JPS6075553A - Diaphragm - Google Patents

Diaphragm

Info

Publication number
JPS6075553A
JPS6075553A JP18273783A JP18273783A JPS6075553A JP S6075553 A JPS6075553 A JP S6075553A JP 18273783 A JP18273783 A JP 18273783A JP 18273783 A JP18273783 A JP 18273783A JP S6075553 A JPS6075553 A JP S6075553A
Authority
JP
Japan
Prior art keywords
pressure
diaphragm
alloy
temperature
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18273783A
Other languages
Japanese (ja)
Inventor
Michio Sato
道雄 佐藤
Masami Miyauchi
宮内 正視
Akira Ishii
明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18273783A priority Critical patent/JPS6075553A/en
Publication of JPS6075553A publication Critical patent/JPS6075553A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a diaphragm having superior accuracy in measurement and stable performance for a long term by using a precipitation-hardening permanentlyelastic alloy prepd. by adding specified percentages of Ni, Cr, Ti, Al and Zr to Fe. CONSTITUTION:A precipitation-hardening permanently-elastic alloy having a composition consisting of, by weight, 40.0-44.5% Ni, 4.0-6.5% Cr, 0.5-1.9% Ti, 0.1-1.0% Al, 0.2-2.0% Zr and the balance accompanying impurities or further contg. 0.1-5.5% one or more among Mo, Nb, Ta and W is prepd., and a diaphragm is made of the alloy. The resulting diaphragm has superior strength and shows its permanent elasticity up to about 130 deg.C. The pressure-volume change rate is within 1% up to about 110 deg.C.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はダイヤフラムに関し、特に半導体差圧伝送器、
半導体圧力伝送器の検出部等に用いられるダイヤフラム
に係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a diaphragm, and in particular to a semiconductor differential pressure transmitter,
It relates to a diaphragm used in the detection section of semiconductor pressure transmitters, etc.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体差圧伝送器としては、例えば第1図に示す構造の
ものが知られている。即ち、図中の1はシリコン単結晶
の受圧ダイヤフラム上に抵抗層を拡散によシ形成した感
圧素子である。この感圧素子1の一方の受圧面(下面)
には該素子1の拡散抵抗層を湿気や腐食性雰囲気から保
護するための高圧側封入液2aが接触している。
As a semiconductor differential pressure transmitter, one having the structure shown in FIG. 1, for example, is known. That is, numeral 1 in the figure is a pressure-sensitive element in which a resistance layer is formed by diffusion on a pressure-receiving diaphragm made of silicon single crystal. One pressure-receiving surface (lower surface) of this pressure-sensitive element 1
is in contact with a high-pressure side filling liquid 2a for protecting the diffusion resistance layer of the element 1 from moisture and corrosive atmosphere.

前記感圧素子1とは反対側の高圧側封入液2aは高圧側
ダイヤフラム3&を介して高圧媒体4aに接している。
The high-pressure sealed liquid 2a on the side opposite to the pressure-sensitive element 1 is in contact with the high-pressure medium 4a via the high-pressure diaphragm 3&.

また、前記感圧素子1の他方の受圧面(上面)には低圧
側封入液2bが接しておシ、かつ該素子1とは反対側の
低圧側封入液2bは低圧側ダイヤフラム3bを介して低
2− 圧媒体4bに接している。こうした差圧伝送器において
、高圧媒体4aと低圧媒体4bが各封入液2a、2bの
接液部に分離導入されると、この圧力の大きさに応じて
高圧側ダイヤフラム31Lと低圧側ダイヤフラム3bが
変位し、高圧側封入液2aと低圧側封入液2bを加圧す
る。
The other pressure-receiving surface (upper surface) of the pressure-sensitive element 1 is in contact with the low-pressure side filled liquid 2b, and the low-pressure side filled liquid 2b on the opposite side to the element 1 is connected to the low-pressure side diaphragm 3b. Low 2- Contact with pressure medium 4b. In such a differential pressure transmitter, when the high-pressure medium 4a and the low-pressure medium 4b are introduced separately into the wetted parts of the sealed liquids 2a and 2b, the high-pressure side diaphragm 31L and the low-pressure side diaphragm 3b are adjusted depending on the magnitude of the pressure. It is displaced and pressurizes the high-pressure side filled liquid 2a and the low-pressure side filled liquid 2b.

