JPS6076688A - Nuclear reactor structure - Google Patents
Nuclear reactor structureInfo
- Publication number
- JPS6076688A JPS6076688A JP58183029A JP18302983A JPS6076688A JP S6076688 A JPS6076688 A JP S6076688A JP 58183029 A JP58183029 A JP 58183029A JP 18302983 A JP18302983 A JP 18302983A JP S6076688 A JPS6076688 A JP S6076688A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- roof slab
- heat exchanger
- intermediate heat
- circulation pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、原子炉構造に関し、特に炉内に重惜健全性全
向上させるための耐震構造全実現するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear reactor structure, and particularly to the realization of an earthquake-resistant structure for completely improving the integrity of the reactor.
従来の原子炉全重量、タンク型Ff3R全例と[2て第
1図を用いて説明する。The total weight of a conventional nuclear reactor, all examples of tank type Ff3R, and [2] will be explained using FIG.
タンク型原子炉容器4け、炉心部6と該炉心部の内部の
核分裂反応により発生する熱?取り出すだめの液体金属
冷却材10と、これを循環させる主循環ポンプ9と、熱
全2次系へ伝達するだめの中間熱交換器8等を収納した
犬口径谷器で、上部に設置tされた蓋(ルーフスラブ)
3より垂下支持されている。又、上記ルーフスラブ3は
支持構造物(スカート)2Vこよりペデスタル1に支持
されている。支持構造物は原子炉全重量を支持しており
、そq)重量はお、1’: −’t 1万トン程度もあ
り、地震時の原子炉の健全性を確立することが重要な問
題である。4 tank-type reactor vessels, reactor core 6, and heat generated by the nuclear fission reaction inside the reactor core? It is a dog-bore valley device that houses the liquid metal coolant 10 to be taken out, the main circulation pump 9 to circulate it, the intermediate heat exchanger 8 to transfer heat to the total secondary system, etc., and is installed at the top. roof slab
It is supported hanging down from 3. Further, the roof slab 3 is supported by the pedestal 1 through a support structure (skirt) 2V. The support structure supports the entire weight of the reactor, weighing approximately 10,000 tons, making it an important issue to ensure the reactor's integrity in the event of an earthquake. be.
ところ(1、地震時には、ペデスタルlから入った地震
力は、スカート2、ルーフスラブ3を介して原子炉容器
4に伝わる。However, (1) In the event of an earthquake, seismic force entering from the pedestal l is transmitted to the reactor vessel 4 via the skirt 2 and roof slab 3.
原子炉容器4、炉心上部機構7、中間熱交換器8、主循
環ポンプ9等、重も・を換金直接ルーフスラブ3で支持
する構造となっている。従来の原子炉W造では、固有振
動数ケ、地震応答入力の小さい、十分高い値をとること
は構造的に限界があり、原子炉建屋の地震応答加速度の
卓越値に近い固有振動数を持つので、その応答加速朋が
相当に大きくならざる?得ない。そのため、地震力に耐
えうるためには必然的(C直接全重量全文えているルー
フスラブ3け剛構造である必要があり、原子炉容器4の
重量の増大とそれに伴なう原子炉容器4の溶接計の増大
による建設工期の大幅な増加、厚肉のステンレスの溶接
の信頼性の低下等の様々な不利な点が発生する。The reactor vessel 4, upper core mechanism 7, intermediate heat exchanger 8, main circulation pump 9, and other heavy equipment are directly supported by the roof slab 3. In conventional nuclear reactor W structures, the natural frequency is small, and there is a structural limit to achieving a sufficiently high value for earthquake response input, and the natural frequency is close to the predominant value of the earthquake response acceleration of the reactor building. Therefore, the response acceleration must be considerably large? I don't get it. Therefore, in order to withstand seismic force, it is necessary to have a three-member rigid roof slab structure that can support the full weight of the reactor vessel (C), which increases the weight of the reactor vessel 4 and the accompanying increase in the weight of the reactor vessel 4. Various disadvantages occur, such as a significant increase in the construction period due to the increase in the number of welding meters, and a decrease in the reliability of welding thick stainless steel.
