JPS6077190A - Method for synthesizing single crystal by flux method - Google Patents

Method for synthesizing single crystal by flux method

Info

Publication number
JPS6077190A
JPS6077190A JP58182183A JP18218383A JPS6077190A JP S6077190 A JPS6077190 A JP S6077190A JP 58182183 A JP58182183 A JP 58182183A JP 18218383 A JP18218383 A JP 18218383A JP S6077190 A JPS6077190 A JP S6077190A
Authority
JP
Japan
Prior art keywords
flux
crystal
single crystal
base material
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58182183A
Other languages
Japanese (ja)
Inventor
Eiji Togawa
戸川 栄司
Yoshio Morita
喜夫 森田
Masaaki Takeuchi
正明 竹内
Tadaaki Atomachi
後町 忠昭
Koji Kasuga
春日 好治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58182183A priority Critical patent/JPS6077190A/en
Publication of JPS6077190A publication Critical patent/JPS6077190A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain efficiently a single crystal, by using a raw material for a raw material component having a specific sintering density. CONSTITUTION:A raw material for the aimed single crystal component is sintered to give a base material having 0.1-10mu particle diameter and 60-99% sintering density. The resultant base material and a flux, e.g. an oxide or fluoride, are melted to synthesize the single crystal of the oxide or fluoride, etc. different from the flux component by the temperature difference or annealing method.

Description

【発明の詳細な説明】 本発明は、フラックス法を用いた単結晶を効率的に合成
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently synthesizing single crystals using a flux method.

ルビー、アレキサントティト等に代表される宝石部材は
、近年レーザー発振用結晶として注目されている。これ
らの単結晶の合成方法としては、引上げ法、水熱合成法
、フラックス法等が知られているが、引上げ法は工粟用
単紅;晶としては結晶ひずみが大きく、水熱合成法はコ
ストが非常に高いという欠点があるため、特に精密な結
晶合成をめる時にはフラックス法が多く用いられている
BACKGROUND ART Gemstones such as ruby and alexantite have recently attracted attention as crystals for laser oscillation. The pulling method, hydrothermal synthesis method, flux method, etc. are known as methods for synthesizing these single crystals. Because it has the drawback of being very expensive, the flux method is often used, especially when precise crystal synthesis is desired.

水元RAは、このフラックス法による彫結晶合成の改良
を目的とする。
Mizumoto RA aims to improve carved crystal synthesis using this flux method.

フラックス法による短結晶合成は、P/10 、 B2
O3、V2O5,PbF2 、 Nα3A/3F6等ノ
フヲックスに目的とする単結晶成分母材を溶解し、痛1
度による溶解度の差によシフラックスから単結晶を析出
させる方法であることはここでこれ以上詳説するまでも
ない。フラックスに対する昆結晶成分のWi解度は一般
にはそれほど大きくないため、罪結晶を大型にかつ大量
に成長させるにはフラックスの瓜結晶成分母材の溶解が
常に過飽和でなければならない。
Short crystal synthesis by flux method is P/10, B2
O3, V2O5, PbF2, Nα3A/3F6, etc. are dissolved in the target single crystal component matrix, and pain 1
There is no need to elaborate any further on the fact that this is a method of precipitating single crystals from syflux based on the difference in solubility depending on the temperature. Since the Wi solubility of the melon crystal component with respect to flux is generally not so large, the dissolution of the melon crystal component base material of the flux must always be supersaturated in order to grow large and large quantities of sin crystals.

過飽和度を大きくする最短の方法としては、短結晶成分
の解解部と凰結晶の成長部の温度勾配を大きくすれば良
いが、この温度勾配は単結晶成長にあたっては最も大き
な駆動力であり、ある程度以上大きい゛場合には次のよ
うな欠点が生ずる。
The shortest way to increase the degree of supersaturation is to increase the temperature gradient between the decomposition part of the short crystal component and the growth part of the red crystal, but this temperature gradient is the greatest driving force in single crystal growth. If it is larger than a certain level, the following drawbacks will occur.

