JPS58196502A - Reinforced optical fiber - Google Patents

Reinforced optical fiber

Info

Publication number
JPS58196502A
JPS58196502A JP57074855A JP7485582A JPS58196502A JP S58196502 A JPS58196502 A JP S58196502A JP 57074855 A JP57074855 A JP 57074855A JP 7485582 A JP7485582 A JP 7485582A JP S58196502 A JPS58196502 A JP S58196502A
Authority
JP
Japan
Prior art keywords
layer
reinforcing
optical fiber
long fibers
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57074855A
Other languages
Japanese (ja)
Inventor
Kenichi Fuse
憲一 布施
Ario Shirasaka
白坂 有生
Shuji Okagawa
岡川 周司
Yoshiaki Oishi
大石 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57074855A priority Critical patent/JPS58196502A/en
Publication of JPS58196502A publication Critical patent/JPS58196502A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To assure not only tensile strength but bending strength and compressive strength as well by laminating and forming two kinds of reinforcing layers differing in the form of fibrous materials from each other on the outside of an optical fiber. CONSTITUTION:A buffer layer 2 formed on the outside of an optical fiber 1 consists of a solft or hard plastic such as polyurethane or silicone and there are a reinforcing inside layer 3 and a reinforcing outside layer 4 formed successively on the outside of said layer, each of which layers consists of a composite material of long fibers 5, 6 and thermosetting resins 7, 8. The layer 3 is so formed that the respective long fibers 5 are placed along the longitudinal direction of the fiber 1 on the outside of the layer 2 and the layer 4 is so formed that the respective long fibers 6 intersect with the fibers 5 on the outside of the layer 3. The content of the fibers 5, 6 in both layers 3, 4 is made 60-85wt% in terms of both strength and flexibility and if the layer 3 is designated as A and the outside layer 4 as B, B/A+B is made preferably 7-40wt%.

Description

【発明の詳細な説明】 本発明は光フアイバ外周の補強層が樹脂と繊維材との複
合材からなる強化光ファイバに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reinforced optical fiber in which the reinforcing layer on the outer periphery of the optical fiber is made of a composite material of resin and fiber material.

光ファイバを強化する手段として、1次被覆層、バッフ
ァ層などが形成された後の光フアイバ外周に、ロービン
グ状態のガラス繊維等を縦添えし、この長繊維に含浸さ
せた熱硬化性の樹脂を適当な加熱手段により硬化させて
当該光ファイバの外周に補強層を形成することはすでに
実施されている。
As a means to strengthen the optical fiber, after the primary coating layer, buffer layer, etc. have been formed, glass fibers in a roving state are longitudinally attached to the outer periphery of the optical fiber, and the long fibers are impregnated with thermosetting resin. It has already been carried out to form a reinforcing layer around the outer periphery of the optical fiber by curing it using a suitable heating means.

上記強化光ファイバの場合、長繊維を具備した補強層が
設けられたことにより、温度特性、引張強度は改善され
るが、その補強層の長繊維が光ファイバの長手方向に配
在されているだけであるので、曲げ荷重、圧縮荷重など
を受けると、補強層には簡単に縦裂きが生じる。
In the case of the above-mentioned reinforced optical fiber, the temperature characteristics and tensile strength are improved by providing a reinforcing layer with long fibers, but the long fibers of the reinforcing layer are arranged in the longitudinal direction of the optical fiber. Therefore, vertical tearing easily occurs in the reinforcing layer when subjected to bending load, compressive load, etc.

もちろん上記の場合、縦添え状態の長繊維が悪いという
のでなく、この繊維材では主に引張強度しか得られず、
したがって曲げ荷重、圧縮荷重に耐え得る補強手段が必
要となる。
Of course, in the above case, it is not that the long fibers in the longitudinally spliced state are bad, but that this fiber material mainly provides only tensile strength,
Therefore, reinforcing means that can withstand bending loads and compressive loads is required.