更に地震時応答の大きい原子炉構造では、地震時の制御
棒の緊急挿入性能の低下も考えられ、原子炉の信頼性か
ら艶て得策でない。Furthermore, in a reactor structure that has a large response during an earthquake, the emergency insertion performance of control rods in the event of an earthquake may deteriorate, and this is not a good idea from the standpoint of reactor reliability.
本発明の目的幻、ルーフスラブの慣性モーメントケ減少
させることにより、ルーフスラブ自体の固有振動数ケ高
めることによって、地′祠時のルーフスラブの部材発生
応力音低減さぜ、撮動振巾全低減させ、地上が11の原
子炉構造健全性を高めるとともに、制御棒緊急挿入性能
の向上が計れる原子炉構造全提供することにある。The purpose of the present invention is to reduce the stress noise generated by the members of the roof slab during excavation by reducing the moment of inertia of the roof slab and increasing the natural frequency of the roof slab itself. The objective is to provide an entire nuclear reactor structure that can improve the structural integrity of the nuclear reactor on the ground, and improve the emergency control rod insertion performance.
本発明の要点ケ従米例の振動モデル同第2−1図と比較
して第2−2図で示す。The main points of the present invention are shown in Fig. 2-2 in comparison with Fig. 2-1 of a vibration model of an example of the present invention.
柁2−1図は従来例の振動モデル図である。従来の原子
炉構造では、中間熱交換器、主循環ポンプにルーフスラ
ブに直接支持されており、ルーフスラブの固有振動数は
、全市計の約35%を占める炉心上用1機構の重量を含
んだルーフスラブ自体の重量WR8に関する剛性と慣性
モーメント、全重量の約40%を占める垂下している原
子炉容器等の重量Wa +Wcに関する剛性と慣性モー
メント、総計で全重量の約25チ?占めるルーフスラブ
に直接支持吊下げられている中間熱交換器、主循環ボン
1等の重量WoK関する剛性と慣性モーメントによって
決定される。Figure 2-1 is a vibration model diagram of a conventional example. In the conventional nuclear reactor structure, the intermediate heat exchanger, the main circulation pump, and the roof slab are directly supported, and the natural frequency of the roof slab does not include the weight of the one mechanism above the core, which accounts for approximately 35% of the total city total. Rigidity and moment of inertia related to the weight WR8 of the roof slab itself, and stiffness and moment of inertia related to the weight Wa + Wc of the hanging reactor vessel, etc., which accounts for about 40% of the total weight, totaling about 25 inches of the total weight? It is determined by the rigidity and moment of inertia regarding the weight of the intermediate heat exchanger, main circulation cylinder 1, etc., which are directly supported and suspended from the roof slab occupying the space.
このうち、原子炉構造全重量の約40%を占める原子炉
容器WR+Wcに関する慣性モーメントは、ルーフスラ
ブの振動モードの支点となるスカートとの支持点からの
距離が短く、回転半径が小さい。Among these, the moment of inertia related to the reactor vessel WR+Wc, which accounts for about 40% of the total weight of the reactor structure, has a short distance from the support point with the skirt, which is the fulcrum of the vibration mode of the roof slab, and a small radius of rotation.
(1)式に回転半径、重量と慣性モーメントの関係を示
し、(2)式に慣性モーメント、剛性と固有振動数との
関係を示す。Equation (1) shows the relationship between radius of rotation, weight, and moment of inertia, and Equation (2) shows the relationship between moment of inertia, rigidity, and natural frequency.