これによシ、感圧素子1の両面に差圧が生じて歪が発生
する。この歪に比例して感圧素子1の抵抗層の抵抗値が
変化し、ブリッジ回路で電圧信号に変換されて差圧が検
出される。
As a result, a pressure difference is generated on both sides of the pressure sensitive element 1, causing distortion. The resistance value of the resistance layer of the pressure-sensitive element 1 changes in proportion to this strain, which is converted into a voltage signal by the bridge circuit and the differential pressure is detected.

一方、圧力伝送器は第2図に示す構成になっており、媒
体4に圧力が加えられると、その圧力はダイヤフラム3
を介して封入液2に伝達され、感圧素子1の片面に導か
れて歪を生じさせる。この後、前述した差圧伝送器と同
様な機能で圧力が検出される。
On the other hand, the pressure transmitter has the configuration shown in Fig. 2, and when pressure is applied to the medium 4, the pressure is transferred to the diaphragm 3
is transmitted to the sealed liquid 2 via the pressure-sensitive element 1, and is guided to one side of the pressure-sensitive element 1, causing distortion. After this, pressure is detected using the same function as the differential pressure transmitter described above.

上述した伝送器においてダイヤフラムの板厚。The thickness of the diaphragm in the transmitter described above.

形状及び直径で決まる定数をA1温度変化による弾性率
をE(t) N ダイヤフラムの変位によって生じる容
積変化量をΔVとすると、差圧或いは圧力(p−p’)
は、 (P−P’)=E(t)−A −ΔV にて表わされる。したがって、(P−P’)を高精度で
測定するためには、ダイヤフラムの材料の弾性率が雰囲
気温度の変化に対しても変動の少ないことが必要である
。また、ダイヤフラムには圧力媒体によシ繰返し圧力或
いは過大な圧力が加わる。このため、差圧、圧力の伝送
器の実測値に経年変化が生じないようにダイヤフラムと
して機械的性質の優れた材料を使用することが必要であ
る。
The constant determined by the shape and diameter is A1 The elastic modulus due to temperature change is E(t) N The volume change caused by the displacement of the diaphragm is ΔV, then the differential pressure or pressure (p-p')
is expressed as (P-P')=E(t)-A-ΔV. Therefore, in order to measure (P-P') with high precision, it is necessary that the elastic modulus of the diaphragm material has little variation even with changes in ambient temperature. Moreover, repeated pressure or excessive pressure is applied to the diaphragm by the pressure medium. Therefore, it is necessary to use a material with excellent mechanical properties for the diaphragm so that the actual measured values of the differential pressure and pressure transmitters do not change over time.

ところで、従来、ダイヤフラムの材料としてはステンレ
ス鋼(sun 316L)が広く使用されている。しか
しながら、かかる材料からなるダイヤフラムは温度変化
に対する弾性率の変動が大きいため、圧力媒体の温度上
昇に伴ない測定差圧或いは圧力に誤差を生じる欠点があ
った。
Incidentally, stainless steel (Sun 316L) has been widely used as a material for diaphragms. However, diaphragms made of such materials have a large variation in elastic modulus with respect to temperature changes, and therefore have the disadvantage that errors occur in the measured differential pressure or pressure as the temperature of the pressure medium increases.

