JPS6076025A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPS6076025A JPS6076025A JP58183701A JP18370183A JPS6076025A JP S6076025 A JPS6076025 A JP S6076025A JP 58183701 A JP58183701 A JP 58183701A JP 18370183 A JP18370183 A JP 18370183A JP S6076025 A JPS6076025 A JP S6076025A
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- stage
- vacuum
- incident angle
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は真空蒸着法による磁気記録媒体の製造法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium using a vacuum evaporation method.
従来、ポリエステルフィルムなどの基体上に強磁性金属
またはその合金からなる蒸発源を真空蒸着させて磁気テ
ープなどの磁気記録媒体を製造する方法においては、一
般に蒸発源を基体表面に対して斜方向から真空蒸着させ
ることにより、蒸着膜の保磁力を増大させ電磁変換特性
に好結果を得ている。Conventionally, in the method of manufacturing magnetic recording media such as magnetic tape by vacuum-depositing an evaporation source made of a ferromagnetic metal or its alloy onto a substrate such as a polyester film, the evaporation source is generally deposited obliquely to the surface of the substrate. Vacuum deposition increases the coercive force of the deposited film and yields good results in electromagnetic conversion characteristics.
ところが、上記の斜方向蒸着により形成される蒸着膜は
耐食性に劣り、飽和磁束密度が経口的に低下しやすいと
いう問題があった。このため、斜方向蒸着膜の上にさら
に他種の金属または合金あるいは酸化物などの薄膜を通
常の真空蒸着やスパッタリングなどによって形成して、
上記耐食性の向上を図っている。しかるに、かかる方法
では2種の蒸発源が必要でしかも操作上面倒となるなど
工業的に必ずしも望ましい方法とはいえなかった。However, the vapor deposited film formed by the above-mentioned oblique vapor deposition has a problem in that it has poor corrosion resistance and the saturation magnetic flux density tends to decrease over time. For this reason, a thin film of another metal, alloy, or oxide is further formed on the obliquely deposited film by ordinary vacuum deposition or sputtering.
The above corrosion resistance is improved. However, this method requires two types of evaporation sources and is troublesome to operate, so it is not necessarily an industrially desirable method.
この発明者らは、上記観点から、1種の蒸発源から電磁
変換特性と耐食性とに共にすぐれる蒸着膜を作業容易に
形成しうる方法を探究するべく鋭意検討した結果、この
発明を完成するに至った。From the above viewpoint, the inventors have completed this invention as a result of intensive study to find a method for easily forming a vapor deposited film with excellent electromagnetic conversion characteristics and corrosion resistance from one type of evaporation source. reached.
すなわち、この発明は、基体上に強磁性金属またはその
合金からなる蒸発源を基体表面に対して斜方向から真空
蒸着させたのち、この蒸着膜」二にさらに上記蒸着時の
基体表面に対する入射角度より小さな入射角度で上記蒸
発源を連続して真空蒸着させることを特徴とする磁気記
録媒体の製造法に係るものである。That is, in this invention, an evaporation source made of a ferromagnetic metal or an alloy thereof is vacuum-deposited on a substrate from an oblique direction to the substrate surface, and then the incident angle with respect to the substrate surface at the time of vapor deposition is further adjusted. The present invention relates to a method for manufacturing a magnetic recording medium, characterized in that the evaporation source is continuously vacuum-deposited at a smaller incident angle.
以下、この発明の磁気記録媒体の製造法につき図面を参
考にして説明する。Hereinafter, a method for manufacturing a magnetic recording medium according to the present invention will be explained with reference to the drawings.
第1図および第2図において、1はポリエステルフィル
ムなどの基体2の供給ロール、3は円筒状の冷却回転キ
ャン、4は巻取りロール、5は強磁性金属またはその合
金からなる蒸発源、6は蒸発源5の基体表面に対する蒸
着方向を規制するための制御板、7は上記各要素1〜6
が配設された内部を真空ポンプ8により所定の真空度に
排気してなる真空槽である。1 and 2, 1 is a supply roll for a substrate 2 such as a polyester film, 3 is a cylindrical cooling rotary can, 4 is a take-up roll, 5 is an evaporation source made of a ferromagnetic metal or its alloy, 6 7 is a control plate for regulating the evaporation direction of the evaporation source 5 with respect to the substrate surface, and 7 is each of the above elements 1 to 6.
This is a vacuum chamber formed by evacuating the interior of the chamber in which the chamber is disposed to a predetermined degree of vacuum by means of a vacuum pump 8.
