JPS607582B2 - Shallow penetration submerged arc welding method for steel - Google Patents

Shallow penetration submerged arc welding method for steel

Info

Publication number
JPS607582B2
JPS607582B2 JP15572978A JP15572978A JPS607582B2 JP S607582 B2 JPS607582 B2 JP S607582B2 JP 15572978 A JP15572978 A JP 15572978A JP 15572978 A JP15572978 A JP 15572978A JP S607582 B2 JPS607582 B2 JP S607582B2
Authority
JP
Japan
Prior art keywords
welding
steel
groove
submerged arc
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15572978A
Other languages
Japanese (ja)
Other versions
JPS5584278A (en
Inventor
勲 杉岡
實治 西村
元 本杉
修身 下山
敏彦 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15572978A priority Critical patent/JPS607582B2/en
Publication of JPS5584278A publication Critical patent/JPS5584278A/en
Publication of JPS607582B2 publication Critical patent/JPS607582B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は鋼、とくに厚鋼板の浅溶込み潜弧溶接法に関す
るもので、欠陥のない高性能な継手を高能率に得ること
を目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shallow-penetration submerged arc welding method for steel, particularly thick steel plates, and aims to efficiently obtain high-performance joints free of defects.

最近、圧力容器や海洋構造物やラインパイプなど用いら
れている鋼板にはNb,Vを含有するものが多くなって
きている。
Recently, many steel plates used in pressure vessels, offshore structures, line pipes, etc. contain Nb and V.

ところがこのNb,Vを含有する銅を潜弧溶接した場合
母村希釈から溶接金属にNb,Vが移行混入し、その靭
性が非常に劣化し問題になっている。特に再熱を受けた
ときおよび応力除去暁錨(以下S.Rという)したとき
著しい。これは従来の潜弧溶接法では約3側以上の熔込
みがあり、母材希釈が30〜70%と大きいため避られ
ないもので、溶接材料の面からこれに対処するための研
究が行なわれているがまだ十分とはいえない。
However, when copper containing Nb and V is submerged arc welded, Nb and V migrate into the weld metal due to dilution, causing a problem in that the toughness of the weld metal deteriorates significantly. This is particularly noticeable when subjected to reheating and when subjected to stress relief dawn anchoring (hereinafter referred to as S.R.). This is unavoidable because conventional submerged arc welding involves welding on more than three sides and the dilution of the base metal is as high as 30 to 70%.Research is being conducted to address this issue from the perspective of welding materials. However, it is still not sufficient.

一方、母材の希釈を小さくする方法として突合せ潜弧溶
接においては補助溶加村を添加する方法があるが、その
希釈率は最も小さい場合でも約30%程度であり、母材
成分の悪影響を排除するには十分でない。
On the other hand, in butt submerged arc welding, there is a method to reduce the dilution of the base metal by adding an auxiliary welding agent, but the dilution rate is only about 30% at its smallest, and the adverse effect of the base metal components is Not enough to eliminate it.

さらに補助溶加材の添加量のバラッキによって溶込み不
足を生じたりして問題がある。他には特に突合せ溶暖に
有効な手段はほとんど見られなかった。また、圧力容器
などの厚板の溶接は王に溶着速度の大さし、潜弧溶接法
が用いられている。
Furthermore, variations in the amount of the auxiliary filler material added may cause problems such as insufficient penetration. There were hardly any other methods found that were particularly effective for butt heating. In addition, the submerged arc welding method is used to weld thick plates such as pressure vessels because of its high welding speed.

しかしスラグ剥離性、高温割れなどの面から、第1図a
に示すような開先においては底部半径Rは小さくても8
側、開先角度のま15o程度の関先がもっぱら用いられ
ている。また開先加工するセーパーなどの機械が使えな
い場合には第1図bに示すような開先角度50〜70o
のX開先がガス切断により加工され使用されている。
ところで、このような形状の関先では板厚の増大に伴っ
てその開先断面積が非常に大きくなるため2電極溶接を
用い能率向上が行なわれている。
However, from the viewpoint of slag removability and high temperature cracking,
In the groove shown in the figure, the bottom radius R is at least 8
On the side, joints with a groove angle of about 15° are exclusively used. In addition, if a machine such as a saper for beveling is not available, the beveling angle is 50 to 70o as shown in Figure 1b.
The X-bevel is processed and used by gas cutting.
By the way, in joints having such a shape, the cross-sectional area of the groove becomes extremely large as the plate thickness increases, so two-electrode welding is used to improve efficiency.

