JPS6075810A - Reinforced optical fiber - Google Patents
Reinforced optical fiberInfo
- Publication number
- JPS6075810A JPS6075810A JP58095396A JP9539683A JPS6075810A JP S6075810 A JPS6075810 A JP S6075810A JP 58095396 A JP58095396 A JP 58095396A JP 9539683 A JP9539683 A JP 9539683A JP S6075810 A JPS6075810 A JP S6075810A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- reinforcing
- coating layer
- reinforced
- strands
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は光ファイバ素線外周の強化被覆層が、複数の補
強繊維相とこれに含浸硬化されだ熱硬化性樹脂とよりな
る強化光ファイバの改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a reinforced optical fiber in which the reinforcing coating layer around the outer periphery of the optical fiber is composed of a plurality of reinforcing fiber phases and a thermosetting resin that is impregnated into the reinforcing fiber phases and cured.
機械的特性の向上に重点をおいて開発されている強化光
ファイバ(FRPMω光ファイバ心線)の場合、曲げな
どに対する機械的強度を有し、可撓性の点でも良好なも
のが提供されるに至っているが、その伝送特性に関し、
製造工程に起因した問題が残されている。In the case of reinforced optical fibers (FRPMω optical fiber cores), which are being developed with emphasis on improving mechanical properties, they have mechanical strength against bending, etc., and are also good in terms of flexibility. However, regarding its transmission characteristics,
Problems caused by the manufacturing process remain.
つまり、光フアイバ素線の外周に上記強化被覆層を形成
した場合、その被覆層の成形収縮により光ファイバに圧
縮歪みが生じ、これが曲げ歪みに変化して光ファイバに
はマイクロベンド(伝送ロス増の原因)が発生ずる。In other words, when the reinforcing coating layer is formed around the outer periphery of an optical fiber, compressive strain is generated in the optical fiber due to molding shrinkage of the coating layer, and this turns into bending strain, causing microbends (transmission loss increase) in the optical fiber. causes) will occur.
一般的なプラスチック被覆光ファ・1バの場合は、その
プラヌチノク被覆層のヤング率が小さいので、上記圧縮
歪みが生じたとしても該被覆層がその後徐々に応力緩和
し、光ファイバの歪みも殆どゼロになるが、上記強化光
ファイバの場合、強化被覆層のヤング率が大きく、応力
緩和しにくいので、既述の歪みがそのまま残留し、伝送
ロスの大きいものになってし壕う。In the case of general plastic-coated optical fibers, the Young's modulus of the planutinoku coating layer is small, so even if the above-mentioned compressive strain occurs, the coating layer gradually relaxes the stress, and the strain in the optical fiber is almost negligible. However, in the case of the above-mentioned reinforced optical fiber, the Young's modulus of the reinforced coating layer is large and stress relaxation is difficult, so the above-mentioned strain remains as is, resulting in a large transmission loss.
通常、このような歪みは光ファイバの工程歪みと称され
ており、この工程歪みが0.00%のとき、被覆層と光
フアイバ素線との密着性がよい一般的なプラスチック被
覆光ファイバでは、被覆層長と光ファイバ長との差、光
ファイバの光路差が互いによく一致し、被覆光ファイバ
を製品管理するとき、光路差Ooo%を工程歪み0.0
0%と見做して所定の管理を行なっている。Usually, such distortion is referred to as process distortion of optical fiber, and when this process distortion is 0.00%, it is normal for a typical plastic-coated optical fiber with good adhesion between the coating layer and the optical fiber strand. , the difference between the coating layer length and the optical fiber length, and the optical path difference of the optical fiber are in good agreement with each other, and when controlling the product of the coated optical fiber, the optical path difference Ooo% should be treated as a process distortion of 0.0.
Predetermined management is carried out by regarding it as 0%.
なお、ここでいう光ファイバの光路差とは、被覆前の光
フアイバコア長(単位長さ)と被覆後における該コア長
との差であり、これをパーセントであられしたものであ
る。The optical path difference of the optical fiber referred to herein is the difference between the optical fiber core length (unit length) before coating and the core length after coating, and is expressed as a percentage.