更に、最近では最高100℃の温度まで精度よく測定可
能で、しかも長期間に亘って安定した性能を発揮する半
導体圧力・差圧伝送器が要求≦峨ている。
Furthermore, recently there has been an increasing demand for semiconductor pressure/differential pressure transmitters that can accurately measure temperatures up to 100° C. and exhibit stable performance over a long period of time.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みなされたもので、100℃の温
度まで高精度(圧力−容積変化率ΔV/P −P’が1
チ以内)の差圧、圧力の測定を可能とするために130
℃の温度まで恒弾性特性(熱弾性関数が±20 X 1
0−’ 1.次以内)を有すると共に、圧力印加後のヒ
ステリシスを低減するための強度面でも従来の材料(引
張強さ95 Wm2)と同等以上の優れた特性を備える
ダイヤフラムを提供しようとするものである。
The present invention was made in view of the above circumstances, and has high accuracy up to a temperature of 100°C (pressure-volume change rate ΔV/P - P' is 1).
130 to enable measurement of differential pressure and pressure within
Constant elastic properties up to temperatures of ℃ (thermoelastic function is ±20 x 1
0-' 1. The present invention aims to provide a diaphragm that has excellent properties equivalent to or better than conventional materials (tensile strength 95 Wm2) in terms of strength to reduce hysteresis after pressure is applied.

〔発明の概要〕[Summary of the invention]

本発明は重量%でニッケル(Nl ) 40.0〜44
.5%、クロム(Cr)4.0〜6.5%、チタン(T
I)0.5〜1.9チ、アルミニウム(At)0.1〜
1.0%、ジルコニウム(Zr)0.2〜2.0チ、残
部鉄(F6)と附随的不純物の組成の析出硬化型恒弾性
合金よりなることを第1発明とし、更にモリブデン(M
o ) 、ニオブ(Nb)、タンタル(Ta)及びタン
グステン(W)のうちの1種又5− は2種以上の金属を0.1〜5.5チ添加した組成の析
出硬化型恒弾性合金よりなることを第2発明とするもの
である。
The present invention contains nickel (Nl) in weight% from 40.0 to 44
.. 5%, chromium (Cr) 4.0-6.5%, titanium (T
I) 0.5 to 1.9 inches, aluminum (At) 0.1 to
The first invention consists of a precipitation hardening constant modulus alloy having a composition of 1.0% zirconium (Zr), 0.2 to 2.0% zirconium (Zr), the balance iron (F6) and incidental impurities, and further comprising molybdenum (M
o) A precipitation hardening type constant modulus alloy having a composition in which 0.1 to 5.5 g of one or more metals selected from niobium (Nb), tantalum (Ta), and tungsten (W) are added. The second invention consists of the following.

次に、本発明のダイヤフラムを構成する各成分の作用及
びその添加量の限定理由について説明する。
Next, the action of each component constituting the diaphragm of the present invention and the reason for limiting the amount added thereof will be explained.

ニッケル(Nl)は恒弾性特性を維持するために最も効
果的な元素であり、その添加量が40.01未満及び4
4.5 %を越えると、有効な恒弾性特性が得られない
Nickel (Nl) is the most effective element for maintaining constant elastic properties, and its addition amount is less than 40.01 and 4
If it exceeds 4.5%, effective constant elastic properties cannot be obtained.

クロム(Cr)はニッケルと同様に恒弾性特性を維持す
るために有効な元素であシ、その添加量が4.0未満及
び6.5チを越えると、充分な恒弾性特性が得られない
。またクロムの添加は合金の耐食性の向上の点からも有
効である。
Chromium (Cr), like nickel, is an effective element for maintaining constant elastic properties, and if the amount added is less than 4.0 or more than 6.5, sufficient constant elastic properties cannot be obtained. . Addition of chromium is also effective in improving the corrosion resistance of the alloy.

