JPH0131157B2 - - Google Patents
Info
- Publication number
- JPH0131157B2 JPH0131157B2 JP59019872A JP1987284A JPH0131157B2 JP H0131157 B2 JPH0131157 B2 JP H0131157B2 JP 59019872 A JP59019872 A JP 59019872A JP 1987284 A JP1987284 A JP 1987284A JP H0131157 B2 JPH0131157 B2 JP H0131157B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- core
- support member
- coolant
- auxiliary cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002826 coolant Substances 0.000 claims description 25
- 239000012530 fluid Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 5
- 238000013016 damping Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、炉心が原子炉容器内の流体としての
冷却材中に吊下げ支持されてなる原子炉の改良に
関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to an improvement in a nuclear reactor in which the reactor core is suspended in a fluid coolant within a reactor vessel.
原子炉、たとえば高速増殖炉は、一般に、冷却
材として液体金属ナトリウムで代表される液体金
属を用い、かつ軽水炉型原子炉に比較して高い温
度で運転される。このような高速増殖炉にあつて
は、原子炉運転開始時や停止時に、原子炉主容
器、炉心機材、配管等が熱応力で損傷されるのを
防止するため、通常、これら構成部材の肉厚を薄
くする方式が採用されている。
Nuclear reactors, such as fast breeder reactors, generally use liquid metal, typically liquid metal sodium, as a coolant and are operated at higher temperatures than light water reactors. In such fast breeder reactors, in order to prevent the reactor main vessel, core equipment, piping, etc. from being damaged by thermal stress when starting or stopping reactor operation, the walls of these components are usually A method is used to reduce the thickness.
ところで、高速増殖炉は大きくわけて、ループ
型とタンク型にわけられる。ループ型の場合に
は、原子炉内で熱せられた冷却材を薄肉の配管
(1次系)を通し、別室にある熱交換器室まで循
環させ、再び原子炉内に戻すという方式をとつて
いる。ところがこのようなループ型の原子炉にあ
つては、原子炉内の冷却材そのものが、配管を通
じて広い範囲にわたり、建屋内に循環するため、
特に、大規模容量の原子炉では、建設コスト及び
安全上からも見直すべき点がある。 By the way, fast breeder reactors can be broadly divided into loop type and tank type. In the case of a loop type, the coolant heated inside the reactor is circulated through thin-walled piping (primary system) to a heat exchanger room located in a separate room, and then returned to the reactor. There is. However, in such a loop-type reactor, the coolant itself inside the reactor circulates over a wide range within the building through piping.
In particular, for large-scale nuclear reactors, there are points that need to be reconsidered from the viewpoint of construction costs and safety.
そこで、このような問題を解決するために、可
能な限り配管類を無くすようにした原子炉、すな
わち、具体的には一次冷却材と二次冷却材とを熱
交換させる一次熱交換器や冷却材循環ポンプを原
子炉主容器内に設置するようにした、いわゆるタ
ンク型原子炉構造が考えられている。 Therefore, in order to solve this problem, we have developed a nuclear reactor that eliminates piping as much as possible, that is, a primary heat exchanger that exchanges heat between the primary coolant and the secondary coolant. A so-called tank-type nuclear reactor structure is being considered, in which a material circulation pump is installed inside the main reactor vessel.
このタンク型原子炉は、たとえば第1図に示す
ように、原子炉主容器1の図中上方開口部をルー
フスラブ2で閉塞し、内部に炉心3、炉心上部機
構4、一次熱交換器5、冷却材循環ポンプ6およ
び冷却材7を収容して構成されている。 In this tank-type nuclear reactor, for example, as shown in FIG. 1, the upper opening in the figure of the reactor main vessel 1 is closed with a roof slab 2, and the interior includes a reactor core 3, a core upper mechanism 4, a primary heat exchanger 5, , a coolant circulation pump 6 and a coolant 7.