(1+結晶の質が低下する。すなわち、積層欠陥が生じ
ゃすくなシ、いわゆるインクルージヨンが入フやすい。
(1+ The quality of the crystal deteriorates. In other words, stacking faults are less likely to occur, and so-called inclusions are more likely to occur.)

i21目的とする種結晶上への成長の他に1自然核生成
による微結晶が多数発生して種結晶上に付着して単条結
晶化させる。
i21 In addition to the intended growth on the seed crystal, a large number of microcrystals are generated due to natural nucleation, adhere to the seed crystal, and crystallize into a single strip.

このような欠点を補うためには温度勾配を大きくしない
で単結晶成分母材の供給を増加させることが必要である
。フラックスを入れるるつばの大きさに対して単結晶を
安定に成長させるための単結晶成分母材を入れる容積は
10q6以下が望ましいと言われている。
In order to compensate for these drawbacks, it is necessary to increase the supply of single crystal component base material without increasing the temperature gradient. It is said that the volume into which the single crystal component base material is placed is desirably 10q6 or less in order to stably grow the single crystal, relative to the size of the brim into which the flux is placed.

本発明は、単結晶成分母材を多孔質に焼結して、単結晶
成分のフラックスへの溶解を容易にして安定かつ精密な
単結晶成長を行なうものである。
The present invention is to sinter a single-crystal component base material into a porous state to facilitate the dissolution of the single-crystal component into a flux, thereby achieving stable and precise single-crystal growth.

母材の焼結密度は60チ〜99チであシ、望ましくは、
70〜95チである。
The sintered density of the base material is between 60 and 99 inches, preferably
It is 70 to 95 inches.

焼結密度が60%より小さい場合はフラックスへの溶解
にしたがって形状がくずれて、比表面積が小さくなり、
99%LD大きい場合は、比表面積がバルクと大差がな
くなるため本発明の目的と合致しない。
If the sintered density is less than 60%, the shape will collapse as it is dissolved in the flux, and the specific surface area will become smaller.
If the 99% LD is large, the specific surface area is not much different from the bulk, which does not meet the purpose of the present invention.

また、母材には粉末を用い、その粒径it O,1〜1
11ミクロン、望ましくは0.5〜5ミクロンである。
In addition, powder is used as the base material, and its particle size is O,1~1
11 microns, preferably 0.5-5 microns.

0、】ミクロンよル小さい粒子を用いて焼結すると2次
粒子が生じゃすくなシ、結果として0.】ミクロン以上
の径になるため意味がなく、また、10ミクロンよシ大
きい粒子は焼結性が大きく低下するとともに比表面積が
小さくなって本発明の目的に合致しない。
0.] If particles smaller than microns are used for sintering, the secondary particles will not be raw, resulting in 0. ] Particles larger than 10 microns are meaningless because they have a diameter of microns or more, and particles larger than 10 microns greatly reduce the sinterability and decrease the specific surface area, which does not meet the purpose of the present invention.

焼結体の外形形状は基本的には任意であるが、るつほの
内径に対しl/3〜IJ+程度の大きさが望ましい、l
/3より大きい場合には単結晶成分母材の量がフラック
ス量に比べ過剰にな多すぎ、]A1より小さい場合には
母材の消費によって外形形状がくずれやすくなって比表
面積が小さくなるため望ましくない。
The external shape of the sintered body is basically arbitrary, but it is desirable that the size is about 1/3 to IJ+ with respect to the inner diameter of the sintered body.
If it is larger than /3, the amount of the single crystal component base material is too large compared to the flux amount, and if it is smaller than ]A1, the external shape tends to be distorted due to consumption of the base material, and the specific surface area becomes small. Undesirable.

次忙本発明による効果を以下に示す。The effects of the present invention are shown below.

(11溶解速度が大きく、一定である。(11 The dissolution rate is large and constant.