ところが上記強化光ファイバの場合、強化被覆層と光フ
ァイバ素線との密着が不充分であるため、強化被覆層内
と光ファイバ長との差、光ファイバの光路差が一致しな
いケースがあり、例えば強化被覆層内において光ファイ
バが黒負荷の状態で蛇行しているような場合、」二記光
路差0.00%を測知したとしても、実際には強化被覆
層の長さと光ファイバの長さとが相違しており、マイク
ロベットしやすい状態となっているから、光路差に基づ
く伝送特性上の信頼性がないこととなる。However, in the case of the above-mentioned reinforced optical fiber, because the adhesion between the reinforced coating layer and the optical fiber wire is insufficient, there are cases where the difference between the inside of the reinforced coating layer and the length of the optical fiber and the optical path difference of the optical fiber do not match. For example, when an optical fiber is meandering under a black load inside a reinforcing coating layer, even if a two-dimensional optical path difference of 0.00% is measured, the actual difference between the length of the reinforcing coating layer and the optical fiber Since the lengths are different and microbets are likely to occur, there is no reliability in terms of transmission characteristics based on the optical path difference.
本発明は強化光ファイバにおいて工程歪み(圧縮歪み)
に起因した伝送ロス増を解消するとともに製品管理上の
信頼性も高められるようにしたもので、以下その構成を
図示の実施例により説明する。The present invention deals with process strain (compressive strain) in reinforced optical fibers.
This system is designed to eliminate the increase in transmission loss caused by the transmission loss and also improve reliability in terms of product management.The configuration will be explained below with reference to the illustrated embodiment.
第1図、第2図において、1・は光フアイバ素線、2は
該光フアイバ素線1の外周に形成された強化被覆層であ
る。In FIGS. 1 and 2, reference numeral 1 indicates an optical fiber strand, and numeral 2 indicates a reinforcing coating layer formed around the outer periphery of the optical fiber strand 1. In FIG.
上記における光フアイバ素線1は、石英系の光ファイバ
3とこれの外周に形成されたコーティング層4とからな
り、光ファイバ3ばGI型とか、あるいはSI型などで
あり、これのコア/クラッドは1例として50μrn/
125μm となっている。The optical fiber 1 mentioned above consists of a quartz-based optical fiber 3 and a coating layer 4 formed on its outer periphery. As an example, 50μrn/
It is 125 μm.
一方、コーティング層4は/リコーン樹脂などの熱硬化
性樹脂とか、あるいはアクリレートコンパウッドなどの
光硬化性樹脂等よりなり、その外径は1例として400
7xn+ である。On the other hand, the coating layer 4 is made of a thermosetting resin such as silicone resin, or a photocuring resin such as acrylate compound wood, and its outer diameter is, for example, 400 mm.
7xn+.
このコーティング層4は1次コートとしての機能をもつ
他、バッファコートとしての機能も兼ね備えていること
があり、ぼた、場合によりては、光ファイバ3の外周に
1次コート用、バッファコート用のコーティング層が2
層化して設けられていることもある。In addition to having a function as a primary coat, this coating layer 4 may also have a function as a buffer coat. The coating layer is 2
Sometimes they are arranged in layers.
強化被覆層2は長尺とした複数の補強繊維相5.5.6
・・・・・と、熱硬化性樹脂6とがらなり、これらは熱
硬化性樹脂6をバインダーとして相互に一体化されてい
る。The reinforcing coating layer 2 has a plurality of elongated reinforcing fiber phases 5.5.6
... and a thermosetting resin 6, and these are mutually integrated using the thermosetting resin 6 as a binder.
こ\で用いられる補強繊維材5.5.5・・・・・は主
としてガラス繊維であり、その他のものとしてカーボン
繊維、アラミツド繊維、溶融ンリ力繊維、セラミック繊
維、ポリアミド繊維なども単体もしくは複合化して用い
られる。The reinforcing fiber materials 5.5.5 used here are mainly glass fibers, and other materials such as carbon fibers, aramid fibers, fused fibers, ceramic fibers, and polyamide fibers can also be used singly or in combination. It is used as a symbol.