しかしながらさらに能率向上と溶後材料の節減が要望さ
れており、これに対処するため第1図cに示すような開
先間隔Wを18柳程度にした比較的狭し、開先をふり分
け、2パス1層で潜弧溶接する方法が試みられているが
、スラグ巻込みなどの欠陥が発生し易く問題であった。
すなわち第1図に示したような関先を用いて初層を除き
第3図bに示すように4.0〜4.8側めのワイヤBを
使い粒状フラックスFの下でふり分けて2パス以上で累
層して溶接を行なう場合、ふり分けに際してワイヤEの
先端を関先(母材)A,A′壁に近づけて溶接するため
母材への溶込みPが大きくなり母村の希釈が大きくなる
However, there is a need to further improve efficiency and reduce the amount of material used after melting. A single-pass submerged arc welding method has been attempted, but it has been problematic because it tends to cause defects such as slag entrainment.
In other words, remove the initial layer using the junction shown in Figure 1, and use the wire B on the 4.0 to 4.8 side to distribute it under the granular flux F as shown in Figure 3b. When welding in layers with more than one pass, the tip of the wire E is welded close to the junction (base metal) A, A' wall when separating, so the penetration P into the base metal becomes large and the base metal is welded. Dilution increases.

またワイヤねらい位置のところが前のパスと開先壁によ
って谷間のようになっていること、あるいはまた溶接ビ
ードが水平溶接に似て傾斜して溶着されることになどに
よりスラグ巻込みなどの欠陥が発生し易い。なお、第1
図および第3図bにおいて、AおよびA′は被溶接鋼板
(母村)、BおよびB′は溶接金属、8,OBおよびa
Fは開先角度、Rは底部曲率半径、Wは関先幅である。
In addition, defects such as slag entrainment may occur due to the fact that the wire target position is like a valley between the previous pass and the groove wall, or that the weld bead is deposited at an angle similar to horizontal welding. Easy to occur. In addition, the first
In the figure and Fig. 3b, A and A' are the steel plates to be welded (base), B and B' are weld metals,
F is the groove angle, R is the bottom radius of curvature, and W is the joint width.

本発明は厚板の溶接における上述のような問題点を解決
して高能率に溶接を行なうためもので、その要旨とする
ところは、被溶接材の関先底部における関先幅WBを6
〜14柵、板厚表面部において開先幅WFを2物奴以下
でWBミWFとし最終層を除く関先内の溶接において1
層1パスで、その1層の溶着厚さを3〜6柳とし、直径
が1.0〜4.0側のワイヤを用い、1電極当り150
〜700Aの溶接電流で、単電極の場合15〜40伽/
min、2電極の場合20〜70cm/minの溶接速
度で、通常のフラックスを用いて溶接することを特徴と
する鋼の浅熔込み潜孤溶接法にある。
The present invention is intended to solve the above-mentioned problems in welding thick plates and perform welding with high efficiency.
~14 Fence, the groove width WF on the plate thickness surface part is 2 mm or less, and WB Mi WF is set to 1 in welding within the joint excluding the final layer.
In one layer pass, the welding thickness of that one layer is 3 to 6 yen, using a wire with a diameter of 1.0 to 4.0, and 150 yen per electrode.
With a welding current of ~700A, 15 to 40 k/ for a single electrode
The present invention is a shallow welding deep arc welding method for steel, which is characterized by welding using a normal flux at a welding speed of 20 to 70 cm/min in the case of two electrodes.

以下本発明を図面によって詳しく述べる。The present invention will be described in detail below with reference to the drawings.

第2図および第3図aは本発明の溶接の状況を示す図で
あって、A,A′は被溶接材(母材)にしてその開先部
はほゞ1型となし、開先底部において開先間隔WBを6
〜14側、板厚表面部において開先底部間隔WFを20
側以下でWBミWFになるようにする。
Figures 2 and 3a are diagrams showing the welding situation of the present invention, where A and A' are the materials to be welded (base metal), and the groove portion is approximately type 1; Groove spacing WB at the bottom is 6
~14 side, the groove bottom interval WF at the plate thickness surface part is 20
Make it WB/WF below the side.