焼結密層を比較的低くおさえであるため多孔質であり、
比表面積が大きく単結晶成長で消費される減少分を速や
かにフラックス中へ溶解させることができる。また、母
材が消費されても、比表面積がはt丁一定で推移するた
め、原料の供給を一定にでき、その結果結晶成長速度を
一定にすることができる。
It is porous because the sintered dense layer is kept relatively low.
It has a large specific surface area and can quickly dissolve the reduced amount consumed in single crystal growth into the flux. Further, even if the base material is consumed, the specific surface area remains constant, so the supply of raw materials can be kept constant, and as a result, the crystal growth rate can be kept constant.

(21結晶成長速度を制御できる。(21 Crystal growth rate can be controlled.

焼結度合によって比表面積を変化させることができる。The specific surface area can be changed depending on the degree of sintering.

すなわち原料供給量を制御でき結晶成長速度を焼結度に
よって制御することができる。
That is, the amount of raw material supplied can be controlled, and the crystal growth rate can be controlled by the degree of sintering.

(31良質の結晶が得られる。(31 Good quality crystals are obtained.

結晶成長は概ね次のような式に従う。Crystal growth generally follows the following formula.

%式% ΔT:母材部と結晶成長部の温度差 M:結晶成長面への母材の供給量 本発明の目的は前述したように△Tをできるだけ小さく
して結晶の質を良くシ、なおかつ工業的水準で結晶成長
を得ようとするところにある。
% Formula % ΔT: Temperature difference between the base material part and the crystal growth part M: Amount of base material supplied to the crystal growth surface As mentioned above, the purpose of the present invention is to reduce ΔT as much as possible to improve the quality of the crystal. Moreover, the aim is to achieve crystal growth at an industrial level.

すなわち、本発明では焼結密度を6oチ〜9゜チにする
ことによって母材の供給を大きく、かつ一定にすること
ができた。これによってMが大きくなるため△T′ft
小さくできるので結晶の品質を良くすることができる。
That is, in the present invention, by setting the sintered density to 6 to 9 degrees, the supply of the base material can be increased and kept constant. This increases M, so △T′ft
Since it can be made smaller, the quality of the crystal can be improved.

次に本発明の実施例を以下に示す。Next, examples of the present invention will be shown below.

実施例] くアレキサンドライト単結晶成長〉 B (30: A、4203= l : l (モル比
) ノ粉末KCr2o32 wt%を混合してラバープ
レスして焼結し、1(IIIJIφの母材をつくった。
Example] Alexandrite single crystal growth> B (30: A, 4203 = l: l (molar ratio) powder KCr2O32wt% was mixed and sintered by rubber pressing to create a base material of 1 (IIIJIφ). .

白金るっは(60Uφx 150 m )にこの母材を
80F投入し、フラックスとしてV2O,7009k入
れて加熱した。
This base material was placed in a platinum tank (60Uφ x 150m) at 80F, and V2O, 7009k was added as a flux and heated.

母材の焼結密度を70チ、80%、99.9%の3水準
に分け、同一温度条件で結晶成長を行なった。なお、成
長部には3vux角の天然クリンベリル種結晶を白金線
でつるして入れた。
The sintered density of the base material was divided into three levels: 70 cm, 80%, and 99.9%, and crystal growth was performed under the same temperature conditions. In addition, a 3 vux square natural criberyl seed crystal was suspended from a platinum wire and placed in the growth area.

母材部の温度 980℃ 結晶長酸部の温度 970℃、975℃保持時間 1o
oo時間 成長結果(成長量of) 得られた結晶を顕微鏡観察およびX線ロッキングカーブ
で判定した結果ΔTが10℃の時は成長量は大きいがイ
ンクルージヨン、双晶が多く品質は悪く、△T=5℃の
時はすべて品質はΔT=1υ℃よル良いが、焼結密度が
70%、80チの方が成長速度は早かった。
Temperature of base metal part: 980°C Temperature of crystal long acid part: 970°C, 975°C holding time: 1o
oo Time Growth Results (Growth Amount of) The obtained crystals were judged by microscopic observation and X-ray rocking curve. When ΔT was 10°C, the growth amount was large, but there were many inclusions and twins, and the quality was poor. When the temperature was 5°C, the quality was better than ΔT = 1υ°C, but the growth rate was faster when the sintered density was 70% and 80 cm.

