JPS607580A - Pattern matching device - Google Patents
Pattern matching deviceInfo
- Publication number
- JPS607580A JPS607580A JP11537883A JP11537883A JPS607580A JP S607580 A JPS607580 A JP S607580A JP 11537883 A JP11537883 A JP 11537883A JP 11537883 A JP11537883 A JP 11537883A JP S607580 A JPS607580 A JP S607580A
- Authority
- JP
- Japan
- Prior art keywords
- image
- memory
- circuit
- picture
- pattern matching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Image Analysis (AREA)
Abstract
Description
【発明の詳細な説明】
の識別や位置決めを行うために使われるパターンマソチ
ング装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a pattern masoting device used for identification and positioning.
写真やテレビカメラ,等の画像から画像計測を行う方法
にパターンマノチングの方法があるか,従来の方法では
対象となる画像と照合パターンの画像の濃淡画像の信号
をコンピュータとその内部メモリを用いて両者の濃淡の
差をとり比較し識別していたが濃淡画象が照明の変動。Is there a pattern manoching method for measuring images from photographs, TV cameras, etc.?The conventional method uses a computer and its internal memory to generate grayscale image signals of the target image and the matching pattern image. The difference in shading between the two was compared and identified, but the shading image was due to fluctuations in lighting.
等で変化すると誤差によるミス判定を行う場合が生じた
。etc., there were cases where incorrect judgments were made due to errors.
本発明は,従来のパターンマツチング装置において,従
来のコンピュータで行っていた方式を改善し濃淡画像の
信号のレベル変動を避ける機能を追加し,パターンマノ
チングを迅速に行い,又照明,等の変動によるレベル変
動の誤差の影響を受けずに対象となる画像と教示パター
ンの判定を正確に行うことが出来る装置としてなされた
ものである。The present invention improves the method used by conventional computers in conventional pattern matching devices, adds a function to avoid signal level fluctuations of grayscale images, speeds up pattern matching, and improves lighting, etc. This device is capable of accurately determining the target image and the teaching pattern without being affected by level fluctuation errors due to fluctuations.
まず、従来の方式を第1図から第6図に従って説明する
。例えは第1図である時刻に画面内に物体Aかあって、
一定時間後これがとこにあるか計測するのに物体への特
徴をよく示す小領域Bを記憶しておく。次に第2図で計
測すべき対象画像の中から13と同じものを画面の中か
らさかず、さかず方法は例えは小頭域Bを画面内在から
右と、上から下へ細かくずらしていって。First, the conventional method will be explained with reference to FIGS. 1 to 6. For example, in Figure 1, there is an object A on the screen at a certain time,
In order to measure the location of this area after a certain period of time, a small area B that clearly shows the characteristics of the object is memorized. Next, from among the target images to be measured in Figure 2, move the same one as 13 from inside the screen, and the method is to finely shift the small head area B from the inside of the screen to the right and from top to bottom. That's it.
Bと重ね合う部分て照合判定を行なう。照合の結果一番
一致度の高い位置が、物体Aの移動した位置である。匝
1象信号が階調のある濃淡信号の場合、従来使われてい
る照合方法は第3図から第6図に示すように8SDA法
−8equentialSimilarity Det
ection Algorithm (残差逐次検定法
)のような手法がとられる。Verification is performed on the portion that overlaps with B. The position with the highest degree of matching as a result of verification is the position to which object A has moved. When the signal is a gray level signal, the conventional matching method is the 8SDA method - 8equentialSimilarity Det as shown in Figures 3 to 6.
A method such as a residual error sequential test method is used.
1hJ単のため第3図から第6図は1次元(走査線4本
分)で示す。これは対象とする画像と照合パターンI3
の各画素について濃度の差の絶対値をとり、この絶対値
の小領域内の総和をもって照合判定する方法であり、完
全に一致しておれば差は零でかつ小領域内での総和も零
である。3 to 6 are shown one-dimensionally (four scanning lines) because of the 1hJ unit. This is the target image and matching pattern I3
This method calculates the absolute value of the difference in density for each pixel, and uses the sum of these absolute values within a small area to make a comparison judgment. If there is a complete match, the difference is zero and the sum within the small area is also zero. It is.
