JPS60768B2 - Cooling device for substation equipment - Google Patents

Cooling device for substation equipment

Info

Publication number
JPS60768B2
JPS60768B2 JP4780379A JP4780379A JPS60768B2 JP S60768 B2 JPS60768 B2 JP S60768B2 JP 4780379 A JP4780379 A JP 4780379A JP 4780379 A JP4780379 A JP 4780379A JP S60768 B2 JPS60768 B2 JP S60768B2
Authority
JP
Japan
Prior art keywords
oil
transformer
cooling
heat
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4780379A
Other languages
Japanese (ja)
Other versions
JPS55138812A (en
Inventor
進 川中
良和 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4780379A priority Critical patent/JPS60768B2/en
Publication of JPS55138812A publication Critical patent/JPS55138812A/en
Publication of JPS60768B2 publication Critical patent/JPS60768B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 この発明は変圧器とりアクトルの発生熱損失をL各機器
専用として付属させた熱交換器により「油から水あるい
はフロンなどの中間冷却媒体に熱を移しさらに中間冷却
媒体を乾式あるいは湿式冷却塔によって冷却する変電機
器用冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention reduces the heat loss generated by the transformer and actuator by transferring heat from oil to an intermediate cooling medium such as water or chlorofluorocarbons using a heat exchanger attached specifically for each device. The present invention relates to a cooling system for substation equipment that cools equipment using a dry or wet cooling tower.

「年間を通じて変圧器が一定の負荷率Pで運転されるか
も年間を通じて最も高い負荷率がPで運転される」条件
の場合、巻線温度が変圧器負荷率100%で運転された
時の年間を通じての最高巻線温度を上回わらない範囲に
なるよう、冷却器を部分停止して油温度を上昇させて運
転しても、予め定められた寿命を損なうことはない。
In the case of the condition that "the transformer is operated at a constant load factor P throughout the year, or the highest load factor is P throughout the year", the winding temperature is Even if the cooler is partially stopped and the oil temperature is increased so that the oil temperature does not exceed the maximum winding temperature during operation, the predetermined service life will not be impaired.

つまり100%連続運転される場合の巻線および油温度
の最高点をそれぞれQc,Qoとすると油の循環量を変
えない範囲で負荷率P%の時に許容される油温度はQc
−(Qc−Qo)・P1・6〜2となり前記条件では1
00%の時より巻線と油の温度差が少なくなる分だけ油
温度を高くして運転することが可能となり、この考え方
を適用すると、変圧器の負荷率が年間を通じて前記条件
であれば負荷率が低い程高い油温度で運転してもよいの
で、発生熱損失の減少以上に冷却器の能力を低下させる
ことができる。一方リアクトルは系統に投入された場合
、発生する熱損失、巻線および油の温度上昇は一定にな
るので、巻線と油の温度差は常に一定であるため変圧器
と同じ考え方を採用することはできない。従って変圧器
とIJアタトルの油を共通の中間冷却媒体を介して冷却
塔で冷却する場合、中間冷却媒体の温度はリアクトル側
で制限され、変圧器側には余裕のある値にしなければな
らない。つまり、冷却塔に、高負荷時は蒸発冷却、低負
荷時は強制風冷の如く、二重定格のものを使用して、変
圧器の負荷率がPの時風袷運転して、前記の油温度Qc
−(Qc−Qo)P16〜2になった場合、中間冷却媒
体の温度がQwpになったとするとこの中間冷却媒体に
よってリアクトルを冷却するとIJアクトルの油温度は
変圧器の温温度より高くなり、巻線と油の温度差も{(
Qc−Qo)(1−P1・6〜2)}だけ高くなり、寿
命を損なうことになるので、リアクトルと変圧器を同時
に運転する場合は、変圧器とIJアクトルの油温度差お
よび変圧器の巻線と油の温度差とIJアクトルのそれの
差{(Qc−Qo)(1−P1・6〜3)}に見合う分
だけ中間冷却媒体の温度が低くなる負荷率でしか運転す
ることができない。従来、この種の装置は第1図に示す
ように構成されている。
In other words, if the highest points of winding and oil temperature in 100% continuous operation are Qc and Qo, respectively, then the allowable oil temperature at load factor P% is Qc without changing the oil circulation amount.
-(Qc-Qo)・P1・6~2, which is 1 under the above conditions
It is possible to operate with the oil temperature raised by the amount that reduces the temperature difference between the winding and the oil compared to when it is 00%.If this idea is applied, if the load factor of the transformer is under the above conditions throughout the year, the load The lower the rate, the higher the oil temperature may be operated, thereby reducing the capacity of the cooler beyond the reduction in heat loss generated. On the other hand, when a reactor is connected to a power system, the heat loss generated and the temperature rise of the winding and oil are constant, so the temperature difference between the winding and oil is always constant, so the same concept as that of a transformer should be adopted. I can't. Therefore, when the transformer and IJ atator oil are cooled in a cooling tower via a common intermediate cooling medium, the temperature of the intermediate cooling medium is limited on the reactor side, and must be set to a value with some margin on the transformer side. In other words, by using a cooling tower with dual ratings, such as evaporative cooling when the load is high and forced air cooling when the load is low, and operating it under wind when the load factor of the transformer is P, the above-mentioned Oil temperature Qc
- (Qc - Qo) When the temperature of the intermediate cooling medium becomes Qwp, when the temperature of the intermediate cooling medium becomes Qwp, when the reactor is cooled by this intermediate cooling medium, the oil temperature of the IJ actor becomes higher than the temperature of the transformer. The temperature difference between the wire and the oil is also {(
Qc-Qo)(1-P1・6~2)}, which will reduce the lifespan. Therefore, when operating the reactor and transformer at the same time, check the oil temperature difference between the transformer and IJ actor and It is only possible to operate at a load rate that lowers the temperature of the intermediate cooling medium by an amount corresponding to the difference between the temperature of the winding and the oil and that of the IJ actor {(Qc-Qo) (1-P1・6~3)}. Can not. Conventionally, this type of apparatus has been constructed as shown in FIG.