Fは粒状フラックスでこのフラックス中で1.0〜4.
仇仰ぐのワイヤEを消耗電極として関先幅のほゞ中心に
配置し、これからアークを発生させ潜弧溶接を行なう。
この溶接条件として、熔接電流を1電極当り150〜7
0船、溶接速度を単電極の場合15〜40弧/mln、
2電極の場合20〜70cの/minの範囲で溶着厚さ
=溶着断面積/関先幅が3〜6肋になる条件で熔接する
ことによって母村への溶込みPが約1肌以下と浅くなり
、母村の希釈が約20%程度以下と著しく小さくなる。
F is a granular flux with a range of 1.0 to 4.
The facing wire E is placed as a consumable electrode approximately at the center of the width of the joint, and an arc is generated from it to perform latent arc welding.
As this welding condition, the welding current is 150 to 7
0 ships, the welding speed is 15 to 40 arc/mln for single electrode,
In the case of two electrodes, by welding in the range of 20 to 70 cm/min and under conditions where the weld thickness = weld cross-sectional area/joint width is 3 to 6 ribs, the penetration P into the mother village is approximately 1 skin or less. The water becomes shallower, and the dilution of the mother village becomes significantly smaller, about 20% or less.

したがって母材中のNb,Vが溶接金属Bに混入する量
は非常に少なくなり良好な靭性が得られる。さらにスラ
グ巻込みなどの欠陥も発生し難い。つぎに関先形状およ
び溶接条件を前記のように限定した理由を述べる。
Therefore, the amount of Nb and V in the base metal mixed into the weld metal B is extremely small, and good toughness can be obtained. Furthermore, defects such as slag entrainment are less likely to occur. Next, the reason why the joint shape and welding conditions were limited as described above will be described.

これらの条件はいずれも母材への溶込みをできるだけ浅
くし、かつ融合不良などを生じないことを意図して設定
されたものであり、まず開先底部の開先幅WBが6側未
満では溶接入熱量を非常に小さくしないと溶着厚さが大
となり高温割れや融合不良を生じ易い。
All of these conditions were set with the intention of making the penetration into the base metal as shallow as possible and not causing poor fusion, etc. First, if the groove width WB at the bottom of the groove is less than 6 sides, If the welding heat input is not extremely small, the weld thickness will be large and hot cracking or fusion failure will likely occur.

また入熱量が小さい場合溶融池が小さく凝固が速いため
僅かなワイヤ送給不良、フラックス散布の深すぎ、浅す
ぎなどにより溶接が不安定になり、溶込み不良やスラグ
巻込みなどの欠陥が発生し易い。結局、適正条件範囲が
狭く実用上問題がある。関先底部の関先幅WBが14肋
を超え、あるいは板厚表面部の開先幅WFが2仇舷を超
える場合、関先断面積が増大し、能率が劣り熔接材料の
使用量が増大し好ましくない。
In addition, when the heat input is small, the molten pool is small and solidification is rapid, resulting in slight wire feeding failures, flux spreading too deep or too shallow, and welding becomes unstable, resulting in defects such as poor penetration and slag entrainment. Easy to do. As a result, the range of appropriate conditions is narrow and there are practical problems. If the joint width WB at the joint bottom exceeds 14 ribs, or if the groove width WF at the plate thickness surface exceeds 2 ribs, the joint cross-sectional area will increase, efficiency will deteriorate, and the amount of welding material used will increase. I don't like it.

さらに後者の場合、溶接電流を大きくしないと両端の閥
先(母材)面を十分に溶融できず融合不良を生じ易くな
る。
Furthermore, in the latter case, unless the welding current is increased, the tip (base metal) surfaces at both ends cannot be sufficiently melted, which tends to cause fusion failure.