(慣性モーメント)=(止1i°)・(回転半径)2(
1)両式かられかるように回転半径は固有振動数に対し
て直線的に影響ケ与える。即ち回転半径が小さい原子炉
容器のに世は、ルーフスラブの固有振動数を決定する主
たる要因となりえない。即ち従来例の原子炉構造におい
て、ルーフスラブ自体の自−市に関する慣性モーメント
と、ルーフスラブに直接支持吊下けられている中間熱交
換器、主循環ポンプ等(C関する慣性モーメントの2つ
が従来例の原子炉構造のルーフスラブの固有振動数を決
定する主たる要因となっている。このため、従来例の原
子炉構造では、中間熱交換器、主循環ポンプ等に関する
慣性モーメントが大きく働らいているため、ルーフスラ
ブの固有振動数を上げるためにルーフスラブ全剛構造に
してもそれに伴うルーフスラブ自重の増加により、固有
振動数を一ヒけることは困難であり、対策として地爽時
加速度応答に対して健全性が保障される高度な設計上の
要求と溶接施工上の要求が満たされるべき設計、設工を
計画する必要があった。(Moment of inertia) = (stop 1i°) / (rotation radius) 2 (
1) As can be seen from both equations, the radius of rotation has a linear effect on the natural frequency. In other words, the reactor vessel's small radius of rotation cannot be the main factor determining the natural frequency of the roof slab. That is, in the conventional nuclear reactor structure, the moment of inertia related to the roof slab itself, and the moment of inertia related to the intermediate heat exchanger, main circulation pump, etc. (C) that are directly supported and suspended from the roof slab are This is the main factor that determines the natural frequency of the roof slab in the example reactor structure.For this reason, in the conventional reactor structure, the moment of inertia of the intermediate heat exchanger, main circulation pump, etc. Therefore, even if the roof slab is completely rigid in order to increase the natural frequency of the roof slab, it is difficult to lower the natural frequency due to the accompanying increase in the roof slab's own weight.As a countermeasure, it is difficult to lower the natural frequency. It was necessary to plan the design and construction to meet advanced design requirements to ensure soundness and welding construction requirements.
本発明の振動モデル図全第2−2図に示す。本発明が従
来例と異なる点は、中間熱交換器と主循環ポンプの重量
W。k)ルーフスラブで支持するのではなく、炉心支持
構造で支持する構造となっている点である。本発明によ
れば、従来例でル−フスラブの固有振動敷金決定する要
因の一つであった中間熱交換器、主循環ポンプの重量W
oが直接ルーフスラブに加らず、炉心支持構造に支持し
たため、原子炉容器の重量WR+Wo +Wcに含まれ
ることになる。従って、原子炉容器の重量WR+Wo
+Wcは全重量の約65係と増加するが、前述L7たよ
うに、その回転半径が小さいため、ルーフスラブの固有
振動数全決定する要因から除外される。即ち本発明によ
れば、ルーフスラブの剛性が従来例の−1までもその固
有振動数は飛躍的に上昇し、地震時の原子炉構造健全性
ケ^めるとともに、地震時のルーフスラブの変位が減少
し、ルーフスラブに支持されている炉心上部機構と炉心
との相対変位が減少し、制御棒緊急挿入性の向上も計る
ことができる。The entire vibration model diagram of the present invention is shown in Figure 2-2. The difference between the present invention and the conventional example is the weight W of the intermediate heat exchanger and the main circulation pump. k) It is not supported by a roof slab, but is supported by a core support structure. According to the present invention, the weight W of the intermediate heat exchanger and main circulation pump, which was one of the factors determining the natural vibration deposit of the roof slab in the conventional example,
Since o was not directly attached to the roof slab but supported by the core support structure, it is included in the weight of the reactor vessel WR + Wo + Wc. Therefore, the weight of the reactor vessel WR+Wo
+Wc increases to about 65 times the total weight, but as mentioned above L7, its radius of rotation is small, so it is excluded from the factors that determine the natural frequency of the roof slab. That is, according to the present invention, the natural frequency of the roof slab is dramatically increased to -1 compared to the conventional example, which not only improves the structural integrity of the reactor during an earthquake, but also improves the structural integrity of the roof slab during an earthquake. The displacement is reduced, the relative displacement between the upper core mechanism supported by the roof slab and the reactor core is reduced, and control rod emergency insertion can be improved.
第31ン1け、ルーフスラブの固有振動数に関し、従来
例と本発明を比較t、fcものである。ルーフスラブの
構造が基本的に同じ形状の原子炉では、従来構造の原子
炉構造に対1〜で本発明による原子炉構造は2〜3割程
度の固有振動数の増加が望める。The 31st page shows a comparison between the conventional example and the present invention regarding the natural frequency of the roof slab. In a nuclear reactor whose roof slab structure is basically the same shape, the reactor structure according to the present invention can be expected to increase the natural frequency by about 20 to 30% compared to the conventional reactor structure.