図において、1,2は併設される油入変圧器および油入
りアクトル、laないしICは油入変圧器1に付設され
、油入変圧器1内の油と例えば水、フロン等の中間冷却
媒体との熱交換を行なう熱交換器、2a,2bは油入り
アクトル2に付設され、油入りアクトル2内の油と上記
中間冷却媒体との熱交換を行なう熱交換器、3は上記両
熱交換器laないし2bによって油と熱交換され且つ共
通配管4により一括して送り込まれる中間冷却媒体を冷
却する冷却塔で一般には屋上に設置されている。従来の
ものは前記の如く油入変圧器1と油入りアクトル2から
発生する熱損失を共通の中間冷却媒体を介して冷却塔3
により大気に放熱するようにしていたため、冷却塔3に
高負荷時は蒸発冷却、低負荷時は強制風冷の如き二重定
格のものを使用する場合「強制風冷で運転する条件は油
入りァクトル2の油温度で制限を受けるため油入変圧器
1の許容負荷率が低く押えられていた。
In the figure, 1 and 2 are attached oil-filled transformers and oil-filled actors, and LA or IC is attached to the oil-filled transformer 1, and the oil in the oil-filled transformer 1 and an intermediate cooling medium such as water or fluorocarbon are used. Heat exchangers 2a and 2b are attached to the oil-filled actor 2 and are heat exchangers that exchange heat between the oil in the oil-filled actor 2 and the intermediate cooling medium; 3 is a heat exchanger for exchanging heat between the two above-mentioned A cooling tower is generally installed on a rooftop and cools an intermediate cooling medium that undergoes heat exchange with oil through vessels la to 2b and is sent all at once through a common pipe 4. As mentioned above, in the conventional system, the heat loss generated from the oil-filled transformer 1 and the oil-filled actuator 2 is transferred to the cooling tower 3 through a common intermediate cooling medium.
Therefore, when using a dual-rated cooling tower 3, such as evaporative cooling at high loads and forced air cooling at low loads, the conditions for operating with forced air cooling are: The permissible load factor of the oil-immersed transformer 1 has been kept low because it is limited by the oil temperature of the transformer 2.