上記ルーフスラブ2には、炉心支持部材8が吊
下げられている。この炉心支持部材8の図中下端
部は、原子炉主容器1の側壁内面中央部に固定さ
れた環状体からなるコニカルサポート9の中心孔
に嵌合されており、上記炉心支持部材8の下端部
が水平方向に移動するのを防止している。炉心3
は、この炉心支持部材8の図中下端部に収容され
ており、炉心上部機構4は、上記炉心支持部材8
の上方に回転自在に設けられた回転プラグ10に
支持されている。なお、原子炉主容器1は、リン
グガータ11を介して原子炉室12に吊下げられ
ており、原子炉主容器1の外側にはこの原子炉主
容器1を覆うように安全容器13が設けられてい
る。 A core support member 8 is suspended from the roof slab 2 . The lower end of the core support member 8 in the figure is fitted into the center hole of a conical support 9 made of an annular body fixed to the center of the inner surface of the side wall of the reactor main vessel 1. This prevents the parts from moving horizontally. core 3
is housed in the lower end of the core support member 8 in the figure, and the core upper mechanism 4 is housed in the lower end of the core support member 8 in the figure.
It is supported by a rotary plug 10 which is rotatably provided above. The reactor main vessel 1 is suspended in the reactor room 12 via a ring gutter 11, and a safety vessel 13 is provided outside the reactor main vessel 1 so as to cover the reactor main vessel 1. It is being
このようなタンク型原子炉構造を採用すること
によつて、一次熱交換系、冷却材循環系の配管を
削除することができる。 By adopting such a tank-type nuclear reactor structure, piping for the primary heat exchange system and coolant circulation system can be eliminated.
しかしながら、このようなタンク型原子炉構造
を採用した原子炉であつても次のようなことが予
想される。すなわち、炉心支持部材8は、熱応力
上の面から比較的薄肉に形成され、かつ大型化に
伴なう大きな熱膨張量を吸収するために、ルーフ
スラブ2に支持されて原子炉主容器1内に吊り下
げられた片持梁構造となつている。そして、重量
物である炉心3は炉心支持部材8の下端部で支持
されている。したがつて、外部からの衝撃入力ま
たは振動入力が加わつた場合、原子炉主容器1の
振動や冷却材7の振動と相俟つて、炉心支持部材
8が垂直水平方向に複雑な変形モードを呈し、そ
の変形による局部的応力あるいは、応答加速度の
増大で炉心支持部材8や炉心3の一部が損傷を受
ける可能性がある。
However, even in a nuclear reactor that employs such a tank-type reactor structure, the following problems are expected. That is, the reactor core support member 8 is formed to be relatively thin in terms of thermal stress, and is supported by the roof slab 2 and attached to the reactor main vessel 1 in order to absorb a large amount of thermal expansion due to the increase in size. It has a cantilevered structure suspended inside. The core 3, which is a heavy object, is supported at the lower end of the core support member 8. Therefore, when an external impact input or vibration input is applied, the core support member 8 exhibits a complicated deformation mode in the vertical and horizontal directions in combination with the vibrations of the reactor main vessel 1 and the coolant 7. , there is a possibility that part of the core support member 8 or the core 3 may be damaged due to local stress due to the deformation or an increase in response acceleration.
そこで、従来の原子炉は、前述した如く、炉心
支持部材8の下端部をコニカルサポート9によつ
て水平方向に支持する構造となつているが、地震
時等には、原子炉主容器1と炉心3とが互いに連
成し合い、複雑な動きを呈する虞れがある。さら
に、このように炉心部と原子炉主容器1とを支持
部材で機械的に接続する場合には、特に支持部材
の上下方向の熱膨張を吸収するため、炉心支持部
材8の下端部外周と、この下端部外周に嵌合され
たコニカルサポート9とを上下方向に移動可能な
如く接続する必要がある。さらに、地震は、水平
動のみならず、上下動が存在するので、このよう
な構造では、上下方向の拘束がルーフスラブ以外
にないために、炉心支持部材8および炉心3は上
下方向に大きく振動する可能性がある。この時、
炉心支持部材8とコニカルサポート9との間に相
対変位が生じる。 Therefore, as mentioned above, conventional nuclear reactors have a structure in which the lower end of the core support member 8 is horizontally supported by the conical support 9. However, in the event of an earthquake, etc., the reactor main vessel 1 There is a possibility that the reactor core 3 may be coupled with each other and exhibit complicated movements. Furthermore, when mechanically connecting the reactor core and the reactor main vessel 1 in this way using a support member, in order to absorb vertical thermal expansion of the support member in particular, the outer periphery of the lower end of the core support member 8 and , it is necessary to connect the conical support 9 fitted to the outer periphery of this lower end portion so as to be movable in the vertical direction. Furthermore, since an earthquake causes not only horizontal motion but also vertical motion, in such a structure, since there is no vertical restraint other than the roof slab, the core support member 8 and the reactor core 3 are subject to large vertical vibrations. there's a possibility that. At this time,
A relative displacement occurs between the core support member 8 and the conical support 9.
