JPS6077102A - Production of hydrogen - Google Patents

Production of hydrogen

Info

Publication number
JPS6077102A
JPS6077102A JP58180428A JP18042883A JPS6077102A JP S6077102 A JPS6077102 A JP S6077102A JP 58180428 A JP58180428 A JP 58180428A JP 18042883 A JP18042883 A JP 18042883A JP S6077102 A JPS6077102 A JP S6077102A
Authority
JP
Japan
Prior art keywords
oxygen
hydrogen
solid electrolyte
cell
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180428A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Shinsuke Morikawa
森川 真介
Yasuhiro Sanada
恭宏 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP58180428A priority Critical patent/JPS6077102A/en
Publication of JPS6077102A publication Critical patent/JPS6077102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce high-purity H2 in high efficiency with shortened steps, by transferring O2 in steam to an O2-acceptor through a membrane made of a solid electrolyte containing ZrO2, etc., represented by a specific formula, and having electrical conductivity with oxygen ion. CONSTITUTION:A cell is furnished with a membrane made of a solid electrolyte having oxygen ion conductivity and represented by the general formula (ZrO2)100-x(MF3)x (M is Y and X is 13-25; or M is Yb and x is 16-25; X is mol%). The cell is heated at a high temperature, and is supplied with an O2- acceptor (e.g. CO gas) to the inner side and steam to the outer side of the cell. The O2 in steam is transferred to the CO gas by this process. High-purity H2 can be produced in high efficiency with shortened steps.

Description

【発明の詳細な説明】 本発明は水素の製造方法、特に酸素に対し高い選択透過
特性を有する新規な酸素イオン導電性固体電解質を用い
た水素の製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogen, particularly a method for producing hydrogen using a novel oxygen ion conductive solid electrolyte having high permselective properties for oxygen.

水素は近年のエネルギー事情を反映し、無尽蔵に存在す
る水を電解して得る方法や、炭化水素等を種々の方法で
分解して得る方法等が各種提案されている。
Reflecting the energy situation in recent years, various methods have been proposed for obtaining hydrogen, such as methods for obtaining it by electrolyzing the inexhaustible water, and methods for obtaining hydrogen by decomposing hydrocarbons and the like using various methods.

しかしながら、これらの方法は何れも工程がかなり煩雑
であったり、設備費が高く、又必ずしも高純度の水素を
効率よく得る手段であるとは言い難いものも少なくなか
った。
However, all of these methods involve considerably complicated steps, require high equipment costs, and are not necessarily efficient means of obtaining high-purity hydrogen.

又最近、酸素を選択的に透過する性質を有する酸化カル
シウムあるいは酸化イツトリウムを添加した安定化ジル
コニアを隔壁に用い、−酸化炭素やメタンガスを酸素の
受容体として用い、高温(約700℃)の水蒸気を分解
して高純度の水素を得る手段が提案されている。
Recently, stabilized zirconia doped with calcium oxide or yttrium oxide, which has the property of selectively permeating oxygen, has been used for partition walls, and carbon oxide or methane gas has been used as an oxygen acceptor, and high-temperature (approximately 700 degrees Celsius) water vapor has been used. A method of decomposing hydrogen to obtain high-purity hydrogen has been proposed.

この方法は、従来法に比し、工程の短縮とコストの低減
及び高純度水素を効率よく得られる手段として住戸され
る方法であるが、隔壁として用いられる安定化ジルコニ
アの導電性が必ずしも十分でなく、又実用に際し、?O
O’C以−1−の高温下に置かなければ酸素を充分移動
させない性質があり、材料、特に電極を用いる場合には
その材質にかなり制限がある等実用に際しかなりの問題
点を有している。
This method is used in residential units as a means of shortening the process, reducing costs, and efficiently obtaining high-purity hydrogen compared to conventional methods, but the conductivity of the stabilized zirconia used as the partition wall is not necessarily sufficient. In addition, in practical use? O
It has the property of not being able to transfer oxygen sufficiently unless it is placed at a high temperature of O'C or higher, and there are considerable problems in practical use, such as the fact that there are considerable restrictions on the materials used, especially when electrodes are used. There is.

本発明者はかかる問題点を除去すべく、種々検討した結
果、特定組成を有する弗化酸化物を安定化ジルコニアに
代えて用いることにより目的を達成し得ることを見出し
た。
In order to eliminate such problems, the inventors of the present invention have conducted various studies and found that the object can be achieved by using a fluorinated oxide having a specific composition in place of stabilized zirconia.