チタン(TI)は時効処理により析出して合金強度を向
上させるのに有効な元素であり、その添加量が0.5%
未満では充分な強度向上が得られず、かといって1.9
%を越えると、恒弾性特性の劣化を招く。
Titanium (TI) is an element that precipitates during aging treatment and is effective in improving alloy strength, and its addition amount is 0.5%.
If it is less than 1.9, sufficient strength improvement cannot be obtained;
If it exceeds %, the constant elastic properties will deteriorate.

6一 アルミニウム(At)はチタンと同様に合金強度を向上
させるのに有効な元素であり、その添加量が0.11未
満では充分な強度向上を達成できず、かといってi、o
 sを越えると、恒弾性特性の劣化を招く。
6-Aluminum (At) is an effective element for improving alloy strength like titanium, and if the amount added is less than 0.11, sufficient strength improvement cannot be achieved, and on the other hand, i, o
If it exceeds s, the constant elastic properties will deteriorate.

ゾルコニウム(Zr)はチタン及びアルミニウムとの複
合添加により強度向上に寄与する。こうしたジルコニウ
ムの添加量が0.2%未満では充分な強度向上を達成で
きず、かといって2.0チを越えると、恒弾性特性の劣
化を招く。
Zorconium (Zr) contributes to strength improvement by being added in combination with titanium and aluminum. If the amount of zirconium added is less than 0.2%, sufficient strength improvement cannot be achieved, whereas if it exceeds 2.0%, the constant elasticity properties will deteriorate.

更に、モリブデン(Mo)、ニオブ(Nb)、メンタル
(Ta)、タングステン(W)はその添加量を0.1〜
5.5チの範囲に規定することによシ、単独又は2種以
上用いても、恒弾性特性を劣化させることなく、合金の
機械的特性の向上を図ることができる。
Furthermore, the addition amount of molybdenum (Mo), niobium (Nb), mental (Ta), and tungsten (W) is 0.1 to
By specifying it within the range of 5.5 inches, it is possible to improve the mechanical properties of the alloy without deteriorating the constant modulus properties, even when used alone or in combination of two or more.

次に、本発明の恒弾性合金の製造方法について簡単に説
明する。
Next, the method for manufacturing the constant modulus alloy of the present invention will be briefly explained.

まず、真空又は不活性ガス雰囲気中で誘導溶解法等によ
シ所定の合金組成に溶成し、熱間加工によシ所定形状ま
で加工する。更に、冷間加工を行なって所定の形状にし
た後、時効処理を施してダイヤフラムを製造する。この
場合、冷間加工は加工率10〜90%の範囲で施される
が、特に40〜60%の加工率にすることが好ましい。
First, it is melted into a predetermined alloy composition by induction melting or the like in a vacuum or an inert gas atmosphere, and then processed into a predetermined shape by hot working. Furthermore, after performing cold working to form a predetermined shape, an aging treatment is performed to manufacture a diaphragm. In this case, the cold working is performed at a working rate of 10 to 90%, and it is particularly preferable to use a working rate of 40 to 60%.

加工率が10チ未満であると、強度不足の合金となシ、
一方90q6を越えると恒弾性特性が著しく低下する。
If the processing rate is less than 10 inches, the alloy will have insufficient strength.
On the other hand, if it exceeds 90q6, the constant elastic properties will be significantly reduced.

また、時効処理条件は、例えば200〜750℃で0.
1〜100時間の加熱を行なうことが好ましい。200
℃、0.1時間未満の条件では時効不足で、良好な強度
及び恒弾性特性は得難く、一方750℃、100時間を
越えると、過度の時効状態となり、良好な恒弾性特性が
得難くなる。
In addition, the aging treatment conditions are, for example, 200 to 750°C and 0.
It is preferable to perform heating for 1 to 100 hours. 200
If the temperature is less than 0.1 hour at 750°C, aging will be insufficient and it will be difficult to obtain good strength and constant elastic properties, while if the temperature exceeds 100 hours at 750°C, the aging will be excessive and it will be difficult to obtain good constant elastic properties. .