このように、炉心部が水平動と上下動の複雑な
連成挙動を示すと炉全体の健全性に大きな影響を
与えかねない。 In this way, if the reactor core exhibits complex coupled behavior of horizontal motion and vertical motion, it could have a significant impact on the health of the entire reactor.
本発明は、このような事情に鑑みてなされたも
のであり、その目的とするところは、全体の複雑
化を招くことなしに、地震発生時等における炉心
部の振動が他に与える影響を少なくし、また、振
動を速やかに減衰させることができ、もつて地震
時等における炉全体の健全性の向上を図ることが
できる原子炉を提供することにある。
The present invention has been made in view of these circumstances, and its purpose is to reduce the influence of vibrations in the reactor core on other components during earthquakes, etc., without complicating the overall structure. Another object of the present invention is to provide a nuclear reactor that can quickly attenuate vibrations and thereby improve the health of the entire reactor during earthquakes and the like.
本発明は、冷却材として液体金属を用いるとと
もに炉心部が原子炉容器内の上記冷却材中に吊下
げ支持されてなる原子炉において、上記炉心部の
側壁の外側に上記側壁との間に筒状の流体ギヤツ
プを設けて補助筒体を配設するとともに、上記流
体ギヤツプの両端部位置に流体力学的抵抗体を設
け、前記補助筒体を固定部材で前記原子炉容器に
固定したことを特徴としている。
The present invention provides a nuclear reactor in which a liquid metal is used as a coolant and a reactor core is suspended and supported in the coolant in a reactor vessel, in which a cylinder is provided between the outside of a side wall of the reactor core and the side wall. A fluid gap having the shape of a shape is provided and an auxiliary cylinder is disposed therein, hydrodynamic resistors are provided at both ends of the fluid gap, and the auxiliary cylinder is fixed to the reactor vessel by a fixing member. It is said that
本発明によれば、原子炉に振動入力が印加さ
れ、炉心部が原子炉主容器に対して相対運動を起
こした場合、すなわち、原子炉主容器に固定され
た筒体と炉心部との間に相対変位が生じた場合、
流体ギヤツプ内の冷却材が周方向の流動と軸方向
の流動とを生ずる。この場合、流体ギヤツプの両
端部には流体力学的な抵抗体が設けてあるので、
冷却材の軸方向の流動は大きな抵抗を受け、流体
ギヤツプ間により大きな圧力差が発生する。した
がつて炉心部は、この圧力差を相殺する向きの
力、つまり流体反力を受けて、振動の振幅が抑制
される。
According to the present invention, when a vibration input is applied to a nuclear reactor and the reactor core causes a relative movement with respect to the reactor main vessel, that is, when a cylindrical body fixed to the reactor main vessel and the reactor core If a relative displacement occurs in
The coolant in the fluid gap produces circumferential and axial flow. In this case, hydrodynamic resistors are provided at both ends of the fluid gap, so
Axial flow of coolant encounters greater resistance and creates a greater pressure differential across the fluid gap. Therefore, the reactor core receives a force that offsets this pressure difference, that is, a fluid reaction force, and the amplitude of vibration is suppressed.
また、振動入力によつて発生する炉心部の振動
エネルギーは、上述の如く流体ギヤツプ内を流動
する冷却材の流動摩擦によつて消散される。つま
り、流体ギヤツプの両端部に抵抗体を設けている
ので、ギヤツプ内の冷却材が緩衝材として効果的
に作用し、炉心部の振動を速やかに抑制すること
が可能となる。 Furthermore, the vibrational energy in the reactor core generated by the vibration input is dissipated by the flow friction of the coolant flowing in the fluid gap, as described above. In other words, since the resistors are provided at both ends of the fluid gap, the coolant in the gap effectively acts as a buffer, making it possible to quickly suppress vibrations in the core.