この発明は上記従来装置における欠点を解消するために
なされたもので、油入りアクトルに付設される熱交換器
の中間冷却媒体側回路入口に第3の熱交換器を付設して
上記熱交換器に送り込まれる中間冷却媒体のみを冷却す
ることにより、変圧器の負荷率に対して冷却塔の停止比
率を高くすること又は、冷却塔の停止比率に対して変圧
器の許容負荷率を高くすることが目的であり、冷却塔が
蒸発冷却と強制風冷の二重定格の場合、強制風冷運転の
可能な変圧器負荷率を高くするものでありこのことによ
り、蒸発水の節減、運転中の補機換の低減、機器の寿命
延長などを計る変電機器用冷却装置を提供するものであ
る。
The present invention has been made in order to eliminate the drawbacks of the above-mentioned conventional apparatus, and a third heat exchanger is attached to the intermediate cooling medium side circuit inlet of the heat exchanger attached to the oil-filled actor. By cooling only the intermediate cooling medium sent to the transformer, the cooling tower shutdown ratio can be increased relative to the transformer load ratio, or the transformer permissible load ratio can be increased relative to the cooling tower shutdown ratio. The purpose is to increase the transformer load factor that allows forced air cooling operation when the cooling tower is dual rated for evaporative cooling and forced air cooling. It provides a cooling device for transformer equipment that reduces the need for auxiliary equipment changes and extends the life of the equipment.

以下、この発明の一実施例を図について設賜する。An embodiment of the present invention will be presented below with reference to the drawings.

第2図において、油入変圧器1、油入りアクトル2「冷
却塔3、熱交換器laないし2b、共通配管4は第1図
に示すものと同様である。5は熱交換器2a,2bの中
間冷却媒体側回路入口に設けられるたとえばヒートポン
プ等からなる第3の熱交換器である。
In FIG. 2, an oil-filled transformer 1, an oil-filled actuator 2, a cooling tower 3, heat exchangers la to 2b, and a common pipe 4 are the same as those shown in FIG. 1. 5 indicates heat exchangers 2a and 2b. This is a third heat exchanger, such as a heat pump, provided at the inlet of the intermediate cooling medium side circuit.

このように構成されたこの発明の一実施例によれば、第
3の熱交換器5により熱交換器2a,2bに送り込まれ
る中間冷却媒体の温度を、油入変圧器1と油入りアクト
ル2の油温度差および油入変圧器1の巻線温度と油温度
との差と、油入りアクトル2のそれとの差分だけ下げる
ようにしたものである。以上のように、この発明によれ
ば従来に比べ、変圧器の負荷率に対して冷却塔の停止比
率を高くすること又は、冷却塔の停止比率に対して変圧
器の許容負荷率を高くすることが可能となり、冷却塔が
蒸発冷却と強制風冷などのように二重定格のものでは、
強制風冷運転の可能な変圧器負荷率を高くすることがで
きるものであり、この事により消費水量の節減、運転中
の補機換の低減、機器の寿命延長など、非常に大きい効
果がある。
According to one embodiment of the present invention configured in this manner, the temperature of the intermediate cooling medium sent to the heat exchangers 2a and 2b by the third heat exchanger 5 is controlled by the oil-filled transformer 1 and the oil-filled actuator 2. The difference between the oil temperature difference between the winding temperature of the oil-filled transformer 1 and the oil temperature and that of the oil-filled actuator 2 is reduced. As described above, according to the present invention, the cooling tower shutdown ratio is increased relative to the transformer load ratio, or the transformer allowable load ratio is increased relative to the cooling tower shutdown ratio, compared to the conventional technology. If the cooling tower is dual rated, such as evaporative cooling and forced air cooling,
It is possible to increase the load factor of transformers that can be operated with forced air cooling, and this has great effects such as reducing water consumption, reducing the need to replace auxiliary equipment during operation, and extending the life of equipment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の変電機器用冷却装置の構成を示すブロッ
ク図、第2図はこの発明の一実施例における変電機器用
冷却装置の構成を示すブロック図である。 図において、1は細入変圧器、2は油入りアクトル、l
aないしlcは第1の熱交換器、2a,2bは第2の熱
交換器、3は冷却塔、5は第3の熱交換器である。 第1図 第2図
FIG. 1 is a block diagram showing the configuration of a conventional cooling device for substation equipment, and FIG. 2 is a block diagram showing the configuration of a cooling device for substation equipment in an embodiment of the present invention. In the figure, 1 is a fine-injection transformer, 2 is an oil-filled actor, and l
A to lc are first heat exchangers, 2a and 2b are second heat exchangers, 3 is a cooling tower, and 5 is a third heat exchanger. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 併設される油入変圧器および油入りアクトルと、上
記両機器にそれぞれ付設され上記両機器内の油と中間冷
却媒体との熱交換を行なう第1および第2の熱交換器と
、熱交換された上記中間冷却媒体を冷却する冷却塔とを
備えたものにおいて、上記第2の熱交換器の上記中間冷
却媒体側回路入口に第3の熱交換器を付設したことを特
徴とする変電機器用冷却装置。 2 中間冷却媒体は水であることを特徴とする特許請求
の範囲第1項記載の変電機器用冷却装置。 3 第8の熱交換器はヒートポンプであることを特徴と
する特許請求の範囲第1項または第2項記載の変電機器
用冷却装置。
[Scope of Claims] 1. An oil-filled transformer and an oil-filled actor that are installed together, and first and second heat sources that are attached to the above-mentioned devices and exchange heat between the oil in the above-mentioned devices and an intermediate cooling medium. In the device comprising an exchanger and a cooling tower for cooling the intermediate cooling medium that has undergone heat exchange, a third heat exchanger is attached to the intermediate cooling medium side circuit inlet of the second heat exchanger. A cooling device for substation equipment featuring: 2. The cooling device for power substation equipment according to claim 1, wherein the intermediate cooling medium is water. 3. The cooling device for power substation equipment according to claim 1 or 2, wherein the eighth heat exchanger is a heat pump.
JP4780379A 1979-04-17 1979-04-17 Cooling device for substation equipment Expired JPS60768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4780379A JPS60768B2 (en) 1979-04-17 1979-04-17 Cooling device for substation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4780379A JPS60768B2 (en) 1979-04-17 1979-04-17 Cooling device for substation equipment