通常、曲げ荷重、圧縮荷重に対処すべく採用されている
7段は、縦添え状態の長繊維に対し、短繊維をランダム
に絡合させることであり、これによる補強効果もかなり
期待できる。
Normally, the seven stages adopted to cope with bending loads and compressive loads involve randomly entangling short fibers with longitudinally attached long fibers, and a considerable reinforcing effect can be expected from this.

しかし短繊維の場合、すべてが長繊維と交差して絡合す
るとはかぎらず、長繊維の長手方向に沿うもの、つまり
前述した縦裂き阻lF効果のないものも相当のウェイト
を占めるようになるから、補強Fからみた繊維材のロス
は大きいといえる。
However, in the case of short fibers, not all of them intersect and become entangled with long fibers, and fibers along the longitudinal direction of the long fibers, that is, those that do not have the above-mentioned longitudinal tear prevention IF effect, also account for a considerable amount of weight. Therefore, it can be said that the loss of fiber material seen from reinforcement F is large.

また、短繊維よりは長い中繊維を上記長繊維と交差する
ように巻きつける手段も考えられるが、光ファイバが長
尺であってこれの補強層がその長ト方向全長に形成され
ることを鑑みた場合、長さの有限範囲が小さい中繊維で
は長尺ものに対処できず、継ぎ足しするにしてもその継
目部の強度が問題になる。
Another possibility is to wrap medium fibers, which are longer than short fibers, so as to intersect with the long fibers. In view of this, medium fibers with a small finite range of length cannot handle long ones, and even if they are added, the strength of the joint becomes a problem.

本発明はこのような諸問題点を解決すべく、繊維材の態
様が互いに異なる二種の補強層を光ファイバの外周に積
層形成して引張強度はもちろんのこと、曲げ強度、圧縮
強度をも確保せんとするもので、以下その構成を図示の
実施例により説明する。
In order to solve these problems, the present invention has two types of reinforcing layers with different types of fiber materials laminated around the outer periphery of an optical fiber to improve not only tensile strength but also bending strength and compressive strength. The structure is explained below with reference to the illustrated embodiment.

第1図、第2図において、(1)はシリコーン樹脂など
の熱硬化性樹脂による薄い1次被覆層(図示せず)が形
成されている光ファイバ、(2)は該光ファイバ(11
の外周に形成されたバッファ層であり、このバッファ層
(2)はポリウレタン、シリコーンなどの軟質または硬
質の合成樹脂からなる。
In FIGS. 1 and 2, (1) is an optical fiber on which a thin primary coating layer (not shown) of thermosetting resin such as silicone resin is formed, and (2) is the optical fiber (11).
This buffer layer (2) is made of a soft or hard synthetic resin such as polyurethane or silicone.

さらに図において、+31(41は上記バッファ層(2
)の外周に順次形成された補強内層および補強外層であ
り、これら両II (31(41は、それぞれ長繊維+
51 (51+51・・・・・、(6X6) +61・
・・・・と、熱硬化性の樹脂(71+81とによる複合
材からなる。
Furthermore, in the figure, +31 (41 is the buffer layer (2)
) are sequentially formed on the outer periphery of the reinforcing inner layer and the reinforcing outer layer.
51 (51+51..., (6X6) +61・
...and a thermosetting resin (71+81).

上記における長繊維(5+ +5) +51・・・・・
、+61 (61(61・・・・・としてはガラス繊維
、カーボン繊維、アラミツド繊維、金属繊維、溶融シリ
カ繊維、セラミック繊維など、これらの1つ、または2
つ以に組み合わされたものが用いられる。
Long fiber in the above (5+ +5) +51...
, +61 (61 (61... is one or two of these, such as glass fiber, carbon fiber, aramid fiber, metal fiber, fused silica fiber, ceramic fiber, etc.)
A combination of the following is used.