又、本発明による原子炉構造によれば、もし従来構造q
)固有振動でよいとなれば、剛性が従来の2〜3割程度
低くても良いことになり、従って原子炉構造全体の重量
低下も望める。さらに、本発明による構造で目、剛性と
固有振動数の間は放物線めの重量増加が顕著でない範囲
゛までなら固有振動数は剛性の平方で増加する性質分持
つ構造となっている。Moreover, according to the nuclear reactor structure according to the present invention, if the conventional structure q
) If the natural vibration can be used, the rigidity can be lowered by about 20 to 30% than the conventional one, and it is therefore possible to reduce the weight of the entire reactor structure. Further, the structure according to the present invention has a property that the natural frequency increases as the square of the stiffness as long as the range between the stiffness and the natural frequency is such that the parabolic weight increase is not significant.
第4図は、ルーフスラブ固有振動数と地震応答入力との
関係ケ示すもので、横軸に固有振動数の逆数、縦軸に地
震応答入力を示す。aで示す従来例の固有振動数では卓
越した地震応答入カケ示すのに対[7、bで示す本発明
による固有振動数では、地震応答入力の低下が顕しく、
従来例に対し2〜3割程度の地震応答入力の低下となり
、原子炉構造の健全性?高める構造であることが明らか
である。FIG. 4 shows the relationship between the roof slab natural frequency and the earthquake response input, with the horizontal axis showing the reciprocal of the natural frequency and the vertical axis showing the earthquake response input. While the natural frequency of the conventional example shown as a shows an excellent seismic response input, [7, the natural frequency of the present invention shown as b shows a noticeable decrease in seismic response input,
The seismic response input has decreased by about 20 to 30% compared to the conventional example, and the reactor structure is questionable. It is clear that the structure enhances
以下巣5図ケ参照して本発明のタンク型原子炉構造への
実施例を説明する。An embodiment of the tank-type nuclear reactor structure of the present invention will be described below with reference to Figure 5.
本発明による原子炉は、炉心部6と該炉心部で発生しま
た熱を取り出すだめの冷却材10と、その冷却材の熱を
外部へ伝達するだめの中間熱交換器8故基とを内包した
原子炉容器4が原子炉容器の上部に設置づれ/こルーフ
スラブ3に接合支持されている。中間熱交換器8、主循
環ポンプ9は、炉心支持モ゛す造5?ζIii!′l定
支持されており、その上端にルーフスラブ3との放射線
シール↑み造11i有した支持44′#造によって水平
方向のみの支持を受けている。ルーフスラブ3に1スカ
ート2ヲ介して原子炉に、屋ペデスタルlに設置されて
いる。又原子炉容器内(?i却拐10は自由液面12を
有しでコぐり、その上部)’lj不活性ガス空間13ケ
有している。The nuclear reactor according to the present invention includes a reactor core 6, a coolant 10 that is generated in the core and takes out heat, and an intermediate heat exchanger 8 that transfers the heat of the coolant to the outside. A nuclear reactor vessel 4 is installed on the top of the reactor vessel and is supported by being joined to a roof slab 3. The intermediate heat exchanger 8 and the main circulation pump 9 are constructed using a core support mower 5? ζIii! It is supported only in the horizontal direction by a support 44' having a radiation seal structure 11i with the roof slab 3 at its upper end. It is installed on the roof slab 3 through one skirt 2 to the reactor and on the pedestal 1. In addition, there are 13 inert gas spaces inside the reactor vessel (the upper part of which has a free liquid level 12).