実施例2 くルビー車結晶成長〉 AA203に3 wt’16のCr2O3ヲ入れテヨく
混合シ実施例1と同じ大きさに焼結した。6016mm
 X 150 mの白金るつばに焼結母材を80を入れ
Pbo : PbF2= l : 5 (モル比)のフ
ラックスを1.5Hf入れ加熱して、母材部温度110
0℃、成長部温度1090℃で1000時間保持した。
Example 2 Ruby wheel crystal growth> 3 wt'16 Cr2O3 was added to AA203, mixed well, and sintered to the same size as in Example 1. 6016mm
A sintered base material of 80 mm was placed in a platinum crucible of 150 m in diameter, and 1.5 Hf of flux of Pbo:PbF2=l:5 (mole ratio) was added and heated to bring the temperature of the base material to 110 mm.
The temperature was maintained at 0°C and the growth zone temperature at 1090°C for 1000 hours.

種結晶は1cm角のサファイア板を用いた。A 1 cm square sapphire plate was used as a seed crystal.

結晶成長した結果は実施例1のアレキサントフィト単結
晶成長と同一の傾向であり、通常の温度条件△T = 
20 ℃より良好な結晶が得られ、焼結密度が85%付
近でΔT=2)℃と同程度の成長速度が得られた。
The crystal growth results had the same tendency as the alexanthophyte single crystal growth in Example 1, and under normal temperature conditions ΔT =
Better crystals were obtained at 20° C., and a growth rate comparable to that at ΔT=2)° C. was obtained when the sintered density was around 85%.

実施例3 くエメヲルド単結晶成長〉 原料 BgO41,2% AAzos 55.9% CrxOs 2.9% の割合で混合し%I(111JIφ、焼結密度90チで
焼結し、10fをるつぼに、 5ho2は水晶を肋2る
つほに入れた。
Example 3 Kuemewold single crystal growth〉 Raw materials BgO41.2% AAzos 55.9% CrxOs 2.9% were mixed at a ratio of %I (111JIφ, sintered at a sintering density of 90mm, 10f was placed in a crucible, 5ho2 put the crystal in the second rib.

フラックスはv205 : LjzMgO4= 1 :
 1 (% /l/比)で4002を入れ加熱した。
Flux is v205: LjzMgO4=1:
4002 was added at a ratio of 1 (%/l/ratio) and heated.

成長条件は、母材部950℃、成長部945℃で100
0時間成長であったc1種結晶は1cyn角の天然ベリ
ルを用いた。
The growth conditions were 950°C for the base material, 945°C for the growing part, and 100°C for the growing part.
As the c1 seed crystal grown for 0 hours, natural beryl of 1 cyn square was used.

この結′果、成長速度は0 、03 yu1日が一定に
得られ、インクルージヨンは初期成長段階を除いて全く
みられなかった。
As a result, a constant growth rate of 0.03 yu/day was obtained, and no inclusions were observed except at the initial growth stage.

同一温度条件で焼結密度99.8チの母材を用いた場合
は、結晶の品質は同等であったが成長速度が0.01a
m+/日と遅く、母材の焼結密度の差が結晶成長速度に
明確に現われた。
When a base material with a sintered density of 99.8 cm was used under the same temperature conditions, the crystal quality was the same, but the growth rate was 0.01 a.
The crystal growth rate was as slow as m+/day, and the difference in the sintered density of the base materials clearly appeared in the crystal growth rate.

以上、実施例に示したように、本発明によって、結晶成
長部と母材部の温度差を小さくして結晶の質を上げ、温
度差を小さくすることによって成長速度が低下する分を
母材の焼結密度を60〜99チにすることで補うことが
できることができた。
As shown in the examples above, the present invention improves crystal quality by reducing the temperature difference between the crystal growth part and the base material, and reduces the growth rate by reducing the temperature difference between the base material and the base material. This could be compensated for by setting the sintered density to 60 to 99 inches.