これに加え、炉心部の側壁外面は、流体ギヤツ
プ内の冷却材を介して原子炉主容器に連結されて
いるので、炉心部と原子炉主容器とを機械的に結
合させた場合に較べて、比較的ゆるやかな結合関
係にある。したがつて、連成振動によつて予想さ
れる複雑な変形モードの発生を防止することがで
きる。これに加え、本発明によれば、水平方向の
みならず、垂直方向へも効果的な制振作用を呈す
るので、結局、地震時等における炉全体の健全性
を向上させることができる。 In addition, the outer surface of the side wall of the reactor core is connected to the reactor main vessel via the coolant in the fluid gap, so compared to the case where the reactor core and the reactor main vessel are mechanically connected, , there is a relatively loose coupling relationship. Therefore, it is possible to prevent the occurrence of complex deformation modes expected due to coupled vibration. In addition, according to the present invention, an effective vibration damping effect is exhibited not only in the horizontal direction but also in the vertical direction, so that the health of the entire furnace can be improved in the event of an earthquake.
また、本発明では、炉心部と補助筒体とが非接
触状態で配置されているので、炉心部の熱変形に
対しても、ギヤツプ分だけの十分な余裕を持つて
いる。しかも、この場合には、炉心部を補助筒体
で覆うという至つて簡単な構成のみで上述の効果
を呈することができる。したがつて、全体の複雑
化を招くようなこともない。 Further, in the present invention, since the reactor core and the auxiliary cylinder are arranged in a non-contact state, there is sufficient margin for the gap against thermal deformation of the reactor core. Moreover, in this case, the above-mentioned effects can be achieved with only a very simple configuration in which the core portion is covered with the auxiliary cylinder. Therefore, there is no possibility of complicating the whole system.
以下、第2図を参照し、本発明の一実施例につ
いて説明する。なお、第2図において第1図と同
一部分には同一符号を付し、重複する部分の説明
は省くことにする。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. Note that in FIG. 2, the same parts as in FIG. 1 are given the same reference numerals, and explanations of the overlapping parts will be omitted.
第2図において第1図と異なる点は、炉心支持
部材8の炉心収容部に非接触状態で炉心振れ止め
用の補助筒体16を外装した点である。すなわ
ち、炉心支持部材8は、たとえば薄肉の有底円筒
体からなり、内部下方に炉心3を設置し得る構造
となつている。補助筒体16は、この炉心支持部
材8の炉心収容部分の側面を外側から非接触で覆
うように同軸配置され、内面に沿つて筒状の流体
ギヤツプ17を形成するとともに、円錐状の環状
体からなる支持板19を介して原子炉主容器1に
支持されている。なお、補助筒体16には、側面
に孔20が設けられ、この孔20に炉心3と循環
ポンプ6とを連通するパイプ21を非接触で貫通
させるようにしている。 The difference in FIG. 2 from FIG. 1 is that an auxiliary cylinder 16 for core resting is externally mounted on the core accommodating portion of the core support member 8 in a non-contact manner. That is, the core support member 8 is made of, for example, a thin-walled cylindrical body with a bottom, and has a structure in which the core 3 can be installed inside and below. The auxiliary cylinder 16 is coaxially arranged so as to cover the side surface of the core housing portion of the core support member 8 from the outside without contact, and forms a cylindrical fluid gap 17 along the inner surface, and a conical annular body. It is supported by the reactor main vessel 1 via a support plate 19 consisting of. Note that the auxiliary cylinder 16 is provided with a hole 20 on the side surface, and a pipe 21 communicating the reactor core 3 and the circulation pump 6 is passed through the hole 20 without contact.