また、WB>WFの場合開先形状が台形となるためスラ
グの除去が困難になる。また最終層を除く、関先内の溶
接を1層1パスの溶接に限定したのは、上述した作用効
果を得るための条件であり、第3図bの如くふり分け溶
接すると、母材の溶込みが深くなったり関先壁と溶接金
属の谷間ができ、かつ水平姿勢に近くなることによりス
ラグ巻込みなどの欠陥を発生し易くなる。なお、2.4
肋ぐ以下のワイヤを用いる場合には振幅の中心をほ)、
開先中心に一致させ、振中6柳以下、周期1〜1$ノS
の横振動をヮィャに加えても本発明法の作用効果は変ら
ず、さらに安定したビーが得られる。落着厚さ、すなわ
ち溶着断面積/開先幅は実質的には所定の関先幅におけ
る溶接条件によって決まるもので、熔接電流と溶接速度
の組合せで決まる。
Furthermore, when WB>WF, the groove shape becomes trapezoidal, making it difficult to remove the slag. In addition, the welding within the joint, excluding the final layer, was limited to one pass per layer in order to obtain the above-mentioned effects. Defects such as slag entrainment are more likely to occur due to deeper penetration, a valley between the junction wall and the weld metal, and a nearly horizontal position. In addition, 2.4
When using a wire with a height below the center of the amplitude),
Align with the center of the groove, shake 6 yanagi or less, cycle 1~1$noS
Even if lateral vibration is added to the wheel, the effects of the method of the present invention do not change, and even more stable beams can be obtained. The deposited thickness, that is, the welded cross-sectional area/groove width, is substantially determined by the welding conditions at a predetermined joint width, and is determined by the combination of welding current and welding speed.

そこで溶接電流が小さく、溶着厚さが3脚未満の場合に
は母材の漆込みが不十分となり融合不良を生じる。溶接
速度が大きくて溶着厚さが小さい場合も同様に融合不良
を生じ、さらにアンダーカットやスラグ巻込みなどの欠
陥を発生し易い。逆に溶着厚さが6肌を超える場合は、
メタルの先走りにより融合不良を生じたり、高温割れが
発生し易くなる。ワイヤ径が1.仇奴0未満の場合適正
電流の絶対値および範囲ともに小さいため、1層1パス
で溶接できる範囲が狭くなり実用性が乏ししい。ワイヤ
径が4.仇舵ぐを超えた場合は適正電流の絶対値が大き
いため、港込みが深くなりすぎ、またアダーカットが発
生し易い。つぎに1電極当りの溶接電流が15船禾満の
場合、ワイヤ径が小さい場合と同様1層1パスで溶接で
きる範囲が狭く、かつ溶着速度が小さく能率が劣り実用
性が乏しい。
Therefore, if the welding current is small and the welding thickness is less than three legs, the lacquering of the base material will be insufficient, resulting in poor fusion. When the welding speed is high and the weld thickness is small, poor fusion similarly occurs, and defects such as undercuts and slag entrainment are likely to occur. Conversely, if the weld thickness exceeds 6 skins,
If the metal runs ahead of the metal, it may cause poor fusion or high-temperature cracking. The wire diameter is 1. If it is less than 0, both the absolute value and the range of the appropriate current are small, so the range that can be welded per layer in one pass is narrowed, and the practicality is poor. The wire diameter is 4. If the current is exceeded, the absolute value of the appropriate current is large, so the port becomes too deep and adder cuts are likely to occur. Next, when the welding current per electrode is 15 mm, the range that can be welded in one pass per layer is narrow, as is the case when the wire diameter is small, and the welding speed is low, the efficiency is poor, and the welding is impractical.

逆に溶綾電流が700Aを超える場合溶接電流が大きす
ぎアーク力が強くなり、溶融池にアークでえぐられた固
体面が発生し易くなり、スラグ巻込みやアンダーカット
が発生し易い。また溶込みが深くなりすぎ靭性が劣化し
高温割れが発生し易い。溶接速度が単電極の場合15弧
/min未満、2電極の場合20肌/min未満の時は
、溶融金属が溶融池からはみ出し、溶融池前方に先走り
、綾込み不足やスラグ巻込みを生じ易い。
On the other hand, when the welding current exceeds 700 A, the welding current is too large, the arc force becomes strong, and a solid surface gouged by the arc is likely to occur in the molten pool, causing slag entrainment and undercut. In addition, if the penetration becomes too deep, the toughness deteriorates and hot cracking is likely to occur. When the welding speed is less than 15 arcs/min for a single electrode and less than 20 arcs/min for two electrodes, the molten metal protrudes from the molten pool and runs ahead of the molten pool, which tends to cause insufficient cross-over and slag entrainment. .