この装置において、まず蒸発源5を電子ビームの如き加
熱源(図示せず)によって蒸発させ、これを供給ロール
1から供給されて冷却回転キャン3に沿って所定速度で
一走行する基体2上に真空蒸着させる。この真空蒸着は
蒸着方向が基体2表面に対して斜方向とされた第1段目
の蒸着とこれに引き続(第2段目の蒸着とから構成され
、それぞれの蒸着は制御板6の開口部6a 、6bを介
して行われるようになっている。In this apparatus, an evaporation source 5 is first evaporated by a heating source (not shown) such as an electron beam, and then evaporated onto a substrate 2 that is supplied from a supply roll 1 and runs once at a predetermined speed along a cooling rotary can 3. Vacuum evaporate. This vacuum evaporation consists of a first stage of evaporation in which the evaporation direction is oblique to the surface of the substrate 2, and a subsequent (second stage of evaporation). This is done through the sections 6a and 6b.
すなわち、第1段目では、開口部6aを介した蒸着方向
線5Xが冷却回転キャンに沿って走行する基体2と交わ
る点における法線9Xと上記蒸着方向線5xとのなす角
つまり入射角度θが通常30〜90度、好適には45〜
90度となるように、基板2表面に対して蒸発源5を斜
方向から真空蒸着させ、一方策2段目では、上記蒸着後
の基板2の走行方向前方側において、開口=B6bを介
した蒸着方向線5yと前記同様の法線9yとのなす角で
表わされる入射角度lが通常30度未満、好適には20
〜0度となるように、つまり入射角度θ′が第1段目の
入射角度θより小さくなるように、第1段目の蒸着膜上
にさらに蒸発源5を連続して真空蒸着させる。That is, in the first stage, the angle between the normal line 9X and the vapor deposition direction line 5x at the point where the vapor deposition direction line 5X passing through the opening 6a intersects with the substrate 2 traveling along the cooling rotation can, that is, the incident angle θ. is usually 30 to 90 degrees, preferably 45 to
The evaporation source 5 is vacuum-deposited from an oblique direction on the surface of the substrate 2 so that the angle is 90 degrees, and in the second stage, the evaporation source 5 is evaporated through the opening=B6b on the front side in the running direction of the substrate 2 after the evaporation. The incident angle l expressed by the angle between the vapor deposition direction line 5y and the same normal line 9y as described above is usually less than 30 degrees, preferably 20 degrees.
The evaporation source 5 is further vacuum-deposited continuously on the first-stage deposited film so that the angle of incidence is ~0 degrees, that is, the incident angle θ' is smaller than the incident angle θ of the first stage.
このようにして基体2上に蒸着膜10を形成してなる磁
気記録媒体11は、ついで冷却回転キャン3上を走行し
ながら巻取りロール4に巻取られ、その後裁断工程など
の所要の工程を経て製品とされる。The magnetic recording medium 11 with the vapor deposited film 10 formed on the substrate 2 in this manner is then wound around the winding roll 4 while running on the cooling rotary can 3, and then undergoes necessary processes such as cutting. After that, it is made into a product.
上記の説明によって明らかなように、この発明では、基
体2上に同一の蒸発源5を異なる入射角度θ、θ′で真
空蒸着させるようにして0る力)ら、入射角度の大きな
第1段目の斜方向蒸着によって蒸着膜10の電磁変換特
性に好結果を得ること力5できるとともに、入射角度の
小さな第2段目の真空蒸着によって膜表面部を緻密化し
こ泪こより蒸着膜10の耐食性を大巾に改善することが
できる。As is clear from the above description, in the present invention, the same evaporation source 5 is vacuum-deposited on the substrate 2 at different incident angles θ and θ'. The oblique vapor deposition makes it possible to obtain good results in the electromagnetic conversion characteristics of the vapor deposited film 10, and the second stage of vacuum vapor deposition with a small incident angle densifies the film surface, thereby improving the corrosion resistance of the vapor deposited film 10. can be greatly improved.
また、この方法では、蒸発源5がひとつで足り、しかも
制御板6の所定位置にふたつの開口部6a。Further, in this method, only one evaporation source 5 is required, and two openings 6a are provided at predetermined positions of the control board 6.
6bを設ける以外は通常の蒸着手段をそのまま採用でき
るため、前記従来の他種金属の薄膜を形成する方法に比
し経済性および製造作業性の面できわめて有利となる。Since ordinary vapor deposition means can be used as is except for providing 6b, this method is extremely advantageous in terms of economy and manufacturing workability compared to the conventional method of forming thin films of other metals.
この発明において蒸発源5として用し)られる強磁性金
属またはその合金としては、Fe 、Co 、 Niも
しくはこれらの合金、またはこれらとCu、Zn。The ferromagnetic metal or alloy thereof used as the evaporation source 5 in the present invention includes Fe, Co, Ni, or an alloy thereof, or a combination thereof with Cu or Zn.