ダイヤフラムは上述した方法で得た素材から直径約70
−の円板を打ち抜き、波形成形加工を施すことによシ得
られる。この波形加工は、板厚0.2 mm以下では液
圧成形、0.2m以上ではプレス成形される。
The diaphragm is made from the material obtained by the method described above and has a diameter of approximately 70 mm.
- It is obtained by punching out a disk and applying corrugated processing. This corrugation processing is carried out by hydraulic forming when the plate thickness is 0.2 mm or less, and by press forming when the plate thickness is 0.2 mm or more.

〔実施例〕〔Example〕

次に、本発明の詳細な説明する。 Next, the present invention will be explained in detail.

実施例1 下記表に示す成分組成の合金を、高周波真空溶解法によ
シ製造し、得られたインゴットを熱間加工して厚さ2m
の板材とした。次いで、この板材を1000℃×1時間
、加熱保持した後、水焼入れを行ない、更に50%の冷
間圧延を行なって厚さ1mとした。
Example 1 An alloy having the composition shown in the table below was produced by high-frequency vacuum melting, and the obtained ingot was hot-processed to a thickness of 2 m.
It was made into a plate material. Next, this plate material was heated and held at 1000° C. for 1 hour, water quenched, and further cold rolled by 50% to a thickness of 1 m.

得られた板材を試験素材として時効処理後、恒弾性特性
と引張強さを測定し九。その結果を、同表に併記した。
After aging treatment, the obtained plate material was used as a test material, and its constant elastic properties and tensile strength were measured. The results are also listed in the same table.

恒弾性特性は、熱弾性係数を用いて評価し、測定はIl
X10X100+に切シ出した試験片の固有振動数(横
振動法)の周波数の温度依存性で評価した。この測定値
をペースにして弾性率(ヤング率E)をめ、温度による
変化状態を第3図に示した特性図中に曲線1で示した。
Constant elastic properties are evaluated using thermoelastic coefficients, and measurements are made using Il
Evaluation was made based on the temperature dependence of the natural frequency (transverse vibration method) of a test piece cut into a size of X10X100+. The elastic modulus (Young's modulus E) was determined based on this measured value, and the state of change due to temperature is shown by curve 1 in the characteristic diagram shown in FIG.

また、弾性率の温度変化依存性(変化率)を61熱膨張
係数の温度依存性(変化率)をαと9− 々午ると、熱弾性係数=e+αで表わされる。この熱弾
性係数は恒弾性特性を評価する指標として用いられ、こ
れが零に近い程、恒弾性特性に優れているが、本実施例
1の合金はこの熱弾性係数が常温(20℃)から130
℃の間で8×10−’[1,’C]と極めて低い値を示
した。一方、引張強さは115 kg/m+2と、従来
材料(sus 316L)よシ高い値を示した。
Further, if the temperature dependence (rate of change) of the elastic modulus is 61 and the temperature dependence (rate of change) of the coefficient of thermal expansion is α and 9−, then the thermoelastic coefficient is expressed as e+α. This thermoelastic coefficient is used as an index to evaluate the constant elasticity property, and the closer it is to zero, the better the constant elasticity property is. However, the alloy of Example 1 has a thermoelastic coefficient of 130% from room temperature (20°C).
It showed an extremely low value of 8×10-'[1,'C] between . On the other hand, the tensile strength was 115 kg/m+2, which is higher than the conventional material (SUS 316L).

次に、本実施例1の合金をダイヤフラムとして用いた場
合の性能について述べる。上記板材から直径70mの円
板を打ち抜き、プレス成形機によシ波形加工を施した。
Next, the performance when the alloy of Example 1 is used as a diaphragm will be described. A disk with a diameter of 70 m was punched out from the above plate material and corrugated by a press molding machine.