本発明によって、フラックス法を用いた革結晶合成技術
が品質向上、歩留向上を容易に達成することができるの
で、レーザー用等機能結晶に用いられるだけでなく、宝
飾用としても用いることができるため、実用上極めて有
用な発明である。
According to the present invention, leather crystal synthesis technology using the flux method can easily improve quality and yield, so it can be used not only for functional crystals such as lasers but also for jewelry. Therefore, this invention is extremely useful in practice.

以 上 出願人 株式会社諏訪精工舎 代理人 弁理士段 上 務that's all Applicant: Suwa Seikosha Co., Ltd. Agent, Patent Attorney Rank, Senior Officer

Claims (1)

【特許請求の範囲】[Claims] 酸化物、フッ化物等をフラックスとし、これらから温度
差法あるいは徐冷法によってフラックス成分と異なる酸
化物・フッ化物等の蛍結晶を合成する方法に於いて、目
的とするM結晶成分の原料を焼結で製造し、その焼結密
度を60チから99チにすることを特徴とするフラック
ス法による単結晶の合成方法。
In the method of synthesizing fluorescent crystals of oxides, fluorides, etc., which are different from the flux components by using oxides, fluorides, etc. as a flux, using the temperature difference method or slow cooling method, the raw material of the target M crystal component is sintered. A method for synthesizing a single crystal using a flux method, characterized in that the sintered density of the single crystal is increased from 60 inches to 99 inches.
JP58182183A 1983-09-30 1983-09-30 Method for synthesizing single crystal by flux method Pending JPS6077190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182183A JPS6077190A (en) 1983-09-30 1983-09-30 Method for synthesizing single crystal by flux method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182183A JPS6077190A (en) 1983-09-30 1983-09-30 Method for synthesizing single crystal by flux method

Publications (1)

Publication Number Publication Date
JPS6077190A true JPS6077190A (en) 1985-05-01

Family

ID=16113786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182183A Pending JPS6077190A (en) 1983-09-30 1983-09-30 Method for synthesizing single crystal by flux method

Country Status (1)

Country Link
JP (1) JPS6077190A (en)

Similar Documents

Publication Publication Date Title
EP0004974B1 (en) Process for producing a single crystal of ktiopo4 or its analogues
TWI274735B (en) Bulk single crystal production facility employing supercritical ammonia
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
Feigelson Crystal growth through the ages: a historical perspective
Feigelson Crystal growth History: Theory and melt growth processes
US3341302A (en) Flux-melt method for growing single crystals having the structure of beryl
JPS6077190A (en) Method for synthesizing single crystal by flux method
JP4466293B2 (en) Method for producing silicon carbide single crystal
JP2001240494A (en) Single crystal growth method
JP2011006309A (en) Method for manufacturing sapphire single crystal
JPH04132695A (en) Production of single crystal of alumina-based oxide having high melting point
Carter et al. Growing single crystals
JP7125711B2 (en) Method for producing seed crystal for growing single crystal of iron-gallium alloy and method for growing single crystal of iron-gallium alloy
US3567642A (en) Hydrothermal process for growing crystals having the structure of beryl in an alkaline halide medium
JP2007044639A (en) Crystallization method and crystallization apparatus
JP2011126731A (en) Sapphire single crystal and method for producing the same
JP2739546B2 (en) Method for producing lithium borate single crystal
JPS59107996A (en) Single crystal growing up method of solid solution composition of inorganic compound oxide
JPH0319199B2 (en)
JPS6042293A (en) Manufacture of single crystal
Watanabe Growth of Neodymium Pentaphosphate Single Crystals by the Flux Seeded Technique
JPS6081083A (en) Method for synthesizing single crystal by flux method
JPH0421594A (en) Production of mn-zn ferrite single crystal
JPS58155719A (en) Manufacture of single crystal body