Mn、Cr、klなどの他の金属との合金、あるし)番
マFe、Co、Niの窒化物、酸化物、ホウ化物なと力
(挙げられる。これら蒸発源5を第1段目および第2段
目の真空蒸着によって基体2上に蒸着させたときの蒸着
膜10の厚みとしては、500〜5,0OOA程度であ
る。基体2の走行速度や蒸発源5の蒸発速度などは、上
記蒸着1漠10の厚みに応じて適宜設定される。These evaporation sources 5 are used in the first stage and The thickness of the deposited film 10 when deposited on the substrate 2 by the second stage of vacuum evaporation is about 500 to 5,000 OOA.The traveling speed of the substrate 2 and the evaporation rate of the evaporation source 5 are as described above. It is set appropriately depending on the thickness of the vapor deposition layer 10.
第1段目の入射角度θと第2段目の入射角度θ′との差
は大きいほど好ましい。しかし、一般には10度以上、
特に好適には30度以上の差とされておればよ(、これ
によって電磁変換特性良好にして耐食性の向上を図りう
る。It is preferable that the difference between the incident angle θ of the first stage and the incident angle θ' of the second stage be as large as possible. However, generally more than 10 degrees,
Particularly preferably, the difference is 30 degrees or more (this makes it possible to improve electromagnetic conversion characteristics and improve corrosion resistance).
以下に、この発明の実施例を記載してより具体的に説明
する。EXAMPLES Below, examples of the present invention will be described in more detail.
実施例
基体として20.”I厚のポリエステルフィルムを使用
し、これを第1図で示される真空槽内にセットし、これ
に蒸発源としてのCO金金属ふたつの開口部を設けた制
御板を介して入射角度40〜90度の範囲の第1段目の
蒸着とこれに引き続く入射角度5〜10度の範囲の第2
段目の蒸着とによって真空蒸着して、厚さ2,000λ
で保磁力800エルステツド、飽和磁束密度8.000
ガウスの蒸着膜を形成した。蒸着条件の詳細は、下記の
とおりである。20. As an example substrate. A polyester film with a thickness of I is set in a vacuum chamber as shown in Fig. 1, and an incident angle of 40 ~ A first stage deposition at an angle of incidence of 90 degrees followed by a second stage at an angle of incidence of 5 to 10 degrees.
Vacuum evaporated by step evaporation to a thickness of 2,000λ
coercive force 800 oersted, saturation magnetic flux density 8.000
A Gaussian vapor deposition film was formed. Details of the vapor deposition conditions are as follows.
円筒状の冷却回転キャン;直径300mm加熱諒 ;電
子ビームガン
蒸発源から基体までの最短距離;250τm雰 囲気
;酸素/アルゴン=1/10真空度; 5 X 10−
5Torr
基体の走行速度;0.5tn1分
上記真空蒸着後、所定幅に裁断して、この発明の磁気テ
ープを得た。Cylindrical cooling rotary can; diameter 300mm heating cylinder; shortest distance from electron beam gun evaporation source to substrate; 250τm atmosphere
; Oxygen/Argon = 1/10 degree of vacuum; 5 X 10-
5 Torr Running speed of the substrate: 0.5 tn 1 minute After the above vacuum deposition, the magnetic tape of the present invention was obtained by cutting into a predetermined width.
比較例
第1図で示されるふたつの開口部を持った制御板の代り
にひとつの開口部のみを有する制御板を用いて、入射角
度40°〜9♂の範囲の第1段目の蒸着だけを行い、第
2段目の蒸着を行わなかった以外は、実施例と全く同様
にして厚さ1,5ooXで保磁力850エルステツド、
飽和磁束密度7,000ガウスの蒸着膜を有する従来の
磁気テープを作製した。Comparative Example A control plate with only one opening was used instead of the control plate with two openings shown in Fig. 1, and only the first stage of vapor deposition was performed at an incident angle in the range of 40° to 9♂. was carried out in exactly the same manner as in the example except that the second stage of vapor deposition was not performed.
A conventional magnetic tape with a deposited film having a saturation magnetic flux density of 7,000 Gauss was prepared.
上記実施例および比較例の電磁変換特性および耐食性を
調べた結果は、次の表に示されるとおりであった。なお
、電磁変換特性は記録波長IPでの再生出力を測定し、
比較例を基準(0)としてその相対値で表わした。また
、耐食性は60℃、90%RHの雰囲気中に1週間放置
したときの飽和磁束密度を測定し、初期値に対する減少
率(イ)で表わした。The results of examining the electromagnetic characteristics and corrosion resistance of the above Examples and Comparative Examples are as shown in the following table. In addition, the electromagnetic conversion characteristics are determined by measuring the reproduction output at the recording wavelength IP.