しかして、上記筒状の流体ギヤツプ17の両端
部には、以下に述べる流体力学的な抵抗体23お
よび24が設けられている。すなわち、流体ギヤ
ツプ17の図中上側に設けられた上部抵抗体23
は、炉心支持部材8の中間部に突設された鍔部お
よびこの鍔部の中間位置から図中下方へ向けて延
出させた突周壁からなる支持部材側上部抵抗部材
25と、この抵抗部材25に所定ギヤツプを介し
て嵌合するように補助筒体16の図中、上端部を
外側へ延出させ、さらに軸方向に延出させた筒体
側上部抵抗部材26とで構成されている。一方、
下部抵抗体24は、炉心支持部材8の図中下部端
縁部を下方に延出させた支持部材側下部抵抗部材
27と、この抵抗部材27に所定ギヤツプを介し
て嵌合するように補助筒体16の図中下端部を径
方向内側に延出させ、さらに軸方向に折り返した
形状の筒体側下部抵抗部材28とで構成されてい
る。 Hydrodynamic resistors 23 and 24, which will be described below, are provided at both ends of the cylindrical fluid gap 17. That is, the upper resistor 23 provided above the fluid gap 17 in the drawing
A support member side upper resistance member 25 consisting of a flange protruding from the intermediate portion of the core support member 8 and a projecting circumferential wall extending downward in the figure from the intermediate position of the flange, and this resistance member. 25 through a predetermined gap, the upper end of the auxiliary cylinder 16 extends outward in the figure, and further extends in the axial direction. on the other hand,
The lower resistor 24 includes a support member side lower resistance member 27 whose lower end edge in the drawing of the core support member 8 extends downward, and an auxiliary cylinder that fits into the resistance member 27 through a predetermined gap. The lower end of the body 16 in the figure extends inward in the radial direction, and is further comprised of a cylindrical lower resistance member 28 which is folded back in the axial direction.
しかして、このように構成された本実施例に係
る原子炉において、いま水平方向の衝撃入力が加
えられ、原子炉主容器1に対して水平方向の振動
が炉心3に生起されたとする。この場合には、炉
心3を支持する炉心支持部材8の炉心収容部は補
助筒体16に対して径方向の変位を生じる。これ
によつて、流体ギヤツプ17では、冷却材の周方
向の流動と軸方向の流動とを生じるが、流体ギヤ
ツプ17の図中上下端には抵抗体23および24
が設けられているので、冷却材の軸方向の流動が
大幅に阻止され、これに起因して、流体ギヤツプ
17の内部において抵抗体が設置されない場合に
比べ、より大きな圧力差が生ずる。この結果、炉
心3は、この圧力差を相殺する向きの力を受けて
振動の振幅が抑制される。 Suppose now that a horizontal impact input is applied to the nuclear reactor according to the present embodiment configured as described above, and horizontal vibrations are generated in the reactor core 3 relative to the reactor main vessel 1. In this case, the core accommodating portion of the core support member 8 that supports the core 3 is displaced in the radial direction with respect to the auxiliary cylinder 16. As a result, in the fluid gap 17, the coolant flows in the circumferential direction and in the axial direction.
Because of the provision of the resistor, the axial flow of the coolant is significantly inhibited, resulting in a larger pressure difference inside the fluid gap 17 than would be the case without the resistor. As a result, the core 3 receives a force in a direction that cancels out this pressure difference, and the amplitude of vibration is suppressed.
また、上記原子炉の振動入力によつて生ずる炉
心3の振動エネルギーは流体ギヤツプ内を流動す
る冷却材の流動摩擦、特に抵抗体23および24
を通過する流体の流動摩擦などによつて速やかに
吸収される。 In addition, the vibration energy of the core 3 generated by the vibration input of the reactor is caused by the flow friction of the coolant flowing in the fluid gap, especially between the resistors 23 and 24.
It is quickly absorbed by the flow friction of the fluid passing through it.
一方、炉心3が原子炉主容器1に対して垂直方
向に振動した場合には、流体ギヤツプ17の冷却
材は主として軸方向に流動する。そして、この場
合には、抵抗体23および24によつて水平方向
振動と同様に大きな流動摩擦が生じて、上述と同
様、炉心3の振動は速やかに抑制される。 On the other hand, when the reactor core 3 vibrates in a direction perpendicular to the reactor main vessel 1, the coolant in the fluid gap 17 primarily flows in the axial direction. In this case, large flow friction is generated by the resistors 23 and 24 in the same way as the horizontal vibration, and the vibration of the core 3 is quickly suppressed as described above.