溶接速度が単電極の場合40伽/min超、2電極の場
合7瓜双/min超になると高温割れが発生し易い。
If the welding speed exceeds 40 k/min in the case of a single electrode, or exceeds 7 k/min in the case of two electrodes, hot cracking is likely to occur.

さらに融合不良やアンダーカットを生じ1層1パスの溶
接が困難になる。なお、本発明法において、母材への綾
込みが非常に浅さく、かつスラグ巻込みなどの欠陥が発
生し難いのは次のような理由によるものと考えられる。
Furthermore, poor fusion and undercuts occur, making it difficult to weld one pass per layer. The following reasons are believed to be why, in the method of the present invention, the twilling into the base material is very shallow and defects such as slag entrainment are less likely to occur.

アーク溶接において、溶込みは一般にアークによる直接
作用とアーク熱の溶融金属の対流を介しての熱伝導作用
により形成される。
In arc welding, penetration is generally formed by the direct action of the arc and the heat conduction action of the arc heat through convection of the molten metal.

ところで本発明法は開先間隔を狭くして比較的紬径のワ
イヤを開先のはゞ中心に位置し、完全な下向姿勢で、か
つ低速度で溶接するものであり、アークと禾熔融金属と
の間に溶融金属が介在し、この溶融金属を介してアーク
熱が伝えられ母材は溶融される。したがって従来法のよ
うに母材にアークが直接作用することがなく、スラグが
付着拘遠されやすし、アークによってえぐられた母材(
固体)面が発生しない。よって非常に浅い溶込みが均一
に得られ、スラグ巻込みなどの欠陥が発生し難いものと
考えられる。
By the way, in the method of the present invention, the gap between the grooves is narrowed, the wire with a relatively large diameter is positioned at the center of the groove, and the welding is performed in a completely downward position at a low speed. A molten metal is interposed between the metal and the base metal, and arc heat is transmitted through the molten metal to melt the base material. Therefore, the arc does not act directly on the base material as in the conventional method, which makes it easier for slag to adhere and become trapped, and the base material (
solid) surface does not occur. Therefore, it is thought that extremely shallow penetration can be obtained uniformly, and defects such as slag entrainment are unlikely to occur.

本発明は上述のようなものであるから、次のようなすぐ
れた多くの効果を発揮しうる。
Since the present invention is as described above, it can exhibit many excellent effects such as the following.

‘1’ 母材の希釈が非常に小さく、母材成分(特にN
b,V,C)の影響が小さく、良好な鋤性が得られ高温
割れが発生し難い。
'1' The dilution of the base material is very small, and the base material components (especially N
The influence of b, V, and C) is small, good plowability is obtained, and hot cracking is less likely to occur.

【2} 開先断面積および累積ビード表面積が大中に減
少するため、高能率でかつ溶接材料の使用量が大中に減
少する。
[2] Since the groove cross-sectional area and cumulative bead surface area are significantly reduced, efficiency is high and the amount of welding material used is significantly reduced.

糊 ふり分け溶接ではないので、円周連続溶接において
ワイヤのねらい位置の変更がなく、また補助溶加村の添
加も容易であるため、スラグ巻込みや溶込み不足などの
欠陥が発生し難い。
Since it is not glue distribution welding, there is no change in the target position of the wire during circumferential continuous welding, and it is easy to add auxiliary welding material, so defects such as slag entrainment and insufficient penetration are unlikely to occur.

しかるに本発明は従来法に〈らべ、母材に溶接において
好ましくない成分を含有する鋼はもちろん、そのような
成分を含有しない鋼では、さらに良好な性能が得られ、
かつ飛躍的に能率向上と溶村の節約が計られるものであ
る。以下に本発明の効果を実施例に基いてさらに具体的
に述べる。
However, compared to the conventional method, the present invention provides even better performance not only with steel whose base metal contains components undesirable for welding, but also with steel that does not contain such components.
Moreover, it will dramatically improve efficiency and save money. The effects of the present invention will be described in more detail below based on Examples.

実施例 第1表に本発明法の鋼板とワイヤおよびフラックスの組
合せ、溶接条件とS・R条件ならびに溶接結果を示す。
Examples Table 1 shows the combinations of steel plates, wires and fluxes, welding conditions, S/R conditions, and welding results according to the method of the present invention.