また、これら長繊維(51+51151・・・・・、+
61 +61 (61・・・・・はロービング状態のも
の(i維径20μm以下、繊維数=数十〜数百本)、あ
るいはヤーン状態のものが採用され、場合により、長繊
維+6+ +6j +61・・・・・の繊維径は強化光
フアイバ外径、枡覆層厚の関係から他の長繊維+51 
(51+51・・・・・のそれよりも小さいものが用い
られることもある。
In addition, these long fibers (51 + 51151..., +
61 +61 (61... is in a roving state (fiber diameter 20 μm or less, number of fibers = several tens to hundreds) or yarn state, and depending on the case, long fibers +6+ +6j +61・Due to the relationship between the outer diameter of the reinforcing optical fiber and the covering layer thickness, the fiber diameter of ... is determined by the other long fibers + 51
(Sometimes a smaller value than 51+51... is used.

一方、樹脂+71 +81としては不飽和ポリエステル
樹脂、エポキシ樹脂などが採用され、これらは上記両層
[31F41相互の化学的接着性(一体化)を得べく同
材質のものが用いられる。
On the other hand, unsaturated polyester resin, epoxy resin, etc. are used as the resins +71 and +81, and these are made of the same material in order to obtain mutual chemical adhesion (integration) between the two layers [31F41].

そして長繊維(51[51F5+・・・・・とこれに含
浸硬化された樹脂(7)とからなる前記補強内層(3)
は、バッファ層(2)の外周において各長繊維[51L
51 (51・・・・・が光ファイバ(11の長手方向
に沿うよう形成されており、さらに長繊維161 +6
1 (61・・・・・とこれに含浸硬化された樹脂]8
)とからなる前記補強外@(4)は補強内層(3)の外
周において各長繊維(6)+6) (6)・・・・・が
前記長繊維+51 (51+51・・・・・と交差する
よう形成されており、具体的な繊維交差例としては、直
線的な一方の長繊維+51 +51 +51・・・・・
に対し、他方の長繊維(61+61 +6)・・・・・
が第1図のごとく螺旋巻きとなっている〇 この場合、長繊維+61 +61 +61・・・・・は
1条巻きでも複数の条巻きでもよく、光ファイバ(1)
の軸心線を基準とした当該長繊維(6) +61 [6
1・・・・・の巻付角θは900〈θ(1800の範囲
内で設定される。
The reinforcing inner layer (3) is made of long fibers (51 [51F5+...) and a resin (7) impregnated therein and cured.
In the outer periphery of the buffer layer (2), each long fiber [51L
51 (51... is formed along the longitudinal direction of optical fiber (11), and long fibers 161 +6
1 (61... and the resin impregnated into it and cured) 8
), each long fiber (6)+6) (6)... intersects with the long fiber +51 (51+51...) on the outer periphery of the reinforcing inner layer (3). As a specific example of fiber intersection, one straight long fiber +51 +51 +51...
On the other hand, the other long fiber (61 + 61 + 6)...
is spirally wound as shown in Fig. 1〇 In this case, the long fiber +61 +61 +61... can be wound in one thread or in multiple threads, and the optical fiber (1)
The long fiber (6) based on the axis of +61 [6
The wrapping angle θ of 1... is set within the range of 900<θ (1800).

さらに上記において、両層(31+41中における長繊
維+51 (51+51・・・・・、(61(6116
1・・・・・の含有率は、強度と可撓性との兼ね合いか
ら、両層f31 (41に対し60〜85重量%とする
のがよく、また、補強内層(3)をA、補強外周(4)
をBとした場合、B/(A十B)は7〜40重量%とす
るのがよい0 つぎに具体例を表により説明する。
Furthermore, in the above, both layers (long fibers in 31+41+51 (51+51..., (61(6116)
The content of 1... is preferably 60 to 85% by weight for both layers f31 (41) in view of the balance between strength and flexibility. Outer circumference (4)
When B is B, B/(A + B) is preferably 7 to 40% by weight.Next, specific examples will be explained using a table.