Publications (2)

Publication Number Publication Date
JPS55138812A JPS55138812A (en) 1980-10-30
JPS60768B2 true JPS60768B2 (en) 1985-01-10

Family

ID=12785522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4780379A Expired JPS60768B2 (en) 1979-04-17 1979-04-17 Cooling device for substation equipment

Country Status (1)

Country Link
JP (1) JPS60768B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705418B2 (en) 2013-06-14 2017-07-11 Abb Schweiz Ag Power converter with oil filled reactors

Also Published As

Publication number Publication date
JPS55138812A (en) 1980-10-30

Similar Documents

Publication Publication Date Title
US4512387A (en) Power transformer waste heat recovery system
EP0736161B1 (en) An air cooling system
US9220181B2 (en) Electrical room of an industrial equipment such as a container crane, the electrical room comprising a cooling device
CN106295191B (en) A kind of high-power transformer heat-sinking capability calculates the new method of assessment
US5669228A (en) System for utilizing exhaust heat of stationary induction apparatus
JPS60768B2 (en) Cooling device for substation equipment
CN106653291A (en) System for performing forced circulating cooling on transformer through day and night temperature difference
CN105655096A (en) High-capacity rectification power transformer cooled through air energy
JP7147005B2 (en) cooling system
JP5295203B2 (en) Transformer cooling method
JP3619522B2 (en) Substation cooling system
CN115547625A (en) Transformer integrated cooling system based on cooling water system of mill
US20230193880A1 (en) Cooling system
CN112261837A (en) Seawater data cabin water cooling system
JPS637008B2 (en)
CN220380012U (en) Energy-saving temperature control device
JPS5815705B2 (en) Heat recovery method in power generation equipment
CN213776317U (en) Fan gear box cooling system
CN218548157U (en) Transformer device with parallel coolers
CN217741554U (en) Frequency converter and cooling system thereof
CN115512937B (en) Heat collection system and method for transformer
CN116344166A (en) Self-adaptive cooling transformer
JPS5938569A (en) System of utilizing waste heat from transformer
CN117715365A (en) Cold source system, cold source control method and device, storage medium and electronic equipment
CN114867312A (en) Heat recovery type liquid cooling system