また同様に従来法と比較例を第2表に示す。同表中番号
1,2,3,4,5および6が本発明法であり、番号7
,8および9は従来法を示す。また番号10および11
は比較例である。なお、これらの溶接に用いた鋼板の開
先形状寸法を第4図〜第11図に示す。第5図において
CWは粒状金属(カットワイヤ)Cuは銅当板、第7図
および第9図においてSBは裏当鋼板である。また、鋼
板、ワイヤおよびフラックスをそれぞれ第2表、第3表
、第4表および第5表に示す。
Similarly, the conventional method and comparative examples are shown in Table 2. Numbers 1, 2, 3, 4, 5 and 6 in the same table are the methods of the present invention, and number 7
, 8 and 9 show conventional methods. Also numbers 10 and 11
is a comparative example. Note that the groove shapes and dimensions of the steel plates used for these weldings are shown in FIGS. 4 to 11. In FIG. 5, CW is a granular metal (cut wire), Cu is a copper backing plate, and SB is a backing steel plate in FIGS. 7 and 9. Further, steel plates, wires, and fluxes are shown in Tables 2, 3, 4, and 5, respectively.

※■■ ※ ■■ A ※ !1 ′、 雲き 鎌 0. 旨あ ■L 叶※ の○ 球三 ゞ ■。※■■ * ■■ A * ! 1′, cloudy Sickle 0. Delicious ■L Leaf* ○ ball three ■.

tK○ l‘ ■ 庁A(刈 ‐‐N痔妥 雷電蓮 tY ふ※N/S 雲旨毒旨鶴 」叶b−決 冬の^藤盃 。tK○ l‘ ■ Agency A (Kari ‐‐N hemorrhoids Raiden Lotus tY Fu*N/S Unji poisonous crane ” Kano b-decision Winter wisteria cup .

球寸胆S一N※/ ,.「 員÷ し令のy ミジよ蟻 )に EK 氏笹]鱒洋 益)出)鴎 ギ曲K橋〉 て蛤蚤 D S偽母 」梶Aギ煙 入刑・←※ R総bD略 【Nの山O ※※※※※ ※ ■1 鎌 旨ト 1ー !汽 A 。Ball length S1N*/ 、. ``Members ÷ y of the order Miji, ants ) to EK Mr. Sasa] Masuhiro profit) production) seagull Gigoku K Bridge> te clam fleas DS fake mother ” Kaji Agi Smoke Imprisonment・←※ R total bD omitted [N's Mountain O ※※※※※ * ■1 sickle Umito 1! Steam A.

偽薄雲馨 亜種 き蓮亀裏 d捲る ll寸鍵睦 法※t来 ^項晒 寮毒室 三′l 馨9畠灘 庇やや粋K Q笹]鍵ぜ べ)出S函 Q由麓。False Usukumo Kaoru Subspecies Kiren turtle back d turn over ll size key Mutsumi law*t ^Exposed dormitory poison room 3'l Kaoru 9 Hatanada Eaves and stylish K Q Sasa] Key b) Output S box Q Yuroku.

〉蝉趣N−鶏 【蟻82紙 X辱山ト煙 7く刑・0に※ N機凸曲略 ※※※※※ 第 3 表 第 4 表 第 5 表 第1表に示すNbはワイヤおよびフラックス中には含有
しておらず、母材(鋼板)のみから溶接金属に移行混入
してくるもので、かつ酸化されスラグ中に移行する割合
も非常に小さい。
〉Cicada N-Chicken [Ant 82 paper It is not contained in the flux, and only migrates from the base metal (steel plate) into the weld metal, and the rate at which it oxidizes and migrates into the slag is very small.

したがって母材の希釈(溶込み)を示す指標にすること
ができる。本発明法と従来法をNb含有量について比鮫
ると、本発明法の場合、Nb含有量がはるかに少なく、
溶込みが浅いことが判る。
Therefore, it can be used as an index indicating dilution (penetration) of the base material. Comparing the method of the present invention and the conventional method in terms of Nb content, in the case of the method of the present invention, the Nb content is much lower;
It can be seen that the penetration is shallow.