The comparative example was set as a reference (0) and expressed as a relative value. Further, the corrosion resistance was measured by measuring the saturation magnetic flux density after being left in an atmosphere of 60° C. and 90% RH for one week, and expressed as the rate of decrease (a) with respect to the initial value.
上表から明らかなように、この発明法によって得られた
磁気テープは、従来のテープに比し遜色のない電磁変換
特性を有しているとともに、耐食性が高度に改善されて
いることが判る。As is clear from the above table, the magnetic tape obtained by the method of this invention has electromagnetic conversion characteristics comparable to those of conventional tapes, and has highly improved corrosion resistance.
第1図はこの発明の方法を実施するための真空蒸着装置
の一例を示す概略図、第2図はこの発明の方法の要部を
説明するための;概略図である。
2 基体、5・・・蒸発源、θ・・・斜方向蒸着時の入
射角度、θ′・・・上記角度より小さな入射角度。FIG. 1 is a schematic diagram showing an example of a vacuum evaporation apparatus for implementing the method of the present invention, and FIG. 2 is a schematic diagram for explaining the main part of the method of the present invention. 2 Substrate, 5... Evaporation source, θ... Incident angle during oblique evaporation, θ'... Incident angle smaller than the above angle.
Claims (1)
源を基体表面に対して斜方向から真空蒸着させたのち、
この蒸着膜上にさらに上記蒸着時の基体表面に対する入
射角度より小さな入射角度で上記蒸発源を連続して真空
蒸着させることを特徴とする磁気記録媒体の製造法。(1) After vacuum-depositing an evaporation source made of a ferromagnetic metal or its alloy onto the substrate from an oblique direction to the substrate surface,
A method for producing a magnetic recording medium, characterized in that the evaporation source is further vacuum-deposited on the deposited film at an angle of incidence smaller than the angle of incidence with respect to the substrate surface during the deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58183701A JPS6076025A (en) | 1983-09-30 | 1983-09-30 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58183701A JPS6076025A (en) | 1983-09-30 | 1983-09-30 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6076025A true JPS6076025A (en) | 1985-04-30 |
Family
ID=16140431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58183701A Pending JPS6076025A (en) | 1983-09-30 | 1983-09-30 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6076025A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02129362A (en) * | 1988-11-07 | 1990-05-17 | Matsushita Electric Ind Co Ltd | Production of highly functional thin film |
US5525398A (en) * | 1991-03-22 | 1996-06-11 | Tdk Corporation | Perpendicular magnetic recording medium and method for making |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5520686U (en) * | 1978-07-28 | 1980-02-08 |
-
1983
- 1983-09-30 JP JP58183701A patent/JPS6076025A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5520686U (en) * | 1978-07-28 | 1980-02-08 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02129362A (en) * | 1988-11-07 | 1990-05-17 | Matsushita Electric Ind Co Ltd | Production of highly functional thin film |
US5525398A (en) * | 1991-03-22 | 1996-06-11 | Tdk Corporation | Perpendicular magnetic recording medium and method for making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0319613B2 (en) | ||
US4990361A (en) | Method for producing magnetic recording medium | |
JPS6076025A (en) | Production of magnetic recording medium | |
JPH0489627A (en) | Production of magnetic recording medium | |
KR900001141B1 (en) | Mafnetic recording medium and its producing method there of | |
US4948626A (en) | Method for producing thin-film magnetic recording medium | |
JP2894253B2 (en) | Manufacturing method of highly functional thin film | |
JPH11200011A (en) | Vacuum deposition device | |
JPH0896339A (en) | Magnetic recording medium | |
JPH01264632A (en) | Method and apparatus for producing magnetic recording medium | |
JP2946748B2 (en) | Manufacturing method of magnetic recording medium | |
JPH0370290B2 (en) | ||
JPS59203223A (en) | Thin metallic film type magnetic recording medium | |
JPS60209927A (en) | Magnetic recording medium and its production | |
JPH0121534B2 (en) | ||
JPS6045943A (en) | Production of magnetic recording medium | |
JPH06111265A (en) | Magnetic recording medium | |
JPH04147435A (en) | Vaccum vapor-evaporating method | |
JPS6194238A (en) | Preparation of magnetic recording medium | |
JPH033613B2 (en) | ||
JPS6079532A (en) | Manufacture of magnetic recording medium | |
JPS58155521A (en) | Manufacture of magnetic recording medium | |
JPH09204634A (en) | Magnetic recording medium | |
JPS5922235A (en) | Production of vertical magnetic recording medium | |
JPS6231026A (en) | Production of vertical magnetic recording medium |