88DA法は総和を小領域内で逐次加算してゆく過程で
一定値をオーバすると、一致する見込みなしとして、計
算を打切り、小領域I3を次の位置に移して次の「−1
算に移る。第3図は原l!!jI象と、小領域13の教
示位置を走査線の位置Xとその画14度Yの関係で示し
ている。In the 88DA method, when the sum exceeds a certain value in the process of sequentially adding the sum within a small area, it is considered that there is no chance of a match, and the calculation is aborted, and the small area I3 is moved to the next position and the next "-1" is added.
Let's move on to calculation. Figure 3 is original! ! The teaching position of the small area 13 and the jI image are shown in the relationship between the position X of the scanning line and the 14 degrees Y of the image.
第4図は計測対象li!ji I&の謬度Yを、第5図
は対象画像」100点てパターンマツチングをとった時
の濃度Yの判定データ、を各示している。Figure 4 shows the measurement target li! FIG. 5 shows the determination data of the density Y when pattern matching is performed using 100 target images.
小領域B内の差の絶対値の総和は30で示す範囲の面積
で示される。第6図はBの小領域を対象画像」1左から
右へ全面で移動した時の対象画像と教示パターンとの差
の絶対値の総和で10ノドしたものて画像のない領域で
は一定の濃度を示すがD点において濃度の差は最小値を
示しこの点て照合パターンBの教示パターンをみつけた
ことになる。The sum of the absolute values of the differences within the small region B is represented by the area of the range indicated by 30. Figure 6 shows the small area of B as the target image.1 The sum of the absolute values of the differences between the target image and the taught pattern when moving from left to right over the entire surface is 10 knots, and the density is constant in areas where there is no image. However, at point D, the difference in density shows the minimum value, and at this point, the teaching pattern of verification pattern B has been found.
次に、この方式での欠点を述べる。例えば。Next, we will discuss the drawbacks of this method. for example.
教示した時の画麻に対して、計測すべき′A象画倣か照
明の変動なとで、暗くたったり明るくなったりすると、
濃淡信号が直流的なオフセットをもつことになる。この
ため、差の絶対値の総和が最小になる所が必ずしも照合
したところとはならずかえって大きな値を示したり、別
の位置で総和が最小値をとったり誤判定をすることにあ
る。この辺の事情を第7図から第1O図で説明する。第
7図は原画像の位置と濃度の関係を示し、第8図は計測
対象画像で濃淡信号が直流的なオフセット32をもった
例を示している。第9図は対象画面上の0点及びD点で
のパターンマツチングをとったときの例で小領域E内の
差の絶対値の総和は0点ては81a、D点では81 b
て各々示ず範囲の面積で示される。第10図は小領域E
を対象画象上左から右−全面で移動した時の差の絶対値
の総和の判定データをプロットしたものて画像のない領
域では一定の濃度を示し、19点てはオフセノ1−32
の影響で最小値とならずに逆に大きな値を示し誤判定を
する例を示している。If the image becomes darker or brighter due to the ``A'' image imitation to be measured or due to changes in lighting, compared to the image when taught,
The gray level signal will have a DC-like offset. For this reason, the location where the sum of the absolute values of the differences is the minimum is not necessarily the location where the comparison was made, and may instead show a large value, or the sum may take the minimum value at another location, resulting in an erroneous determination. The circumstances surrounding this will be explained with reference to FIGS. 7 to 1O. FIG. 7 shows the relationship between the position and density of the original image, and FIG. 8 shows an example in which the gradation signal has a DC-like offset 32 in the image to be measured. Figure 9 is an example of pattern matching at point 0 and point D on the target screen, and the sum of the absolute values of differences within small area E is 81a at point 0 and 81b at point D.
Each area is shown as a range of area. Figure 10 shows small area E.
The judgment data of the sum of the absolute values of the differences when moving from left to right over the entire surface of the target image is plotted.The area with no image shows a constant density, and the 19 points are Offseno 1-32.