なお、上記表中での各サンプル(強化光ファイバ)は第
3図における強化被覆外径りが2wnφのものであり、
光ファイバ(1)の外径は125μm1 バッファ層(
2)の外径dは400μmでろる0 また、補強内層(3)および補強外層(4)はその長繊
維+51 +51 +51・・・・・、+61 +61
 +61・・・・・としてロービングガラスを採用し、
樹脂[7)、(81として不飽和ポリエステル樹脂を採
用した。
In addition, each sample (reinforced optical fiber) in the above table has an outer diameter of the reinforcing coating of 2wnφ in FIG.
The outer diameter of the optical fiber (1) is 125 μm1. The buffer layer (
The outer diameter d of 2) is 400 μm, and the reinforced inner layer (3) and the reinforced outer layer (4) have long fibers +51 +51 +51..., +61 +61
Adopts roving glass as +61...
Unsaturated polyester resin was used as resin [7] and (81).

さらに偏心率αは引抜金型を介した両層(31(4)の
硬化時に生じるのであり、このαは第3図のa、bによ
り次式のごとく算定した。
Furthermore, the eccentricity α occurs when both layers (31(4)) are hardened through the drawing die, and this α was calculated from a and b in FIG. 3 as shown in the following equation.

伝送損失増加量(dB/h〕は上記両層ta+ (41
による被覆前と被覆後の差から求めた。
The amount of increase in transmission loss (dB/h) is ta+ (41
It was determined from the difference between before and after coating.

この際の使用波長は、LEDによる0、85′” −+
160                      
   1一方、圧壊強度は補強外層(4)のない、つま
り補強内層(3)のみで補強された例10強化光ファイ
バを圧壊強度1とし、これとの相対値で残る各側の圧壊
強度を示した。
The wavelength used in this case is 0.85′” −+
160
1 On the other hand, the crushing strength is an example 10 reinforced optical fiber without the reinforcing outer layer (4), that is, reinforced with only the reinforcing inner layer (3), with the crushing strength of 1 being 1, and the remaining crushing strength on each side is shown as a relative value to this. Ta.

圧壊時のサンプル長は50膿、圧壊速度は0.5mm/
mとし、米国インストロン社製の試験機にて測定した。
The sample length at the time of crushing was 50 mm, and the crushing speed was 0.5 mm/
m, and was measured using a testing machine manufactured by Instron, USA.

以下、表中の各側につき説明すると、例1のものは補強
外層(4)がないため、曲は荷重により簡午に縦裂きが
生じ、不良であることが確認された。
Hereinafter, each side in the table will be explained. Since the case of Example 1 did not have the reinforcing outer layer (4), the bend easily caused longitudinal tearing due to the load, and it was confirmed that the case was defective.

例2のものは、例1よりもいく分強度は増したが、中に
は例1と同程の縦裂きが生じるものもあり、強度面から
はまだ不充分である。
Although the strength of Example 2 was somewhat higher than that of Example 1, some of them suffered from vertical tearing to the same extent as Example 1, so the strength was still insufficient.

例3のものは、例1に比べて圧壊強度がかなり向上して
おり、実用上の曲げにも充分耐え得ることが確認できた
。もちろん、補強内層(3)および補強外層(4)の層
間本能ル生していない。
It was confirmed that the material of Example 3 had considerably improved crushing strength compared to Example 1, and could sufficiently withstand bending in practical use. Of course, there is no interlayer function between the reinforcing inner layer (3) and the reinforcing outer layer (4).

例4のものでは、例3で述べた効果がより顕珂なものと
なっており、強度面と反比例するような弊害も生じてい
ない。
In Example 4, the effects described in Example 3 are more pronounced, and there are no adverse effects that are inversely proportional to the strength.

例5のものは、強度面につき例4を−E回るり一スも認
められたが、偏心率αに関して増加傾向を糸すものが生
じた。しかし実用上支障のない偏心率にとどまっている
In Example 5, although it was observed that the strength of Example 4 was -E, there was a tendency for the eccentricity α to increase. However, the eccentricity remains at a level that does not pose a practical problem.