このダイヤフラムをフラングとケーシングとの間に密着
固定し、ダイヤフラムの片面を圧力(P)で加圧してダ
イヤフラムとケーシングによって形成される圧力室の圧
力(P′)および容積変化量(Δ■)を測定する。差圧
(p−p’)と容積変化量(ΔV)との関係は、理想的
には圧力媒体の温度が変化してもΔV/P −P’値が
一定であることが望ましい。
This diaphragm is tightly fixed between the flang and the casing, and one side of the diaphragm is pressurized with pressure (P) to control the pressure (P') and volume change (Δ■) of the pressure chamber formed by the diaphragm and the casing. Measure. Regarding the relationship between the differential pressure (p-p') and the amount of change in volume (ΔV), it is ideal that the value of ΔV/P - P' remains constant even if the temperature of the pressure medium changes.

このような試験結果によると、本実施例1の合10− 金からなるダイヤフラムのΔV/P −P’の値は常温
から120℃の温度範囲で1%以内の変化であった。
According to these test results, the value of ΔV/P-P' of the diaphragm made of alloy 10-alloy of Example 1 varied within 1% in the temperature range from room temperature to 120°C.

実施例2〜9 下記表に示す成分組成の合金を実施例1と同様な方法で
製造し、得られた板材から試験片を切シ出し、恒弾性特
性を示す温度範囲と引張強さを測定した。更に板材から
ダイヤフラムを作製し、実施例1と同様な方法でΔV/
P −P’値の変化率が1チ以内である温度範囲をめた
。その結果を同表に併記した。なお、表中には本発明合
金の成分組成からはずれる合金を比較例1゜2として併
記し、かつ従来合金についても従来例として併記した。
Examples 2 to 9 Alloys having the composition shown in the table below were manufactured in the same manner as in Example 1, test pieces were cut out from the obtained plates, and the temperature range and tensile strength showing constant elastic properties were measured. did. Furthermore, a diaphragm was made from the plate material, and ΔV/
A temperature range was determined in which the rate of change in the P-P' value was within 1 inch. The results are also listed in the same table. In addition, in the table, an alloy that deviates from the composition of the alloy of the present invention is also listed as Comparative Example 1゜2, and a conventional alloy is also listed as a conventional example.

従来例の合金については、弾性率の温度依存性を第3図
中に曲線すで示した。
Regarding the conventional alloy, the temperature dependence of the elastic modulus is already shown as a curve in FIG.