This example shows an example in which a large value is displayed instead of the minimum value due to the influence of
w上の説明により従来法では教示した画像に苅し計測す
べきI…1像のレベルか変動すると判定不能になる場合
かあった。According to the above explanation, in the conventional method, if the level of the I...1 image to be measured changes in the taught image, it may become impossible to make a determination.
本発明はこのような不具合点をなくすためになされたも
のであり、物体を走査線の走査により光学的にとらえて
その濃淡画像をデジタル信f化しコンピュータで識別す
るパターンマツチング装置において、走査線走査による
濃淡画像の画素信号を微分する微分回路と、微分回路の
811力ヲデシタル化するアナログ/デジタルコンバー
タと、教示画像のアナログ/デジタルコンバータ出力の
信号を記憶する教示画像メモリと。The present invention has been made to eliminate such problems, and is a pattern matching device that optically captures an object by scanning scanning lines, converts the grayscale image into a digital signal, and identifies it using a computer. A differentiation circuit that differentiates pixel signals of a grayscale image by scanning, an analog/digital converter that digitizes the 811 output of the differentiation circuit, and a teaching image memory that stores signals output from the analog/digital converter of the teaching image.
?、U 照合画像のアナログ/デジタルコンバータ出力
の信号を記憶する被照合画像メモリと、教示画数メモリ
と被照合lI!!11象メモリに記憶されている信号の
差をとる減算器と、減算器による差の幀の絶7]値をと
る回路と、教示した小領域ことに絶対値の総和をとる加
算回路とを備え、濃淡lL’jj 象の信号を小領域ご
とに差の絶対値をとりこれを比較することを特徴とした
パターンマツチング装置に関するものである。? , U A to-be-matched image memory that stores the analog/digital converter output signal of the matching image, a taught stroke number memory, and a to-be-matched lI! ! 11 Equipped with a subtracter that takes the difference between the signals stored in the elephant memory, a circuit that takes the absolute value of the difference caused by the subtracter, and an adder circuit that takes the sum of the absolute values in the small area taught. The present invention relates to a pattern matching device characterized in that the absolute value of the difference is taken for each small region of signals of shading and lightness lL'jj and compared.
次に第11図から第17図に従って本発明の内容を詳細
に説明する。Next, the content of the present invention will be explained in detail according to FIGS. 11 to 17.
第11図は本発明の全体の構成図であり、1はテレビカ
メラ等の画数入ツJ部である。2はアナログ画数信号を
微分する微分回路である。3はこれをデジタルにするア
ナログ・デシクルコンバータ(A / Dコンバータ)
である。35て示ず微分回路2.A/Dコンバータ3は
第12図に示すようにA / I)コンバータ3.差分
回路4からなる36に変更してもよい。第12図の4は
差分回路で隣り合うデシタルデータの差をとる。5は本
装置のデータ、バス、6はアドレスバスで伝送される信
号線である。7はカメラ1に”tt Lでで
同期信号を発生ずるンンク(8%NO)ゼネレータであ
る。8はカメラと全体システムのタイミングを同期させ
るためのクロックパルス発生部である。IOは本装置の
生体を制御するプロセサである。11は、パターンマツ
チングをイ1なう第1図で示すようなI3の小領域側1
象の微分したものを記憶さぜる教示l!!!11象メモ
リである。12は。FIG. 11 is a diagram showing the overall configuration of the present invention, and 1 is a part J containing strokes of a television camera or the like. 2 is a differentiation circuit that differentiates the analog stroke number signal. 3 is an analog decile converter (A/D converter) that converts this to digital.
It is. 35 Differential circuit 2. The A/D converter 3 is an A/I) converter 3. as shown in FIG. It may be changed to 36 consisting of the differential circuit 4. 4 in FIG. 12 is a difference circuit which takes the difference between adjacent digital data. 5 is a data bus of this device, and 6 is a signal line transmitted by an address bus. 7 is a generator that generates a synchronization signal at "tt L" for camera 1. 8 is a clock pulse generator for synchronizing the timing of the camera and the entire system. IO is the clock pulse generator of this device. 11 is a processor that controls the living body. 11 is a small region side 1 of I3 as shown in FIG.