かくして本発明は、隔膜の一方に水蒸気を、他方に酸素
を受容し得る物質を存在せしめ、該膜を通して水分子中
の酸素を前記酸素受容物質に移動せしめることにより、
水蒸気を分解して水素を得る方法において、隔膜として
一般式%式% 13〜25、或はM−Ybであってx 〜18〜25、
Xはモル%)で示される酸素イオン電導性固体電解質を
用いることを特徴とする水素の製造方法を提供するにあ
る。
Thus, the present invention provides a method in which a substance capable of accepting water vapor is present on one side of the diaphragm and a substance capable of accepting oxygen is present on the other side, and oxygen in water molecules is transferred to the oxygen-accepting substance through the membrane.
In the method of decomposing water vapor to obtain hydrogen, the diaphragm is of the general formula % % 13-25, or M-Yb x ~ 18-25,
The present invention provides a method for producing hydrogen characterized by using an oxygen ion conductive solid electrolyte (X is mol%).

本発明において用いられる酸素を受容し得る物質として
は例えば−酸化炭素やメタン、エタンなどの炭化水素等
が挙げられ、これらは一種若しくは二種以上を適宜用い
ることが出来る。
Examples of the oxygen-accepting substance used in the present invention include carbon oxide and hydrocarbons such as methane and ethane, and one or more of these can be used as appropriate.

これら物質の使用量は、その物質の酸素受容の難易さ及
び得ようとする水素の量や単位時間当りの反応性等によ
り厳密には決定されるが、一般に水蒸気供給量に対して
0.1〜10倍程度を採用するのが適当である。
The amount of these substances to be used is strictly determined by the difficulty of the substance in accepting oxygen, the amount of hydrogen to be obtained, the reactivity per unit time, etc., but in general, it is 0.1% of the amount of water vapor supplied. It is appropriate to adopt a value of about 10 times.

本発明において上記組成を逸脱する場合には導電性の低
下が著しくなったり、不均一組成を示し、熱衝撃性が低
下するので実用的でない。
In the present invention, if the composition deviates from the above-mentioned range, the conductivity will be significantly lowered, the composition will be non-uniform, and the thermal shock resistance will be lowered, which is not practical.

上記組成範囲を有する場合には導電性や焼結性がほぼ安
定又は一定しており、実用性を十分有している。そして
材料の特性や経済性の点からMがイツトリウム(Y)の
場合!−14〜1B、 Mがイッテルビウム(Yb)の
場合には!−17〜19を採用するのが特に好ましい。
When the composition is within the above range, the conductivity and sinterability are almost stable or constant, and the composition has sufficient practicality. And when M is yttrium (Y) from the viewpoint of material properties and economic efficiency! -14~1B, if M is ytterbium (Yb)! It is particularly preferable to use -17 to 19.

本発明による導電性物質の製法は、酸化ジルコニウムと
弗化イツトリウム又は弗化イッテルビウムを夫々粉砕混
合し、不活性ガス雰囲気下1100〜1400℃に3時
間程度保持することにより得ることが出来る0例えば(
ZrOz )85 (YF3 )+5を得る場合には0
.85モルc) ZrO2と0.15モル(7)YF3
を粉砕混合し、アルゴン雰囲気下に1200℃において
3時間程度焼成せしめることにより容易に得ることが出
来る。又ZrO+ 、ZrF4とY2O3やYb2O3
の混合物を同様に焼成焼結せしめることにより製造し得
る。但しこの場合、ZrF4が比較的揮発性である為、
ZrF4の損失や目標組成に正確に達しないことがある
ので注意を要する。
The method for producing a conductive substance according to the present invention is as follows: zirconium oxide and yttrium fluoride or ytterbium fluoride can be ground and mixed, respectively, and held at 1100 to 1400°C for about 3 hours in an inert gas atmosphere.
ZrOz )85 (YF3 )+5 is 0.
.. 85 mol c) ZrO2 and 0.15 mol (7) YF3
It can be easily obtained by pulverizing and mixing and baking the mixture at 1200° C. for about 3 hours in an argon atmosphere. Also, ZrO+, ZrF4, Y2O3 and Yb2O3
It can also be produced by firing and sintering a mixture of the following. However, in this case, since ZrF4 is relatively volatile,
Care must be taken because the loss of ZrF4 and the target composition may not be achieved accurately.

又これら、固体電解質の形状付与は、例えば薄膜状物を
得る際にはプラズマ溶射法、真空蒸着法、スパッタリン
グ法等を、比較的厚い形状の場合にはホットプレス法、
ラバープレス法。
In addition, these solid electrolytes can be shaped using, for example, plasma spraying, vacuum evaporation, sputtering, etc. to obtain a thin film, and hot pressing, etc. to obtain a relatively thick shape.
Rubber press method.