ルーフスラブ3に加わる待■は、中間熱交換器8、生イ
劇瑣ボング9等ケ含んだ原子炉容器4の111量と、原
子炉上部偵構等ゲ含んだルーフスラブ3自体の重:りで
あるが、原子炉構造の上下の振動に対して重要な位置金
占めるルーフスラブ3びJ上下の同市振動ケ考えると、
重量が原子炉構造全重量の約65%を占める原子炉容器
に関しては、ルーフスラブの上下振動の支点となるスカ
ート2との支持点からの距離が短かく、回転半径が小さ
い。The weight added to the roof slab 3 is the 111 weight of the reactor vessel 4, which includes the intermediate heat exchanger 8, 9 dry bongs, etc., and the weight of the roof slab 3 itself, which includes the reactor upper structure, etc.: However, considering the vibrations above and below the roof slabs 3 and J, which play an important role in the vertical vibrations of the reactor structure,
Regarding the reactor vessel, whose weight accounts for approximately 65% of the total weight of the reactor structure, the distance from the support point to the skirt 2, which serves as the fulcrum for vertical vibration of the roof slab, is short, and the radius of rotation is small.
即ち、回転半住の2重と重量の積に比例する慣性ルーフ
スンプ3の上下の固有振動数に与える影響は小さい。、
l:つてルーフスラブ3の上下の固有振動数はほとんど
炉心上部機構7を鵠んだルーフスラブ3自体の重量とそ
の回転半径によって決定されるルーフスラブ3自体の慣
性モーメントに支配される。即ち、中間熱交換器8、主
循環ポンプ9をルーフスラブ3によって支持していた従
来構造VC対して、中間熱交換器8、主循環ポンプ9の
荷11℃によって生じる慣1ツトモーメントの分だけ1
好減されたルーフスラブ3の上下の固有振動数は、地震
応答入力が小さくなる高い振動数足とることが可能とな
る。In other words, the effect on the vertical natural frequency of the inertial roof damper 3, which is proportional to the product of the rotation half-load and the weight, is small. ,
l: The vertical natural frequency of the roof slab 3 is mostly controlled by the moment of inertia of the roof slab 3 itself, which is determined by the weight of the roof slab 3 itself including the core upper mechanism 7 and its radius of rotation. In other words, compared to the conventional VC structure in which the intermediate heat exchanger 8 and the main circulation pump 9 are supported by the roof slab 3, it is reduced by the moment of inertia caused by the load of the intermediate heat exchanger 8 and the main circulation pump 9 at 11°C. 1
The well-reduced upper and lower natural frequencies of the roof slab 3 make it possible to maintain a high frequency that reduces earthquake response input.
さらに本発明によれば、従来中間熱交換器8、主循環ポ
ンプ9のための貫通孔を有していた炉心支持構造8が、
中間熱5!:換器8、主循環ポンプ9が固定支持される
ことにより、その剛性金増すことになり、炉心支持構造
8と、ルーフスラブ3に吊下支持されている炉心上部機
構7との相対変位も減少され、制御棒挿入性の面でも性
能向上が剖?t A −
又、炉心支持構造5に中間熱交換器8、主循環ボンダ9
が固定支持されることにより、従来原子炉内冷却液体金
属のポットブレナム10−1と、コールドブレナム10
−2に分離していた、ベローズシール、マノメータシー
ル等複雑なシール構造が一切取り除かれ、製作性、コス
トの面でも効果が期待でき、また工期の単線にもつなが
る。Furthermore, according to the present invention, the core support structure 8, which conventionally had through holes for the intermediate heat exchanger 8 and the main circulation pump 9,
Intermediate fever 5! : By fixedly supporting the converter 8 and the main circulation pump 9, their rigidity increases, and the relative displacement between the core support structure 8 and the core upper mechanism 7 suspended and supported by the roof slab 3 is also reduced. Is there any improvement in performance in terms of ease of insertion of control rods? tA - In addition, the core support structure 5 has an intermediate heat exchanger 8 and a main circulation bonder 9.
By being fixedly supported, the conventional reactor cooled liquid metal pot brenum 10-1 and cold brenum 10
- The complex seal structures such as bellows seals and manometer seals that were separated into 2 parts are completely removed, which is expected to be effective in terms of manufacturing efficiency and cost, and also lead to a single line in the construction period.