Teaching to memorize the differentiation of elephants! ! ! This is an 11-elephant memory. 12 is.
第2図で示される計σりずへき対絵画像を記憶する被[
1α合画1歇メモリである。9はカメラ1の走査信号に
応じてメモ!Jll、+2に画像データを格納してゆく
ときにその格納アドレスを発生ずる71−レス発生部で
ある。13のメモリはプロ士す10のための10クラム
やバッファ等のためのシステムメモリである。14.1
5はデークラッチで。The total σ ratio shown in FIG.
1α joint picture 1 interval memory. 9 is a memo according to the scanning signal of camera 1! This is a 71-res generating unit that generates a storage address when storing image data in Jll, +2. The memory 13 is a system memory for 10 crumbs, buffers, etc. for the professional staff 10. 14.1
5 is a day clutch.
それぞれ教示内縁メモ’) 11.被照金剛1象メモリ
ー2からの画像データを一時保持する。I6は減算器で
両者の差をめるものであり、17は絶対値をめる回路で
ある。Each teaching memo') 11. The image data from the illuminated Kongo 1 image memory 2 is temporarily held. I6 is a subtracter that calculates the difference between the two, and 17 is a circuit that calculates the absolute value.
18は、 17の絶″A値化されたデータを13の小領
域に百って加算し、総和をめる総和加算回路である。Reference numeral 18 denotes a total sum addition circuit which adds the 17 absolute A-valued data to the 13 small areas and calculates the total sum.
】9は、13の小領域が被照合画像メモリ】2の対象画
像のとこにあったかの判定結果を出力する出力、1ぞ−
1である。] 9 is an output that outputs the determination result of whether the small area of 13 is located in the target image of [2] in the matched image memory;
It is 1.
20ば、コンソールで本装置の起動や、教示小領域■3
を設定するためのマンマシンインタフェースである。20. Start up this device on the console and open the small teaching area ■3
It is a man-machine interface for configuring.
次に上記の如き構成で本発明のポイン1−となる点を第
11図から第17図で説明する。Next, the first point of the present invention in the above configuration will be explained with reference to FIGS. 11 to 17.
第13図から第17図は画1象の位置Xと濃度Yとの関
係を示したもので、第13図は教示時の原画像である。13 to 17 show the relationship between the position X and the density Y of one image, and FIG. 13 is the original image at the time of teaching.
第14図は直流的なオフセラ1−32ののった計測対象
画像である。第15図は第13図の波形を微分したもの
である。FIG. 14 is a measurement target image on which a direct current off-cella 1-32 is shown. FIG. 15 shows the differentiated waveform of FIG. 13.
第15図は9図では1次元でかいているが、これは画面
走査ラインに沿った1次元の微分てもよいし、必要によ
っては9画面は2次元であるのて2次元の微分でもよい
。第16図は第14図の計測対象画像の微分波形である
。この微分した波形に対して小頭MBを教示すれば、こ
のBのと
領域と同一のもの゛ζ第16図の中からさがすことがて
きる。Although FIG. 15 is drawn in one dimension in FIG. 9, this may be a one-dimensional differentiation along the screen scanning line, or if necessary, since the nine screens are two-dimensional, it may be a two-dimensional differentiation. FIG. 16 is a differential waveform of the measurement target image in FIG. 14. If we teach the microhead MB to this differentiated waveform, we can search for the same region as this B in FIG. 16.
従来法と同じく差の絶対値の総和が第17図に示すよう
に小領域Bの移動後の点て、最小となり誤判定はなくな
る。As in the conventional method, the sum of the absolute values of the differences becomes the minimum after moving the small region B, as shown in FIG. 17, and there is no misjudgment.