またNbによる会合部の衝撃値の異常低下も本発明法に
おいては認められない。したがって母材成分中に溶接金
属にとって好ましくない成分が含まれているような鋼の
溶接に本発明法が適していることが判る。
Further, no abnormal decrease in the impact value of the meeting area due to Nb is observed in the method of the present invention. Therefore, it can be seen that the method of the present invention is suitable for welding steel whose base metal components include components undesirable for the weld metal.

さらに経済性を比較すると、板厚25肋においては、そ
の差はわずかであるが、本発明法の場合開先断面積が小
さい。
Furthermore, when comparing the economical efficiency, the difference is slight when the plate thickness is 25 ribs, but the groove cross-sectional area is small in the method of the present invention.

また溶接パス数も2パスも少なく、さらに裏はつり作業
を考慮するとはるかに能率的である。この効果は板厚が
増大するにつれてより大きくなる。また、側曲げ試験、
UST検査において欠陥の発生はなく信頼性ある溶接継
手が得られることが判る。
In addition, the number of welding passes is less than two passes, and it is much more efficient when considering the back chiseling work. This effect becomes greater as the plate thickness increases. In addition, side bending test,
It can be seen that a reliable welded joint can be obtained without any defects in the UST inspection.

なお、多層性溶接において問題となるスラグの剥離性に
ついては中性ないし塩基性のフラツクスを選ぶことによ
って生成するスラグを比較的容易に除去することができ
るので問題なかった。
It should be noted that there was no problem with regard to slag removability, which is a problem in multilayer welding, because the generated slag can be removed relatively easily by selecting a neutral or basic flux.

以上詳述したように本発明法は母材成分の関係で潜弧溶
接の適用が問題であった鋼の溶接が容易にできる。さら
に厚板を極めて能率的にかつ溶材の使用料が少なく、か
つ欠陥発生が少ない信頼性の高い溶接継手が非常に経済
的に得られ工業的価値の極めて大なるものである。
As detailed above, the method of the present invention can easily weld steel, for which application of submerged arc welding was problematic due to the base metal composition. Furthermore, a highly reliable welded joint that can manufacture thick plates extremely efficiently, requires less welding material, and has fewer defects can be obtained very economically, and is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の閥先形状と累層法を示す正面断面図、
第2図は本発明法の関先形状と累層法を示す正面断面図
、第3図aは本発明法の溶接状況を示す正面断面図、第
3図bは従来法の溶接状況を示す正面断面図、第4図〜
第8図は本発明法の関先形状を示す正面断面図、第9図
、第10図は従釆法の関先形状を示す正面断面図、第1
1図は比較例の開先形状を示す正面断面図である。 A,A′:被溶接材(母材)、B,B′:溶接金属、E
:溶接ワイヤ、F:溶接フラックス、P:溶込み深さ、
8,88,8F:開先角度、R:底部曲率半径、W,W
F,WB:開先幅、CW:粒状金属(カットワイヤ)、
Cu:鋼当板、SB:裏当鋼板。多?図 多の図 髪′図 多2図 多3図 多4図 髪タ図 参る図 多7図 多グ図 多〃図
Figure 1 is a front sectional view showing the tip shape of the conventional method and the layered method.
Figure 2 is a front sectional view showing the joint shape and layered method of the present invention, Figure 3a is a front sectional view showing the welding situation of the invention method, and Figure 3b is the welding situation of the conventional method. Front sectional view, Figure 4~
FIG. 8 is a front sectional view showing the shape of the connection point in the method of the present invention, FIGS. 9 and 10 are front sectional views showing the shape of the connection point in the secondary method, and
FIG. 1 is a front sectional view showing the groove shape of a comparative example. A, A': Material to be welded (base metal), B, B': Weld metal, E
: welding wire, F: welding flux, P: penetration depth,
8, 88, 8F: Groove angle, R: Bottom curvature radius, W, W
F, WB: groove width, CW: granular metal (cut wire),
Cu: steel backing plate, SB: backing steel plate. Many? Figures of multiple figures ' Figures of multiple figures 2 Figures of 3 Figures of 4 Figures of hair Ta Figures of Figures of Figures of Figures of 7 Figures of Figures of Figures of multiple figures

Claims (1)