さらに炉心支持構造に固定支持された、中間熱交換器8
、主循環ポンプ9けその上端全ルーフスラブ3によりシ
ール性能を有した水平方向の支持を行うことによって、
従来の片持ばりから一端固定、一端支持のはりモデルと
なり、地震時の中間熱交換器8、主循環ポンプ9自体の
健全性も向上される。特に主循環ポンプ9けシャフトの
かじり等重大な問題ケ防ぐのに効果が生じる。Further, an intermediate heat exchanger 8 fixedly supported on the core support structure
, by providing horizontal support with sealing performance by the entire roof slab 3 at the upper end of the main circulation pump 9,
The conventional cantilever beam has been changed to a beam model with one end fixed and one end supported, and the soundness of the intermediate heat exchanger 8 and the main circulation pump 9 itself in the event of an earthquake is also improved. This is particularly effective in preventing serious problems such as galling of the main circulation pump's 9 shafts.
ところで今捷では上下方向びノυ1有振動数に着目して
きたが、水平方向の固鳴振動数は、中間熱交換器8、主
循環ポンプ9等の荷重支持点が従来より下がるため、水
平動に対する慣性モーメントは従来より増加する。しか
しながら水平方向の振動は従来原子炉容器の剛性のみで
支えていたが、水平方向の振動は、中間熱交換器8、主
循環ポンプ9が水平動に対しては炉心支持構造5とルー
フスラブ3の2点で支持するため、中間熱交換器8と主
循環ポンプ9のはりの剛性分だけ水平動に対する剛性が
増し、水平方向の慣性モーメントの増加に対して相殺さ
れ、水平方向の固有振子〇数の低下は問題とならない。Nowadays, we have focused on the vertical vibration υ1 frequency, but the horizontal fixed frequency is lower than before because the load support points of the intermediate heat exchanger 8, main circulation pump 9, etc. are lower than before. The moment of inertia for the conventional model increases. However, horizontal vibrations were conventionally supported only by the rigidity of the reactor vessel, but horizontal vibrations were supported by the intermediate heat exchanger 8 and the main circulation pump 9, which were supported by the core support structure 5 and the roof slab 3. Since it is supported at two points, the rigidity against horizontal motion increases by the rigidity of the beams of the intermediate heat exchanger 8 and the main circulation pump 9, which offsets the increase in the horizontal moment of inertia, and the horizontal natural pendulum 〇 The decline in numbers is not a problem.
以−ヒの説明のように、本発明による原子炉は、中間熱
交換器、主循環ボング等ケルーフスラプ吊下支持から炉
心支持構造で固定支持することによす、ルーフスラブの
慣性モーメントラ減少させ、その剛性ケ高めることがで
き、地震入力に対して応答加速度全低減することができ
、原子炉健全性ケ高めるとともに、原子炉容器に保持さ
れている炉心と、制御棒を保持している炉心上部機構と
の相対変位を抑II:、でき、地震時の緊急な制御棒挿
入性能の向上が計れ、原子炉の安全性の著しい向上が望
める。As explained below, the nuclear reactor according to the present invention reduces the moment of inertia of the roof slab by fixedly supporting the intermediate heat exchanger, main circulation bong, etc. from the suspension support of the roof slab to the core support structure. , its rigidity can be increased, the response acceleration to seismic input can be completely reduced, and the reactor health can be improved, as well as the reactor core held in the reactor vessel and the reactor core holding the control rods. It is possible to suppress the relative displacement with the upper mechanism, improve emergency control rod insertion performance in the event of an earthquake, and expect a significant improvement in reactor safety.
第1図は従来の原子炉構造図、第2−1.第2−2図は
従来例と本発明の振動モデルの比較図、第3図はルーフ
スラブの剛性と固有振動数の関係の従来例と本発明の比
較線図、第4図は固有振動数と地震応答入力に関し、従
来例と本発明の比較線図、第5図は本発明の一実施例の
構造図である。
4・・・原子炉容器、5・・・炉心支持構造、6・・・
炉心部、$ 1図
¥2−1(2)
第2−2(2)
茅3図
IL−フスラフ゛すFAIi小り
第4(21
1/U@弔捧勤孜
第唾Figure 1 is a structural diagram of a conventional nuclear reactor, and Figure 2-1. Figure 2-2 is a comparison diagram of the vibration model of the conventional example and the present invention, Figure 3 is a comparison diagram of the relationship between the rigidity of the roof slab and the natural frequency of the conventional example and the present invention, and Figure 4 is the natural frequency. Regarding the seismic response input, FIG. 5 is a comparison diagram between the conventional example and the present invention, and FIG. 5 is a structural diagram of an embodiment of the present invention. 4... Reactor vessel, 5... Core support structure, 6...