例6.7のものは強度面に関して問題ないとしても偏心
率αがかなり大きくなっており、この点に難点がある。
Although examples 6 and 7 have no problem in terms of strength, the eccentricity α is considerably large, and this is a drawback.

上記において、例1を除く各側につき総合判定すると、
例4は優良、例3および例5は良であり、例2.6.7
は普通ないしそれ以下である。
In the above, if we make a comprehensive judgment on each side except for example 1,
Example 4 is good, Example 3 and Example 5 are good, Example 2.6.7
is normal or lower.

本発明の強化光ファイバは以上に説明した通り、バッフ
ァ層を有する光ファイバの外周に補強内層と補強外層と
が形成されているとともに、これら両層はいずれも長繊
維と該長繊維間に含浸硬化された樹脂とからなり、補強
内層の長繊維が光ファイバの長手方向に沿わされてお9
、補強外層の長繊維が補強内層の長繊維と交差している
ことを特徴としている。
As explained above, the reinforced optical fiber of the present invention has a reinforcing inner layer and a reinforcing outer layer formed around the outer periphery of an optical fiber having a buffer layer, and both of these layers are formed by impregnating long fibers between the long fibers. It is made of hardened resin, and the long fibers of the reinforcing inner layer are stretched along the longitudinal direction of the optical fiber.
, characterized in that the long fibers of the reinforcing outer layer intersect with the long fibers of the reinforcing inner layer.

したがって本発明の場合、補強内層により引張強度、良
好な温度特性が得られるだけでなく、補強外層により縦
裂ぎなどの生じない曲げ強度、圧壊強度も得られること
になり、その結果、強化光ファイバとしての機械的特性
が総合的に向上する。
Therefore, in the case of the present invention, the reinforcing inner layer not only provides tensile strength and good temperature characteristics, but also the reinforcing outer layer provides bending strength and crushing strength that do not cause longitudinal tearing. The mechanical properties of the fiber are improved overall.

殊に強化用の各繊維材はいずれも長繊維であるから、製
造面からみて長尺の光ファイバと対応がとりやすく、長
手方向に一様の強度を0午することになる。
In particular, since the reinforcing fiber materials are all long fibers, they are easily compatible with long optical fibers from the manufacturing point of view, and have uniform strength in the longitudinal direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明強化光ファイバの要部を示した切欠正面
図、第2図は同上の断面図、第3図は偏心率の説明図で
ある。 (1)  ・・・・・光ファイバ +21 −−−−・バッファ層 (3)  ・・・・・補強内層 (4)  ・・・・・補強外層 (Fil (61・・・・・長繊維 +71 +81・・・・・樹 脂 特許出願人 代理人 弁理士  井 藤   誠
FIG. 1 is a cutaway front view showing the essential parts of the reinforced optical fiber of the present invention, FIG. 2 is a sectional view of the same, and FIG. 3 is an explanatory diagram of eccentricity. (1) ...Optical fiber +21 -----Buffer layer (3) ...Reinforcement inner layer (4) ...Reinforcement outer layer (Fil (61...Long fiber +71) +81・・・Resin patent applicant representative Patent attorney Makoto Ito

Claims (4)

