material. By adding an additive effect, the operating temperature of the sheathed heater can be raised to a high temperature range (800℃~
850'C) to an ultra-high temperature range (900-950°C).

以下、本発明の構成について述べる。The configuration of the present invention will be described below.

すなわち、本発明の構成要旨とするところはあらかじめ
化学組成面および粒度面の調整が充分におこなわれてい
る電融マグネシア粉末にニッケル硝酸塩、炭酸塩および
水酸化物の中から少な(とも一種類を添加したものを発
熱線と金属パイプの間隙に充填した状態で低温加熱処理
することにより酸素含有量の高いニッケル酸化物を生成
せしめると同時に酸化マグネシウムわ)米中に均一分散
さ・Uた超高温用シーズヒータの電気絶縁先虜材利にあ
る。
That is, the gist of the present invention is to add a small amount (all one type) of nickel nitrate, carbonate, and hydroxide to electrofused magnesia powder whose chemical composition and particle size have been sufficiently adjusted in advance. By filling the gap between the heating wire and the metal pipe with the added material and subjecting it to low-temperature heat treatment, nickel oxide with a high oxygen content is generated, and at the same time, magnesium oxide (magnesium oxide) is uniformly dispersed throughout the rice. The electrical insulation material of the sheathed heater is suitable for use.

つぎに、本発明をより具体的に説明する。Next, the present invention will be explained in more detail.

あらかじめ高温用シーズヒータの電気絶縁充填材料とし
て調整された電融マグネシア粉末にN1(NO3) 2
 、N i CO3、N i (CO3)2 、N+ 
(OH)2.3Ni (OH)2 ・214icO3な
どの中から少なくとも一種類添加したものをシーズヒー
タ製造の一工程である発熱線と金属パイプの間隙に充填
したのち、大気中、電気炉で120〜300 ’C1好
ましくは200〜260°Cで10分〜24時間、好ま
しくは30分〜8時間低温加熱処理をおこなう。この結
果、各種ニアケル化合物は徐々に熱分解して微細なNi
O2を経てNi2O3を生成する。さらに、多くの余剰
酸素を有するNi2O3は強い酸化性を有し、シーズヒ
ータに充填されたのち、通電して内部温度が上昇するに
したかって、余剰酸素を放出して高温安定型のNiOに
変化する。ただし、ここで示す高温安定型のNiOにつ
いて厳密に言えば約250〜800°Cの領域でN1O
−Ni203系固溶体であり約800℃から熱解離の始
まる融点付近までが比較的純粋なNiOの安定領域と想
定される。このため、NiOと余剰酸素あるいはNi0
Ni203系固溶体と余剰酸素を有するマグネシア充填
材料はシース祠からのニッケル蒸気の発生を抑制すると
同時にマグネシア粉末の酸素欠乏も防止する。これより
終局的にマグネシア本来の高絶縁性が発揮される。 さ
らにまた、添加剤の出発原料として二、ケルの硝酸塩、
炭酸塩、水酸化物を使用する目的としては充填後、ヒー
タ内部に残留する不純物あるいは有害ガスをり1部へ除
去する効果も期待される。
N1 (NO3) 2 is added to the electrofused magnesia powder prepared in advance as an electrically insulating filling material for high-temperature sheathed heaters.
, N i CO3, N i (CO3)2 , N+
(OH)2.3Ni (OH)2, 214icO3, etc. is added to the gap between the heating wire and the metal pipe, which is a step in the production of sheathed heaters. ~300'C1 Low temperature heat treatment is preferably performed at 200 to 260°C for 10 minutes to 24 hours, preferably 30 minutes to 8 hours. As a result, various Nikel compounds gradually thermally decompose into fine Ni
Ni2O3 is generated via O2. Furthermore, Ni2O3, which has a lot of surplus oxygen, has strong oxidizing properties, and after being filled into the sheathed heater, as the internal temperature rises when electricity is applied, it releases surplus oxygen and changes into high-temperature stable NiO. do. However, strictly speaking, regarding the high-temperature stable NiO shown here, N1O
-Ni203-based solid solution, and the stable region of relatively pure NiO is assumed to be from about 800° C. to around the melting point where thermal dissociation begins. For this reason, NiO and surplus oxygen or Ni0
The magnesia filling material containing Ni203-based solid solution and excess oxygen suppresses the generation of nickel vapor from the sheath and at the same time prevents oxygen deficiency in the magnesia powder. This ultimately brings out the high insulating properties of magnesia. Furthermore, as a starting material for additives, nitrate of Kel,
The purpose of using carbonates and hydroxides is also expected to be effective in removing impurities or harmful gases remaining inside the heater after filling.