上記の説明した方式と第1I図ての全体構成との関係は
次のようになる。第11図においてカメラ1はシンクロ
ゼネレータ7、クロノパルス発生部8.により制御され
画数を左から右へ走査し、その画数出力は各画素こと微
分回路2又は第12図の差分回路4により微分されA
/ Dコンバーク3てデジタル化される。デジタル化さ
れたデータはアドレス発生部9により収納すべきアドレ
スが指定され教示画像メモリー1の各位置に記憶される
。判定すべきパターンの小領域13はコンソー/l/2
0より指定される。一方、計測画菌の入力は同じ手順で
画像が走査され微分した形で71−゛レス発生部9て指
定された被照合画陰メモリ12へ記憶される。The relationship between the method described above and the overall configuration shown in FIG. 1I is as follows. In FIG. 11, the camera 1 includes a synchronizer generator 7, a chronopulse generator 8. The number of strokes is scanned from left to right, and the output of the number of strokes is differentiated by the differential circuit 2 or the differential circuit 4 in FIG.
/ D Converk 3 will be digitized. The digitized data is stored in each position of the teaching image memory 1 with an address to be stored designated by the address generating section 9. The small area 13 of the pattern to be determined is Konso/l/2
Specified from 0. On the other hand, as for the input of the measurement image, the image is scanned in the same procedure and stored in differentiated form in the reference image/shadow memory 12 designated by the 71-res generation section 9.
パターンマツチングは、教示il!l象メモリ11ニ入
ったI3領域の内容と被照合画像メモリ12に入った被
照合画像の間でなされる。教示画像メモリ11のデータ
と被照合(I!l鯨メ子メモリ12−タは1画素ごと各
々ラッチ14.15に送られ、データは一時保持され、
減算器]6で両者の差をめる。Pattern matching is taught! This is done between the contents of the I3 area stored in the image memory 11 and the matched image stored in the matched image memory 12. The data in the teaching image memory 11 and the data to be compared (I!L whale meko memory 12-data are sent pixel by pixel to latches 14 and 15, respectively, and the data is temporarily held.
Subtractor] 6 to calculate the difference between the two.
次に回路I7て減算器16の出力を絶対値化する。Next, the circuit I7 converts the output of the subtracter 16 into an absolute value.
回路17の出力はB領域全体での総和をめるため総和加
算回路18へ送られる。The output of the circuit 17 is sent to a summation adding circuit 18 in order to calculate the summation over the entire B area.
B領域の画面内での特定の位置での総和計算が終了すれ
ば、B領域を画面上で次の位置に移して照合をくりかえ
す。When the total sum calculation at a specific position on the screen of the B area is completed, the B area is moved to the next position on the screen and the verification is repeated.
13領域てのすべての移動毎にめた総和又は総和計算の
結果総和計算の打切決定の判定結果は、システムメモリ
13に格納される。The summation or the result of the summation calculation obtained for each movement of all 13 areas, and the determination result of the decision to discontinue the summation calculation, are stored in the system memory 13.
この全判定結果の中でミニマム値をとった時の領域Bを
セットした位置が照合−数点である。The position where area B is set when the minimum value is taken among all the determination results is the verification-several points.
この−数点出力が出力ポート19から上位コンピュータ
や表示部へ出力される。This minus number point output is output from the output port 19 to the host computer or display section.
以上の作用を司さどるのがプロセサ10てありノンクゼ
ネレータ7.りl:17り発生部8.アドレス発生部9
は教示画像メモIJII、被照合メモリ12に画数デー
クを取込む制御を行なう。The processor 10 is in charge of the above operations, and the non-quench generator 7. ri l: 17 ri generation part 8. Address generation section 9
performs control to import the number of strokes data into the teaching image memo IJII and the memory 12 to be compared.
以上説明の本発明の方式によるパターンマツチング装置
では、従来の方式にくらべ計測すべき対象円1校が照明
1等の変動により変化しても画数信号を微分し高周波分
(交流分)をもって照合するためレベル信号の変動に影
響されず高精度の判定が出来るようになった。Compared to the conventional method, the pattern matching device according to the method of the present invention described above differentiates the stroke number signal and matches the high frequency component (AC component) even if the target circle to be measured changes due to fluctuations in the illumination 1, etc. As a result, highly accurate judgments can now be made without being affected by fluctuations in the level signal.