熱間静水圧焼結法等を適宜採用することが出来る。A hot isostatic pressure sintering method or the like can be appropriately employed.

本発明に用いられる固体電解質の厚さは一般に1.〜5
m11程度が適当である。厚さが前記範囲に満たない場
合には、不均一でガス漏れが起り易くなり、逆に前記範
囲を超える場合には抵抗損失が著しく大きくなる虞れが
あるので何れも好ましくない。
The thickness of the solid electrolyte used in the present invention is generally 1. ~5
Approximately m11 is appropriate. If the thickness is less than the above range, gas leakage is likely to occur due to non-uniformity, while if it exceeds the above range, resistance loss may become significantly large, which is not preferable.

又、本発明に用いられる陽極の材質とじては、例えば白
金、銀、コバルトなどの金属材料LaCoO3などのペ
ロブスカイト系材料等が又陰極の材質としては例えば白
金、銀、ニッケルなど金属材料、 LaCoO3などの
ペロブスカイト系酸化物材料等を適宜採用することが出
来る。
Further, the material of the anode used in the present invention includes, for example, a metal material such as platinum, silver, and cobalt, and a perovskite material such as LaCoO3, and the material of the cathode includes, for example, a metal material such as platinum, silver, and nickel, and a metal material such as LaCoO3. Perovskite-based oxide materials and the like can be appropriately employed.

又これら陰、陽極は何れもガスが透過することが必要で
あり、この為これら電極の有する物性としては、多孔質
で半融しに〈〈固体電解質との密着性がよいものを採用
するのが適当である。又、これら電極の厚さは一般に数
千人〜100弘程度を採用するのが適当である。
In addition, it is necessary for gas to permeate through both the anode and the anode, and for this reason, the physical properties of these electrodes include porous, semi-molten, and other materials that have good adhesion to the solid electrolyte. is appropriate. Further, it is generally appropriate to employ the thickness of these electrodes to be about several thousand to about 100 hi.

これらの電極は固体電解質に対しスクリーン印刷法、ス
パッタリング法等の手段により設けることが出来る。
These electrodes can be provided on the solid electrolyte by means such as screen printing or sputtering.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例l ZrO20,88モルとYF30.14モルをボールミ
ルを用いて粉砕混合した後、ラバープレス法により直径
20腸膳、厚さ2■のペレットに成型し。
Example 1 20.88 moles of ZrO and 30.14 moles of YF were pulverized and mixed using a ball mill, and then molded into pellets with a diameter of 20 mm and a thickness of 2 cm using a rubber press method.

これをアルゴン雰囲気中1200℃で3時間焼成した、
この焼結体のX線回折図は第1図に示す通りであり、組
成は(ZrO2)0.86 (YF3 )0.14であ
った。このペレットの両面にpt粉末を焼き付けた後、
ptリード線を取りつけ、全体を焼結アルミナ製チュー
ブの一端にアルミナセメントを用いて装着し水蒸気電解
セルを作製した。このセルを石英製の炉心管を有する電
気炉に挿入し、600℃に加熱保持した。内側には一酸
化炭素ガスを50mA/分、外側には水蒸気飽和アルゴ
ンガスを25m1/分の流量でそれぞれ供給した。
This was fired at 1200°C for 3 hours in an argon atmosphere.
The X-ray diffraction diagram of this sintered body was as shown in FIG. 1, and the composition was (ZrO2) 0.86 (YF3) 0.14. After baking PT powder on both sides of this pellet,
A PT lead wire was attached and the whole was attached to one end of a sintered alumina tube using alumina cement to produce a steam electrolysis cell. This cell was inserted into an electric furnace having a quartz core tube, and heated and maintained at 600°C. Carbon monoxide gas was supplied to the inside at a flow rate of 50 mA/min, and water vapor-saturated argon gas was supplied to the outside at a flow rate of 25 m1/min.

1時間後、水素の生成量を測定した結果0.3ルmat
 7分(室温換算)であった。
After 1 hour, the amount of hydrogen produced was measured and was 0.3 lmat.
The time was 7 minutes (calculated as room temperature).