以上の説明からも明らかなように本発明は従来がらのマ
グネシア充填材料の製造工程を大幅に変更することなく
比較的簡易な工程を加えるだけで画期的な超高温用シー
ズヒータの電気絶縁充填材料を工業的規模で生産するこ
とを可能にするものである。
As is clear from the above explanation, the present invention is a groundbreaking method for electrically insulating filling of ultra-high temperature sheathed heaters by adding a relatively simple process without significantly changing the manufacturing process of conventional magnesia filling materials. It makes it possible to produce materials on an industrial scale.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例 あらかじめ充填密度2.37 (g /cJ) 、流動
度203 (see / 100g)に調整された電融
マグネシア粉末にNi(NO3)2を2.5重量%添加
混合しこれを発p5線と金属パイプの間隙に充填した後
、圧延減径をおこなって内径6.5龍、ヒーク全IK5
00’amのシーズヒータを試作した。なお、金属パイ
プにはインコロイ800を使用した。さらに、子連のシ
ーズヒータを250°Cの大気中で6時間加熱処理した
後、シーズヒータの両端を鉛ガラスで完全封口した。発
熱線に通電して発熱させ金属パイプの表面温度が930
°Cに達し、充分に安定化した後、その間の絶縁抵抗を
測定した。ついで、断電後、金属パイプの表面温度が完
全に室温に復帰してから60分以内に耐電圧を判定した
。 なお、比較のために〜従来例とし」二連と同一条件
で電融マグネシア粉末のみから試作したシーズヒータに
一ついても測定したので下表にしめず。
Example 2.5% by weight of Ni(NO3)2 was added and mixed to electrofused magnesia powder, which had been adjusted in advance to a packing density of 2.37 (g/cJ) and a fluidity of 203 (see/100g), and this was subjected to p5 radiation. After filling the gap between the metal pipe and the metal pipe, the diameter is reduced by rolling to create an inner diameter of 6.5 mm and a total IK of 5.
We prototyped a sheathed heater for 00'am. Incoloy 800 was used for the metal pipe. Furthermore, after heat-treating the child sheathed heater in the atmosphere at 250° C. for 6 hours, both ends of the sheathed heater were completely sealed with lead glass. The heating wire is energized to generate heat and the surface temperature of the metal pipe reaches 930℃.
After reaching °C and being sufficiently stabilized, the insulation resistance was measured. Then, the withstand voltage was determined within 60 minutes after the surface temperature of the metal pipe completely returned to room temperature after the power was cut off. For comparison, measurements were also taken on a sheathed heater prototyped only from fused magnesia powder under the same conditions as the conventional example, so the results are not listed in the table below.

表 なお、添加するニッケル化合物として実施例で示したN
i(NO3)2以外にN1cc13、Ni (CO3)
2、Ni (OH)t、3Ni (OH)2 ・2NI
CO3から選択されるニッケル化合物であっても同様に
良好な結果を示した。
In addition, N shown in the example as a nickel compound to be added is shown in the table.
In addition to i(NO3)2, N1cc13, Ni (CO3)
2, Ni (OH)t, 3Ni (OH)2 ・2NI
Nickel compounds selected from CO3 gave equally good results.