このように、本実施例によれば、炉心支持部材
8の炉心収容部に流体ギヤツプ17を介して補助
筒体16を外装し、炉心支持部材8および補助筒
体16の一部分に抵抗部材を設けるのみの極めて
簡単な構造であるにも拘らず、炉心3の冷却に使
用される冷却材を緩衝材として有効に利用して、
地震時等における炉心部の振動を抑制することが
でき、しかも、その制振効果はいずれの方向に対
しても非常に高いものとなる。そして、この場合
には、炉心支持部材8と補助筒体16とは非接触
状態であり、しかも、補助筒体16を支持する支
持部材19は環状に形成され、補助筒体16、支
持板19および炉心支持部材8の熱膨張による変
形が全て同一の傾向を示すように構成しているの
で、熱膨張による過大な応力が、これらの部材に
作用することもない。したがつて、炉心3はルー
フスラブ2に常に安定支持され、原子炉の安全性
を極めて高いものとすることができる。 As described above, according to this embodiment, the auxiliary cylinder 16 is externally mounted on the core housing portion of the core support member 8 via the fluid gap 17, and a resistance member is provided in a portion of the core support member 8 and the auxiliary cylinder 16. Although it has an extremely simple structure, the coolant used for cooling the core 3 is effectively used as a buffer material.
It is possible to suppress vibrations in the reactor core during earthquakes, etc., and the vibration damping effect is extremely high in all directions. In this case, the core support member 8 and the auxiliary cylinder 16 are in a non-contact state, and the support member 19 that supports the auxiliary cylinder 16 is formed in an annular shape. Since the deformation of the core support members 8 and 8 due to thermal expansion all exhibit the same tendency, excessive stress due to thermal expansion will not act on these members. Therefore, the reactor core 3 is always stably supported by the roof slab 2, and the safety of the nuclear reactor can be made extremely high.
また、上記の如く炉心支持部材8と補助筒体1
6とは非接触状態の関係にあるので、炉心部と原
子炉主容器とが直接荷重を受けず、ゆるやかな結
合状態となつている。このため、衝撃入力に起因
した複雑な変形モードの発生を防止することがで
きる。 In addition, as described above, the core support member 8 and the auxiliary cylinder 1
6 is in a non-contact relationship, so the reactor core and the reactor main vessel do not receive any direct load and are loosely connected. Therefore, it is possible to prevent the occurrence of complicated deformation modes due to impact input.
なお、本発明は、上記実施例に限定されるもの
ではなく、たとえば上部抵抗体23の形状につい
ては、第3図a〜dに示すように構成してもよ
い。また、下部抵抗体24の形状についても、第
4図a〜dに示す如く構成してもよい。これらに
おいて、第3図dおよび第4図dに示すような、
多段重ね構造の抵抗体を用いれば、最も効果的な
炉心の制振効果を得ることができる。 It should be noted that the present invention is not limited to the above-mentioned embodiment, and for example, the shape of the upper resistor 23 may be configured as shown in FIGS. 3a to 3d. Further, the shape of the lower resistor 24 may also be configured as shown in FIGS. 4a to 4d. In these, as shown in FIGS. 3d and 4d,
The most effective core vibration damping effect can be obtained by using resistors with a multistage stacked structure.
第1図は従来のタンク型原子炉を示す概略的な
縦断面図、第2図は本発明の一実施例に係るタン
ク型原子炉を示す概略的な縦断面図、第3図a乃
至dは上部抵抗体の変形例をそれぞれ示す部分断
面図、第4図a乃至dは下部抵抗体の変形例をそ
れぞれ示す部分断面図である。
1……原子炉主容器、2……ルーフスラブ、3
……炉心、4……炉心上部機構、5……一次熱交
換器、6……冷却材循環ポンプ、7……冷却材、
8……炉心支持部材、9……コニカルサポート、
10……回転プラグ、11……リングガータ、1
2……原子炉室、13……安全容器、16……補
助筒体、17……流体ギヤツプ、19……支持
板、23……上部抵抗体、24……下部抵抗体、
25……支持部材側上部抵抗部材、26……筒体
側上部抵抗部材、27……支持部材側下部抵抗部
材、28……筒体側下部抵抗部材。
FIG. 1 is a schematic longitudinal sectional view showing a conventional tank-type nuclear reactor, FIG. 2 is a schematic longitudinal sectional view showing a tank-type nuclear reactor according to an embodiment of the present invention, and FIGS. 3 a to d 4A to 4D are partial sectional views showing modified examples of the upper resistor, and FIGS. 4A to 4D are partial sectional views showing modified examples of the lower resistor. 1...Reactor main vessel, 2...Roof slab, 3
... Core, 4 ... Core upper mechanism, 5 ... Primary heat exchanger, 6 ... Coolant circulation pump, 7 ... Coolant,
8... Core support member, 9... Conical support,
10... Rotating plug, 11... Ring gutter, 1
2...Reactor room, 13...Safety container, 16...Auxiliary cylinder, 17...Fluid gap, 19...Support plate, 23...Upper resistor, 24...Lower resistor,
25... Upper resistance member on the support member side, 26... Upper resistance member on the cylinder side, 27... Lower resistance member on the support member side, 28... Lower resistance member on the cylinder side.