第1図は物体Aと教示パターンとなる小領域130画像
の状態説明図、第2図は物体Aを教示パターンを走査し
て照合判定する状態説明図。
第3図は原画像と小領域Bの位置と濃淡画像の濃度の関
係説明図、第4図は計測画像の位置と濃度の関係説明図
、第5図は対象画像の0点で教示パターンの小領域B内
の濃度の差の絶対値を示した説明図、第6図は全位置で
の対象画像と教示パターン七の濃度の差の絶対値をプロ
ットした説明図、第7図は原画像の一般的な位置と濃度
の状態説明図、第8図は計測対象画像が直流的オフセッ
トをもった場合の濃度と位置の説明図、第9図は第8図
の例で0点および0点でのパターンマツチングを行った
状態説明図。
第10図は第9図の全面で縫度の差の絶対値をとり濃度
をプロ、トシた状態説明図、第11図は本発明の全体の
構成図、第12図は微分回路、A/Dコンバータの代り
用いられるA / I)コンバータ、差分回路からなる
構成図、第13図から第17図は本発明の方式によるパ
ターンマツチングの1例で、第13図は原画像、第14
図は直流的オフセットののった計測対象円像、第15図
は第13図の波形を餓分した波形、第16図は第14図
の波形を微分した波形、第17図は第15図と第16図
の波形よりパターンマツチングを行った時の濃度の状態
説明図を示す。
1 :力15,2 :e分間Fa、3 :A/Dコンバ
ーク、10:プロセノザ、11:教示画像メモリ。
12:被照合画像メモIJ、+6:減算器、I7:絶対
値をめる回路、】8:総和加算回路。FIG. 1 is a state explanatory diagram of an object A and a small area 130 image serving as a teaching pattern, and FIG. 2 is a state explanatory diagram of a state in which object A is scanned with a teaching pattern and compared and judged. Figure 3 is an explanatory diagram of the relationship between the position of the original image and small area B and the density of the grayscale image, Figure 4 is an explanatory diagram of the relationship between the position of the measurement image and the density, and Figure 5 is an illustration of the relationship between the position of the measured image and the density of the taught pattern. An explanatory diagram showing the absolute value of the difference in density within small area B, Fig. 6 is an explanatory diagram plotting the absolute value of the difference in density between the target image and teaching pattern 7 at all positions, and Fig. 7 is the original image. Figure 8 is an illustration of the density and position when the image to be measured has a DC offset. Figure 9 is the example of Figure 8 with 0 points and 0 points. An explanatory diagram of a state in which pattern matching is performed. Fig. 10 is an explanatory diagram of the state in which the absolute value of the difference in stitching depth is taken over the entire surface of Fig. 9 and the density is adjusted. Fig. 11 is an overall configuration diagram of the present invention. Fig. 12 is a differential circuit, A/ 13 to 17 are an example of pattern matching according to the method of the present invention, and FIG. 13 is an original image, and FIG.
The figure shows a measurement target circular image with a DC offset, Figure 15 shows a waveform obtained by dividing the waveform in Fig. 13, Fig. 16 shows a waveform obtained by differentiating the waveform in Fig. 14, and Fig. 17 shows the waveform shown in Fig. 15. An explanatory diagram of the density state when pattern matching is performed from the waveforms of FIG. 16 is shown. 1: Force 15, 2: e minute Fa, 3: A/D converter, 10: Procenoza, 11: Teaching image memory. 12: Matched image memo IJ, +6: Subtractor, I7: Absolute value calculation circuit, ]8: Total sum addition circuit.