Reactor core, $ 1 Figure ¥2-1 (2) Figure 2-2 (2) Figure 3 IL-Fasula FAIi Small No. 4 (21 1/U @ Condolence Service)
Claims (1)
るルーフスラブと、このルーフスラブを支持するスカー
トと、このスカート全支持する原子炉建屋ペデスタルと
、前記原子炉容器内で、炉心で発生した熱エネルギ?取
出す中間熱交換器と、原子炉容器内の液体金属冷却材全
循環させる主循環ポンプと、前記炉心全原子炉容器に支
持する炉心支持構造からなる原子炉構造において、炉内
構造物である中間熱交換器と主循環ポンプを炉心支持構
造により固定支持し、ルーフスラブでは水平方向の支持
作用のみで、中間熱交換器と主循環ポンプの荷重全炉心
支持構造によって受けることケ特徴とする原子炉構造。1. i. A sub-reactor vessel, a roof slab that supports this reactor vessel with the entire hanging L2, a skirt that supports this roof slab, a reactor building pedestal that fully supports this skirt, and a reactor core within the reactor vessel. Thermal energy generated in? In a nuclear reactor structure consisting of an intermediate heat exchanger to take out, a main circulation pump that circulates the entire liquid metal coolant in the reactor vessel, and a core support structure that supports the whole reactor vessel, an intermediate heat exchanger that is a reactor internal structure A nuclear reactor characterized in that the heat exchanger and main circulation pump are fixedly supported by the core support structure, and the load of the intermediate heat exchanger and the main circulation pump is borne by the entire core support structure with only the horizontal supporting action of the roof slab. structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58183029A JPS6076688A (en) | 1983-10-03 | 1983-10-03 | Nuclear reactor structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58183029A JPS6076688A (en) | 1983-10-03 | 1983-10-03 | Nuclear reactor structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6076688A true JPS6076688A (en) | 1985-05-01 |
Family
ID=16128490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58183029A Pending JPS6076688A (en) | 1983-10-03 | 1983-10-03 | Nuclear reactor structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6076688A (en) |
-
1983
- 1983-10-03 JP JP58183029A patent/JPS6076688A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6076688A (en) | Nuclear reactor structure | |
US4062724A (en) | Nuclear core debris collecting tray | |
JPS59135397A (en) | Secondary heat transfer circuit for liquid metal reactor | |
JPS59231482A (en) | Core cover plug for liquid metal cooling nuclear reactor | |
JPS62265596A (en) | Reactor housing | |
JPH0325193Y2 (en) | ||
JPS60257388A (en) | Tank type fast reactor | |
JPS5813157Y2 (en) | Buffer support equipment for structures installed in highly radioactive atmospheres | |
JPS6089795A (en) | Fast breeder reactor | |
JPS6264773A (en) | Sloshing preventive device | |
JPH0131157B2 (en) | ||
JPS61110085A (en) | Tank type fast breeder reactor | |
JPS6330785A (en) | Reactor pressure-vessel support structure | |
JPS60222793A (en) | Nuclear reactor structure | |
JPS6295496A (en) | Container for nuclear reactor | |
JPS59151094A (en) | Reactor | |
JPS6190079A (en) | Tank type fast breeder reactor | |
JPS62132190A (en) | Pressure tube type reactor | |
JPS58168994A (en) | Tank type fast breeder | |
JPS63139295A (en) | Nuclear reactor housing | |
JPS6033086A (en) | Fast breeder reactor | |
Kim | Preliminary conceptual design and analysis on KALIMER reactor structures | |
JPS63246699A (en) | Support structure of nuclear-reactor in-core structure | |
JPS58139091A (en) | Fast breeder reactor | |
JPS62265594A (en) | Reactor housing |