さらにト記補強繊維拐6.5.5・・・・・はロービン
グ状態のものがよく用いられる。Furthermore, the reinforcing fiber fibers 6.5.5 are often in the form of roving.
一方、熱硬fL件樹脂6としてはポリエステル、エポキ
シなどの樹脂からなる。On the other hand, the thermosetting resin 6 is made of resin such as polyester or epoxy.
本発明は第1図、第2図で述べた強化光ファイバにおい
て、光フアイバ素線1が引張り歪みを有しており、シタ
がって高ヤング率の強化被覆層2が温度変化、外力等に
より収縮したとしても、光フアイバ素線1には圧縮歪み
が殆ど発生せず、その結果マイクロベットの問題がなく
なり、光ファイバ3の高い伝送特性が確保できる。The present invention relates to the reinforced optical fiber described in FIGS. 1 and 2, in which the optical fiber strand 1 has tensile strain, and the reinforcing coating layer 2 with a high Young's modulus is distorted due to temperature changes, external forces, etc. Even if the optical fiber 1 is shrunk, almost no compressive strain occurs in the optical fiber 1, and as a result, the problem of microbets is eliminated, and high transmission characteristics of the optical fiber 3 can be ensured.
もちろん上記における引張り歪みには適当な範囲があり
、これの最適値としてはo、oi%〜0.10%がよく
、その理由は0.01%を下回る場合、圧縮荷重に起因
したマイクロベンド阻止効果が乏しくなり、0.10%
を上回ると光ファイバ3の疲労度が大きくなり、破断事
故が起こりやすくなる。Of course, there is a suitable range for the tensile strain mentioned above, and the optimal value is o, oi% to 0.10%. Less effective, 0.10%
If it exceeds this, the degree of fatigue of the optical fiber 3 will increase, making it more likely that a breakage accident will occur.
一方、光フアイバ素線1が上記引張り歪みを有している
場合、その素線1が強化被覆層2内で蛇行していること
はあり得ないがら、当該強化光ファイバにおいて光路差
が000%を示しているときは、その値は信頼てき、こ
れに基づく製品管理も正確を期す。On the other hand, when the optical fiber strand 1 has the above tensile strain, it is impossible for the strand 1 to meander within the reinforced coating layer 2, but the optical path difference in the reinforced optical fiber is 000%. When the value is shown, the value can be trusted, and product management based on this value must be accurate.
つぎに本発明強化光ファイバの製造方法を簡単に説明す
ると、光フアイバ素線1およびロービング状態の補強繊
維6.6.6・・・・・を一方方向へ供給し、各補強繊
維6.6.6・・・・・を光ファイバ素線1の外周に縦
添えするが、この縦添え前、各補強繊維6.6.6・・
・・・を−だん樹脂液楯内に通して該各繊維6.5.6
・・・・に未硬化性樹脂6を含浸させるとか、あるいは
縦添え速時に流下供給手段を介して未硬化(液状)の熱
硬化性樹脂6を該各繊維5.6.6・・・に含浸させ、
その後、光フアイバ素線1および樹脂含浸の各補強に&
維6.5.5・・・・・を、必要に応じて目板、成形ダ
イスなどに引き通し、さらにこれらを筒状の加熱硬化炉
内に引き通してL記未硬化の熱硬化性樹脂6を硬化さぜ
、こうして製造された強化光ファイバを引取機で引きと
り、巻取機で巻きとる。Next, to briefly explain the manufacturing method of the reinforced optical fiber of the present invention, the optical fiber strand 1 and the reinforcing fibers 6,6,6, etc. in a roving state are supplied in one direction, and each reinforcing fiber 6,6, .6... is attached vertically to the outer periphery of the optical fiber 1, but before this longitudinal attachment, each reinforcing fiber 6.6.6...
6.5.6 Each fiber is passed through a resin liquid shield.
... is impregnated with uncured resin 6, or uncured (liquid) thermosetting resin 6 is applied to each of the fibers 5, 6, 6, etc. via a downward supply means during longitudinal splicing speed. impregnated,
After that, each reinforcement of the optical fiber 1 and resin impregnation is done.