Claims (1)
炉心支持部材の下部に炉心を収容してなる原子炉
において、上記炉心支持部材の下部外周面の外側
に上記下部外周面との間に筒状の流体ギヤツプを
設けて配設された補助筒体と、この補助筒体を前
記原子炉容器に固定する部材と、前記炉心支持部
材と前記補助筒体との間で前記流体ギヤツプの両
端部位置に設けられた流体力学的抵抗体とを具備
してなることを特徴とする原子炉。1. In a nuclear reactor in which a reactor core is housed in the lower part of a core support member suspended in liquid coolant in a reactor vessel, there is a space between the outer circumferential surface of the lower part of the core support member and the outer circumferential surface of the lower part. an auxiliary cylinder provided with a cylindrical fluid gap; a member that fixes the auxiliary cylinder to the reactor vessel; and a member that fixes the auxiliary cylinder to the reactor vessel; 1. A nuclear reactor, comprising: a hydrodynamic resistor provided at one position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59019872A JPS60165586A (en) | 1984-02-08 | 1984-02-08 | Nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59019872A JPS60165586A (en) | 1984-02-08 | 1984-02-08 | Nuclear reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60165586A JPS60165586A (en) | 1985-08-28 |
JPH0131157B2 true JPH0131157B2 (en) | 1989-06-23 |
Family
ID=12011298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59019872A Granted JPS60165586A (en) | 1984-02-08 | 1984-02-08 | Nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60165586A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015105867A (en) * | 2013-11-29 | 2015-06-08 | 株式会社東芝 | Shroud support apparatus and shroud support apparatus modification method |
-
1984
- 1984-02-08 JP JP59019872A patent/JPS60165586A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60165586A (en) | 1985-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0131157B2 (en) | ||
JPH0131158B2 (en) | ||
US4681726A (en) | Fast breeder reactor | |
JPS59151093A (en) | Reactor | |
JPS63246699A (en) | Support structure of nuclear-reactor in-core structure | |
JPS6346395B2 (en) | ||
JPS642910B2 (en) | ||
JPS59155785A (en) | Nuclear reactor | |
JPS59151094A (en) | Reactor | |
JPS6148789A (en) | Supporter for core of nuclear reactor | |
JPS59151092A (en) | Reactor | |
JPS5952790A (en) | Shock absorbing device for equipment in reactor | |
JPS6290597A (en) | Stabilizer device for nuclear reactor | |
JPH0525317B2 (en) | ||
JPS61110085A (en) | Tank type fast breeder reactor | |
JPH0277686A (en) | Supporting structure of nuclear reactor structure | |
JPS61212785A (en) | Earthquake-proof supporter for reactor vessel of fast breeder reactor | |
JPS6285891A (en) | Supporter for pressure vessel of nuclear reactor | |
JPS60263891A (en) | Fast breeder reactor | |
JPS6131997A (en) | Vessel for high-temperature liquid | |
JPH03191899A (en) | Structure of reactor vessel | |
JPS6086487A (en) | Upper section supporter for pressure vessel of nuclear reactor | |
JPH01101496A (en) | Support structure for nuclear reactor internal structure | |
JPH08114687A (en) | Method and device for suppressing vibration of sodium liquid surface in reactor vessel | |
JPH01265197A (en) | Reactor storage container |