実施例2 Zr020.82モルとYbF30.18モルを実施例
1と同じ方法で混合、成型、焼成した。この焼結体のx
Vi回折図はt52図に示した通りであり、組成は(Z
r02)o、B2 (YbF3 )olsであった。こ
れを用いて水蒸気電解セルを作製し、実施例1と同様な
条件下水素の生成量を測定した結果0.2 ルmol 
7分であった。
Example 2 020.82 moles of Zr0 and 30.18 moles of YbF were mixed, molded, and fired in the same manner as in Example 1. x of this sintered body
The Vi diffraction diagram is as shown in the t52 diagram, and the composition is (Z
r02)o, B2(YbF3)ols. A steam electrolytic cell was prepared using this, and the amount of hydrogen produced was measured under the same conditions as in Example 1. The result was 0.2 lmol.
It was 7 minutes.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は実施例中に示した本発明に用いられた組成
物のX線回折図である。 手続補正書は式) 昭和59年 2月J分口 特許庁長官 若杉和夫殿 1、事件の表示 昭和58特許願第180428号 2、発明の名称 水素の製造法 3、補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁目r番2号名称 (
004)旭硝子株式会社 8、補正の内容 明細口の浄書(内容に変更なし)以上
Figure 1.2 is an X-ray diffraction diagram of the composition used in the present invention shown in the Examples. Procedural amendment is a formality) February 1980 J Branch Commissioner of the Japan Patent Office Mr. Kazuo Wakasugi 1, Indication of the case 1982 Patent Application No. 180428 2, Name of the invention Process for producing hydrogen 3, Person making the amendment Related Patent Applicant Address No. 2, Marunouchi 2-chome, Chiyoda-ku, Tokyo Name (
004) Asahi Glass Co., Ltd. 8, Contents of the amendment: Engraving of the details (no changes to the contents) and above

Claims (1)

【特許請求の範囲】[Claims] 1、隔膜の一方に水蒸気を、他方に酸素を受容し得る物
質を存在せしめ、該膜を通して水蒸気中の酸素を前記酸
素受容物質に移動せしめることにより、水蒸気を分解し
て水素を得る方法において、隔膜として一般式(ZrO
2)100”4 (MF3 )! (但しM=Y テあ
ッテ!=13〜25゜或はに−Ybであってx=IB〜
25、Xはモル%)で示される酸素イオン導電性固体電
解質を用いることを特徴とする水素の製造法。
1. A method for decomposing water vapor to obtain hydrogen by allowing a substance capable of accepting water vapor to exist on one side of a diaphragm and oxygen in the other, and transferring oxygen in the water vapor to the oxygen-accepting substance through the membrane, As a diaphragm, the general formula (ZrO
2) 100”4 (MF3)! (However, M=Y Teatte!=13~25° or -Yb and x=IB~
25. A method for producing hydrogen characterized by using an oxygen ion conductive solid electrolyte represented by (X is mol%).
JP58180428A 1983-09-30 1983-09-30 Production of hydrogen Pending JPS6077102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180428A JPS6077102A (en) 1983-09-30 1983-09-30 Production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180428A JPS6077102A (en) 1983-09-30 1983-09-30 Production of hydrogen

Publications (1)

Publication Number Publication Date
JPS6077102A true JPS6077102A (en) 1985-05-01

Family

ID=16083079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180428A Pending JPS6077102A (en) 1983-09-30 1983-09-30 Production of hydrogen

Country Status (1)

Country Link
JP (1) JPS6077102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241876A (en) * 1988-03-23 1989-09-26 Nec Corp Substrate for electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241876A (en) * 1988-03-23 1989-09-26 Nec Corp Substrate for electronic device

Similar Documents

Publication Publication Date Title
Li et al. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells
Bao et al. Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell
JPS61171064A (en) Pneumatic electrode material for high temperature electrochemical battery
US6875532B2 (en) Method for manufacturing a single high-temperature fuel cell and its components
JP5219370B2 (en) Ionic conductor
EP0726609B1 (en) Solid electrolyte for a fuel cell and its manufacturing method
CN116137334A (en) Solid oxide battery isolation layer, single cell and preparation method
JP2009529771A (en) Electrochemical device and method for producing electrochemical device
JPS6077102A (en) Production of hydrogen
JPH08236138A (en) Cell of solid electrolyte fuel cell and manufacture thereof
JPH04248272A (en) Manufacture of interconnector of lateral-striped cylindrical solid electrolyte fuel cell
JP3392995B2 (en) Method for manufacturing solid oxide fuel cell
JP2870126B2 (en) Solid oxide fuel cell
JPH07249414A (en) Solid electrolytic fuel cell
JPS6074270A (en) Solid fuel cell
JPS60251101A (en) Production of hydrogen
JPH05234604A (en) Solid electrolyte type fuel cell
JPS6077108A (en) Oxygen concentration pump
JP3152843B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3398213B2 (en) Solid oxide fuel cell
JP3091086B2 (en) Cylindrical porous ceramic sintered body
JPS6077101A (en) Production of hydrogen
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JP3359421B2 (en) Solid oxide fuel cell
JP2003238247A (en) Oxygen ion conductive solid electrolyte, electrochemical device and solid electrolyte type fuel cell obtained by using the electrolyte