The fibers 6.5.5... are passed through battens, molding dies, etc. as necessary, and then passed through a cylindrical heating curing furnace to form uncured thermosetting resin L. 6 is cured, and the reinforced optical fiber thus produced is taken up by a take-up machine and wound up by a winding machine.
さらに上記において強化光ファイバを製造するとき、例
えば加熱硬化炉前段における光フアイバ素線1の供給速
度V1と加熱硬化炉後段における引取速度V2とはV
+ < V 2のごとく速度差をもだせ、これにより強
化被覆層2内における光フアイバ素線1に所定の引張り
歪みを与え2以上説明した通り、本発明は光フアイバ素
線外周の強化被覆層が、複数の補強繊維制とこれに含浸
硬化されだ熱硬化性樹脂とからなる強化光ファイバにお
いて、上記強化被覆層内における光ファイバ素想が引張
り歪みを有していることを特徴としているから、マイク
ロベッドの原因となる圧縮歪みが生じがたり、シたがっ
て夕iカ、温度変化により強化被覆層が収縮したとして
も光ファイバの伝送ロス増が殆ど発生せず、また、製品
管理上の信頼性も高捷ることになる。Furthermore, when manufacturing a reinforced optical fiber in the above, for example, the supply speed V1 of the optical fiber strand 1 at the front stage of the heat-hardening furnace and the take-up speed V2 at the rear stage of the heat-hardening furnace are V
+ < V 2, thereby giving a predetermined tensile strain to the optical fiber strand 1 within the reinforcing coating layer 2. However, in a reinforced optical fiber made of a plurality of reinforcing fibers and a thermosetting resin impregnated and cured therein, the optical fiber concept in the reinforcing coating layer is characterized by having tensile strain. Therefore, even if the reinforcing coating layer shrinks due to temperature changes, there is almost no increase in transmission loss of the optical fiber, and it is also easy to manage products. Reliability will also be improved.
第1図、第2図は本発明強化光ファイバの1実施例を示
した縦断側面図と縦断正面図である。
1・・・・・光フアイバ素線
2・・・・・強化被覆層
3・・・・・光ファイバ
4・・拳・・コーティング層
5・・・・・補強繊維制
6・・・・・熱硬化性樹脂
特許出願人
代理人 弁理士 ノ1 藤 酸
第 1w1
jIZ 図
手続補正書(方式)
%式%
3、補正をする者
事件との関係 特許出願人
古河電気工業株式会社
4、復イ(埋入〒100
6、補正の対象
明細書の「発明の名称」の欄
7、補正の内容
明細書の発明の名称を「強化光ファイバ」と補正します
。FIGS. 1 and 2 are a vertical side view and a vertical front view showing one embodiment of the reinforced optical fiber of the present invention. 1... Optical fiber strand 2... Reinforced coating layer 3... Optical fiber 4... Fist... Coating layer 5... Reinforced fiber system 6... Thermosetting resin patent applicant representative Patent attorney No. 1 Fuji acid No. 1 w1 jIZ Drawing procedure amendment (method) % formula % 3. Relationship with the case of the person making the amendment Patent applicant Furukawa Electric Co., Ltd. 4. Revision (Embedded 〒100 6, Column 7 of ``Title of Invention'' of the specification subject to amendment, The name of the invention in the specification of contents of the amendment is amended to ``Reinforced Optical Fiber.''
Claims (2)
繊維相とこれに含浸硬化されだ熱硬化性樹脂とからなる
強化光ファイバにおいて、上記強化?1[層内における
光フアイバ素線が引張り歪みを有している強化光ファイ
バ。(1) In the reinforced optical fiber in which the reinforcing coating layer on the outer periphery of the optical fiber strand is composed of a plurality of reinforcing fiber phases and a thermosetting resin impregnated and cured therein, 1 [Reinforced optical fiber in which the optical fiber strands in the layers have tensile strain.