Claims (1)

【特許請求の範囲】[Claims] あらかじめ、化学組成面および粒度面の調整が充分にお
こなわれている電融マグネシア粉末にニッケル硝酸塩、
炭酸塩および水酸化物の中から少なくとも一種類添加し
たものを発熱線と金属パイプの間隙に充填した状態で低
温加熱処理することにより酸素含有量の高いニッケル酸
化物を生成せしめると同時に酸化マグネシウム粉末中に
均一分散させたことを特徴とする超高温用シーズヒータ
の電気絶縁用充填材料。
Nickel nitrate, fused magnesia powder whose chemical composition and particle size have been carefully adjusted in advance
At least one type of carbonate or hydroxide is added to the mixture, which is filled in the gap between the heating wire and the metal pipe, and then subjected to low-temperature heat treatment to produce nickel oxide with a high oxygen content, and at the same time produce magnesium oxide powder. A filling material for electrical insulation of ultra-high temperature sheathed heaters, which is characterized by being uniformly dispersed in the material.
JP18618283A 1983-10-04 1983-10-04 Electrically insulating filling material of superhigh temperature sheathed heater Granted JPS6077305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18618283A JPS6077305A (en) 1983-10-04 1983-10-04 Electrically insulating filling material of superhigh temperature sheathed heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18618283A JPS6077305A (en) 1983-10-04 1983-10-04 Electrically insulating filling material of superhigh temperature sheathed heater

Publications (2)

Publication Number Publication Date
JPS6077305A true JPS6077305A (en) 1985-05-01
JPH0124322B2 JPH0124322B2 (en) 1989-05-11

Family

ID=16183820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18618283A Granted JPS6077305A (en) 1983-10-04 1983-10-04 Electrically insulating filling material of superhigh temperature sheathed heater

Country Status (1)

Country Link
JP (1) JPS6077305A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191978A (en) * 1981-05-19 1982-11-25 Matsushita Electric Ind Co Ltd Method of producing sheathed heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191978A (en) * 1981-05-19 1982-11-25 Matsushita Electric Ind Co Ltd Method of producing sheathed heater

Also Published As

Publication number Publication date
JPH0124322B2 (en) 1989-05-11

Similar Documents

Publication Publication Date Title
Buschow et al. Formation, decomposition, and electrical transport properties of amorphous Hf‐Ni and Hf‐Co alloys
JPS6077305A (en) Electrically insulating filling material of superhigh temperature sheathed heater
JPH01212264A (en) Varistor material and production thereof
JPS6030076B2 (en) Sheathed heater and its manufacturing method
WO1982004171A1 (en) A shielded heating element and a method of manufacturing the same
US3429831A (en) Lithiated nickel oxide crystals
CN108323170A (en) A kind of preparation method of composite membrane for thermistor
WO1981003238A1 (en) Resistant heat generating element and method of manufacturing same
US3830758A (en) Method of manufacturing electrically conducting material having a positive temperature coefficient of the resistance,and conductor manufactured of this material
JP4635254B2 (en) Oxide ion conductive material comprising bismuth / erbium / niobium oxide solid solution and method for producing the same
JP4925034B2 (en) Oxide ion conductive material comprising bismuth / erbium / molybdenum oxide solid solution and method for producing the same
JP2002280623A (en) Method for manufacturing oxide thermoelectric material
SU893965A1 (en) Method of making boron nitride articles
JPS6237512B2 (en)
JPH0138360B2 (en)
JPS60115189A (en) Method of producing sheathed heater
US3429832A (en) Glower lamp and process
JP2005170783A (en) Electroconductive material comprising bismuth-terbium-tungsten oxide solid solution and its manufacturing method
JPS6237511B2 (en)
JPH0235436B2 (en)
SU760197A1 (en) Thermosensitive cable
US1094352A (en) Refractory fibrous material and process of making the same.
Zheng et al. Electrical Properties of Laser‐Synthesized Aluminum Oxide‐Tungsten Oxide Ceramics
JPS6362077B2 (en)
JPS59175585A (en) Electrically insulating filling material of high temperaturesheathed heater