Claims (1)
ジタル信号化しコンピュータで識別するパターンマツチ
ング装置において、走査線走査による濃淡画像の画素信
号を微分する微分回路と9m分回路の出力をデンタル化
するアナログ/デジタルコンバータと、教示画像のアナ
ログ/デジタルコンバータ出力の信号を記憶する教示画
像メモリと、被照合画像のアナログ/デジタルコンバー
タ出力の信号を記憶する被照合画像メモリと、教示画像
メモリと被照合画像メモリに記憶されている信号の差を
とる減算器と、減算器による差の値の絶対値をとる回路
と。 教示した小領域ごとに絶対値の総和をとる加算回路とを
備え、濃淡画像の信号を小領域ごとに差の絶対値をとり
これを比較することを特徴としたパターンマツチング装
置。[Scope of Claim] A pattern matching device that optically captures an object using a scanning line, converts the grayscale image into a digital signal, and identifies it using a computer, which includes a differentiation circuit for differentiating pixel signals of a grayscale image obtained by scanning the scanline, and a 9m segment. An analog/digital converter that digitalizes the output of the circuit, a teaching image memory that stores the analog/digital converter output signal of the teaching image, and a matching image memory that stores the analog/digital converter output signal of the matching image. , a subtracter that takes the difference between the signals stored in the teaching image memory and the matched image memory, and a circuit that takes the absolute value of the difference value caused by the subtracter. What is claimed is: 1. A pattern matching device comprising: an adding circuit for calculating the sum of absolute values for each small region taught;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11537883A JPS607580A (en) | 1983-06-27 | 1983-06-27 | Pattern matching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11537883A JPS607580A (en) | 1983-06-27 | 1983-06-27 | Pattern matching device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS607580A true JPS607580A (en) | 1985-01-16 |
JPH0261063B2 JPH0261063B2 (en) | 1990-12-19 |
Family
ID=14661042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11537883A Granted JPS607580A (en) | 1983-06-27 | 1983-06-27 | Pattern matching device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS607580A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55139194A (en) * | 1979-04-19 | 1980-10-30 | Nippon Steel Corp | Automatic one side welding method of pipeline girth joint |
-
1983
- 1983-06-27 JP JP11537883A patent/JPS607580A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55139194A (en) * | 1979-04-19 | 1980-10-30 | Nippon Steel Corp | Automatic one side welding method of pipeline girth joint |
JPS607580B2 (en) * | 1979-04-19 | 1985-02-26 | 新日本製鐵株式会社 | One-sided automatic welding method for pipeline girth joints |
Also Published As
Publication number | Publication date |
---|---|
JPH0261063B2 (en) | 1990-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4858157A (en) | Apparatus and method for determining the coordinates of a three-dimensional object | |
US6031941A (en) | Three-dimensional model data forming apparatus | |
CN110533686A (en) | Line-scan digital camera line frequency and the whether matched judgment method of speed of moving body and system | |
CN110163898A (en) | A kind of depth information method for registering and device | |
Slager et al. | Contouromat—A hard-wired left ventricular angio processing system. I. Design and application | |
CN109947253A (en) | The method for establishing model of eyeball tracking, eyeball tracking method, equipment, medium | |
JP2000099760A (en) | Method for forming three-dimensional model and computer-readable recording medium recording three- dimensional model forming program | |
US9967550B2 (en) | Three-dimensional image processing system, three-dimensional image processing apparatus, and three-dimensional image processing method | |
JPS607580A (en) | Pattern matching device | |
EP0335036B1 (en) | Image composing apparatus | |
US4984075A (en) | Contour detecting apparatus | |
JPH07160412A (en) | Pointed position detecting method | |
JP2511903B2 (en) | Image correction device for scanning electron microscope | |
JP3093409B2 (en) | 3D measuring device | |
CN115620094B (en) | Key point marking method and device, electronic equipment and storage medium | |
JPS5855413Y2 (en) | Creation device for display characters and figures | |
JPS6214014A (en) | Range measurement | |
JPS5846475A (en) | Pattern recording device | |
JPH0368804A (en) | Interference fringe measuring method | |
Baksi | Kiosk for 3D image acquisition of suspects | |
JPS58106592A (en) | Image display | |
JPS6058410B2 (en) | Thermal image data processing device | |
JPS6130697B2 (en) | ||
JPS5939066B2 (en) | pattern normalization device | |
JPS6114552B2 (en) |