%の範囲内にある特許請求の範囲第1項記載の強化光フ
ァイバ。(2) Tensile strain of optical fiber wire is 001 to 0.10
% of the reinforced optical fiber according to claim 1.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58095396A JPS6075810A (en) | 1983-05-30 | 1983-05-30 | Reinforced optical fiber |
DE8383305490T DE3375328D1 (en) | 1982-09-20 | 1983-09-19 | Coated optical fibers |
AU19233/83A AU1923383A (en) | 1982-09-20 | 1983-09-19 | Coated optical fibres |
EP83305490A EP0106548B1 (en) | 1982-09-20 | 1983-09-19 | Coated optical fibers |
CA000437050A CA1240870A (en) | 1982-09-20 | 1983-09-19 | Coated optical fibers |
BR8305127A BR8305127A (en) | 1982-09-20 | 1983-09-20 | COATED OPTICAL FIBERS |
KR1019830004414A KR910001804B1 (en) | 1982-09-20 | 1983-09-20 | Coated optical fiber |
AU83100/87A AU595087B2 (en) | 1982-09-20 | 1987-12-29 | Coated optical fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58095396A JPS6075810A (en) | 1983-05-30 | 1983-05-30 | Reinforced optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6075810A true JPS6075810A (en) | 1985-04-30 |
JPH0414321B2 JPH0414321B2 (en) | 1992-03-12 |
Family
ID=14136489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58095396A Granted JPS6075810A (en) | 1982-09-20 | 1983-05-30 | Reinforced optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6075810A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6554938B1 (en) | 1997-05-09 | 2003-04-29 | Sumitomo Electric Industries, Ltd. | Over-coated optical fiber and manufacturing method thereof |
US6625365B2 (en) | 1997-05-09 | 2003-09-23 | Sumitomo Electric Industries, Ltd. | Overcoated fiber for use in optical fiber cable |
-
1983
- 1983-05-30 JP JP58095396A patent/JPS6075810A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6554938B1 (en) | 1997-05-09 | 2003-04-29 | Sumitomo Electric Industries, Ltd. | Over-coated optical fiber and manufacturing method thereof |
US6625365B2 (en) | 1997-05-09 | 2003-09-23 | Sumitomo Electric Industries, Ltd. | Overcoated fiber for use in optical fiber cable |
Also Published As
Publication number | Publication date |
---|---|
JPH0414321B2 (en) | 1992-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4113349A (en) | Fiber reinforced optical fiber cable | |
KR900002554B1 (en) | Coated optical fiber | |
US4239335A (en) | Fiber reinforced optical fiber cable | |
US4795234A (en) | Reinforced optical fiber | |
CN100520468C (en) | Drop optical fiber cable and FRP tension member used for the cable | |
US5016973A (en) | Cable reinforcement for an optical fiber cable | |
JPS59111602A (en) | Casing for light guide tube | |
US4211591A (en) | Production of optical fiber cables | |
JPS6075810A (en) | Reinforced optical fiber | |
JPH09113773A (en) | Coated optical fiber ribbon | |
JP2793621B2 (en) | Flat optical fiber cord | |
CN105759347A (en) | Optical fiber bundle, optical cable and optical fiber bundle manufacturing method | |
JP3940500B2 (en) | Reinforced optical fiber cord and manufacturing method thereof | |
JPH07225330A (en) | Optical unit for optical composite overhead earth wire | |
JPH0323887B2 (en) | ||
JP2006208650A (en) | Coated optical fiber ribbon | |
JP4257836B2 (en) | Structure and method for reinforcing fusion splice of optical fiber cord | |
JPS6014208A (en) | Coated optical fiber | |
JPH0224087Y2 (en) | ||
JPS61221714A (en) | Manufacture of fiber reinforced optical fiber | |
JPS59213647A (en) | Preparation of cable core of optical fiber | |
JPS6183651A (en) | Production of fiber-reinforced optical fiber | |
JPS6027363Y2 (en) | optical communication cable | |
JPH0224086Y2 (en) | ||
JPS58196502A (en) | Reinforced optical fiber |