【特許請求の範囲】[Claims] 1 被溶接材の開先底部における開先幅W_Bを6〜1
4mm、板厚表面部における開先幅W_Fを20mm以
下でW_B≦W_Fとし、最終層を除く開先内の溶接に
おいて1層1パスでその1層の溶着厚さを3〜6mmと
し、直径が1.0〜4.0mmのワイヤを用い、1電極
当り150〜700Aの溶接電流で単電極の場合15〜
40cm/min、2電極の場合20〜70cm/mi
nの溶接速度で通常のフラツクスを用いて溶接すること
を特徴とする鋼の浅溶込み潜弧溶接法。
1 The groove width W_B at the groove bottom of the welded material is 6 to 1.
4mm, the groove width W_F at the plate thickness surface is 20mm or less, and W_B≦W_F, and the welding thickness of one layer is 3 to 6mm in one pass per layer in welding inside the groove excluding the final layer, and the diameter is Using a wire of 1.0 to 4.0 mm and a welding current of 150 to 700 A per electrode, 15 to 15 mm for a single electrode.
40cm/min, 20-70cm/min for 2 electrodes
A shallow penetration submerged arc welding method for steel, characterized by welding using a normal flux at a welding speed of n.
JP15572978A 1978-12-19 1978-12-19 Shallow penetration submerged arc welding method for steel Expired JPS607582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15572978A JPS607582B2 (en) 1978-12-19 1978-12-19 Shallow penetration submerged arc welding method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15572978A JPS607582B2 (en) 1978-12-19 1978-12-19 Shallow penetration submerged arc welding method for steel

Publications (2)

Publication Number Publication Date
JPS5584278A JPS5584278A (en) 1980-06-25
JPS607582B2 true JPS607582B2 (en) 1985-02-26

Family

ID=15612177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15572978A Expired JPS607582B2 (en) 1978-12-19 1978-12-19 Shallow penetration submerged arc welding method for steel

Country Status (1)

Country Link
JP (1) JPS607582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505369Y2 (en) * 1990-01-23 1996-07-31 ダイエー食品工業株式会社 Pre-cooling device and pre-cooling vehicle for vegetable fresh products

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166791A1 (en) * 2023-02-06 2024-08-15 Jfeスチール株式会社 Steel plate welded joint and method for manufacturing same
WO2024166790A1 (en) * 2023-02-06 2024-08-15 Jfeスチール株式会社 Welded joint of steel plate and method for manufacturing same
WO2024204428A1 (en) * 2023-03-31 2024-10-03 Jfeスチール株式会社 Method for manufacturing welded joint through gas-shielded arc welding of steel plate
WO2024204429A1 (en) * 2023-03-31 2024-10-03 Jfeスチール株式会社 Production method for welded joint by gas-shielded arc welding of steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505369Y2 (en) * 1990-01-23 1996-07-31 ダイエー食品工業株式会社 Pre-cooling device and pre-cooling vehicle for vegetable fresh products

Also Published As

Publication number Publication date
JPS5584278A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
US20180071852A1 (en) ARC WELDED JOINT OF Zn PLATED STEEL SHEET
US2206375A (en) Method of welding copper and copper alloy clad steel
JP6382593B2 (en) Welding method
JPS607582B2 (en) Shallow penetration submerged arc welding method for steel
MXPA04002020A (en) Joint design for laser welding zinc coated steel.
JPH08243754A (en) Inner face welding method of clad steel tube
JP3801186B2 (en) Ultra-thick welded material by multilayer submerged arc welding
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
US4142664A (en) Method of joining titanium clad steel plates
CN108290239A (en) Vertical narrow groove gas-shielded arc welding method
JP3182672B2 (en) Internal welding method of clad steel pipe
JP3624727B2 (en) Multi-layer submerged arc welding method for extra-thick steel plates
JPS63278679A (en) Resistance welding method for al materials
JP2857329B2 (en) Gas shielded arc welding method
JPS6340634B2 (en)
JPS6247111B2 (en)
JPH08276273A (en) Butt welding method for clad steel
US5193939A (en) Marine structure having superior corrosion resistance
JP3503191B2 (en) Large heat input multi-layer submerged arc welding method for thick steel plate
JPS62156087A (en) Production of steel pipe of clad steel
JPS61222683A (en) Narrow gap submerged arc welding method
JPS5832544A (en) Manufacture of clad plate
KR20130046926A (en) Welding method for preventing end-cracking
JPS62282781A (en) Butt welding method for clad steel
JPS6348627B2 (en)