【特許請求の範囲】[Claims] (1)バッファ層を有する光ファイバの外周に補強内層
と補強外層とが形成されているとともに、これら両層は
いずれも長繊維と該長繊維間に含浸硬化された樹脂とか
らなり、補強内層の長繊維が光ファイバの長手方向に”
沿わされており、補強外層の長繊維が補強内層の長繊維
と交差していることを特徴とした強化光ファイバ。
(1) A reinforcing inner layer and a reinforcing outer layer are formed on the outer periphery of an optical fiber having a buffer layer, and both of these layers are made of long fibers and a resin impregnated and hardened between the long fibers, and the reinforcing inner layer long fibers in the longitudinal direction of the optical fiber.
A reinforced optical fiber characterized in that the long fibers of the reinforcing outer layer intersect with the long fibers of the reinforcing inner layer.
(2)  補強内層と補強外輪とが、これらの界面にお
いて化学的に接着されている特許請求の範囲第1項記載
の強化光ファイバ。
(2) The reinforced optical fiber according to claim 1, wherein the reinforcing inner layer and the reinforcing outer ring are chemically bonded at their interface.
(3)  補強外層/(補強内層+補強外層)が7〜4
0屯歇チである特許請求の範囲第1項記載の強化光ファ
イバ。
(3) Reinforced outer layer/(reinforced inner layer + reinforced outer layer) is 7 to 4
The reinforced optical fiber according to claim 1, which has a strength of 0 tonne.
(4)光フアイバ長手方向に沿う補強内層の長繊維に対
し、補強外層の長繊維が螺旋巻ぎ状態で交差している特
許請求の範囲第1項ないし第3項いずれかに記載の強化
光ファイバ。
(4) The reinforced light according to any one of claims 1 to 3, wherein the long fibers of the reinforcing outer layer intersect with the long fibers of the reinforcing inner layer in a spirally wound state along the longitudinal direction of the optical fiber. fiber.
JP57074855A 1982-05-04 1982-05-04 Reinforced optical fiber Pending JPS58196502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57074855A JPS58196502A (en) 1982-05-04 1982-05-04 Reinforced optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57074855A JPS58196502A (en) 1982-05-04 1982-05-04 Reinforced optical fiber

Publications (1)

Publication Number Publication Date
JPS58196502A true JPS58196502A (en) 1983-11-16

Family

ID=13559341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57074855A Pending JPS58196502A (en) 1982-05-04 1982-05-04 Reinforced optical fiber

Country Status (1)

Country Link
JP (1) JPS58196502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542589A1 (en) * 1991-11-14 1993-05-19 E G 1 Support element, especially for optical cable
JP2018205626A (en) * 2017-06-08 2018-12-27 日亜化学工業株式会社 Optical fiber coating structure and light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0542589A1 (en) * 1991-11-14 1993-05-19 E G 1 Support element, especially for optical cable
JP2018205626A (en) * 2017-06-08 2018-12-27 日亜化学工業株式会社 Optical fiber coating structure and light emitting device

Similar Documents

Publication Publication Date Title
KR900002554B1 (en) Coated optical fiber
US7650742B2 (en) Cable made of high strength fiber composite material
US4241763A (en) Rubber hose with spiral fiber reinforcing core
US2571717A (en) Shaft for fishing rods
KR20100042247A (en) Composite rope structures and systems and methods for making composite rope structures
EP0149336B1 (en) Flexible tension members
EP0058783B1 (en) Tubing of hybrid, fibre-reinforced synthetic resin
JPS58196502A (en) Reinforced optical fiber
JPH0323887B2 (en)
US3986157A (en) Electric fuse having substantially prismatic casing
JPS6312785A (en) Rod material
US3501359A (en) Method of making a reinforced filament wound pipe
JPH02216270A (en) Structural material and production thereof
US20180045339A1 (en) Ultrathin concrete composite pipe with oriented and localized fiber
JPH0257712A (en) Plastic drive shaft
JPS5955946A (en) Light weight composite member
JPS6014208A (en) Coated optical fiber
US3821879A (en) Constant length composite glass fiber cable under varying temperature conditions
JPS6255611A (en) Tensile strength member for optical cable fiber and manufacture thereof
JP3671601B2 (en) How to unwind glass roving
USRE29133E (en) Constant length composite glass fiber cable under varying temperature conditions
JPH0414321B2 (en)
JPH10296868A (en) Glass roving
JPS5882205A (en) Reinforced optical fiber
JPH032225A (en) Hybrid prepreg