上表より明らかな如く、従来のダイヤフラムは弾性率が
加熱温度に対して著しく変化して全く恒弾性特性を示さ
ない。また、本発明のダイヤフラムを構成する合金の成
分組成に比してチタンが2.2チと多い比較例1、及び
タンタルとタングステンの総添加量が5.9チと多い比
較例2はいずれも恒弾性特性を示す温度範囲が要求条件
を満していない。これに対し、本発明のダイヤフラムは
130℃以上の温度まで恒弾性特性を示し、ΔV/P 
−P’値の変化率が1チ以内である最高温度は110℃
に達している。しかも引張強さは110 kg/m2以
上と、従来に比べて高い強度を有する。
As is clear from the above table, the elastic modulus of the conventional diaphragm changes significantly with heating temperature, and does not exhibit constant elastic properties at all. Furthermore, compared to the composition of the alloy constituting the diaphragm of the present invention, both Comparative Example 1 and Comparative Example 2 have a large amount of titanium at 2.2 T and a total amount of tantalum and tungsten added at 5.9 T, respectively. The temperature range that exhibits constant elastic properties does not meet the required conditions. In contrast, the diaphragm of the present invention exhibits constant elastic properties up to temperatures of 130°C or higher, and ΔV/P
-The maximum temperature at which the rate of change of P' value is within 1 inch is 110℃
has reached. Moreover, it has a tensile strength of 110 kg/m2 or more, which is higher than that of conventional products.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば130℃の温度まで
恒弾性特性を示し、ΔV/P −P’値の変化率が1チ
以内である温度が110℃まで達し、しかも強度的にも
優れ、差圧、圧力を高精度で検出できると共に長期間安
定した性能を有する半導体差圧・圧力伝送器のダイヤフ
ラムを提供できる。
As detailed above, according to the present invention, it exhibits constant elastic properties up to a temperature of 130°C, the temperature at which the rate of change in ΔV/P - P' value is within 1 inch reaches 110°C, and it also has excellent strength. It is possible to provide a diaphragm for a semiconductor differential pressure/pressure transmitter that can detect pressure differentials and pressures with high precision and has stable performance over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は差圧伝送器の概略図、第2図は圧力伝送器の概
略図、第3図は本発明及び従来のダイヤフラムを構成す
る合金の弾性率の温度依存性を示す特性図である。 1・・・感圧素子、2*、2b、2・・・封入液、3a
、3b、3・・・ダイヤフラム、4 a p 4 b 
+4・・・圧力媒体。
Fig. 1 is a schematic diagram of a differential pressure transmitter, Fig. 2 is a schematic diagram of a pressure transmitter, and Fig. 3 is a characteristic diagram showing the temperature dependence of the elastic modulus of the alloy constituting the present invention and the conventional diaphragm. . 1... Pressure sensitive element, 2*, 2b, 2... Filled liquid, 3a
, 3b, 3... diaphragm, 4 a p 4 b
+4...Pressure medium.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、ニッケル(Ni ) 40.0〜44
.5%、クロム(Cr ) 4.0〜6.5%、チタン
(Ti ) 0.5〜1.9%、アルミニウム(At)
0.1〜1.0%、ジルコニウム(Zr ) 0.2 
”2.0 %、残部鉄(Fe)と附随的不純物の組成の
析出硬化型恒弾性合金からなることを特徴とするダイヤ
フラム。
(1) Nickel (Ni) 40.0-44 in weight%
.. 5%, chromium (Cr) 4.0-6.5%, titanium (Ti) 0.5-1.9%, aluminum (At)
0.1-1.0%, zirconium (Zr) 0.2
``A diaphragm comprising a precipitation hardening constant modulus alloy having a composition of 2.0%, balance iron (Fe) and incidental impurities.
(2)重量%で、ニッケル(Ni ) 40.0〜44
.5 %、クロム(Cr ) 4.0〜6.5%、チタ
ン(Ti ) 40.0〜44.5チ、アルミニウム(
At)0.1〜1.0チ、ジルコニウム(Zr)0.2
〜2− Oq6 、モリブデン(MO)、ニオブ(Nb
)、タンタル(Ta)およびタングステン(W)のうち
の1種又は2種以上の金属0.1〜5.5%、残部鉄(
Fa)と附随的不純物の組成の析出硬化型恒弾性合金か
らなることを特徴とするダイヤフラ1− ム。
(2) Nickel (Ni) 40.0-44 in weight%
.. 5%, chromium (Cr) 4.0-6.5%, titanium (Ti) 40.0-44.5%, aluminum (
At) 0.1 to 1.0 t, zirconium (Zr) 0.2
~2-Oq6, molybdenum (MO), niobium (Nb
), 0.1 to 5.5% of one or more metals of tantalum (Ta) and tungsten (W), the balance iron (
1. A diaphragm comprising a precipitation hardening constant modulus alloy having a composition of (Fa) and incidental impurities.
JP18273783A 1983-09-30 1983-09-30 Diaphragm Pending JPS6075553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18273783A JPS6075553A (en) 1983-09-30 1983-09-30 Diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18273783A JPS6075553A (en) 1983-09-30 1983-09-30 Diaphragm

Publications (1)

Publication Number Publication Date
JPS6075553A true JPS6075553A (en) 1985-04-27

Family

ID=16123554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18273783A Pending JPS6075553A (en) 1983-09-30 1983-09-30 Diaphragm

Country Status (1)

Country Link
JP (1) JPS6075553A (en)

Similar Documents

Publication Publication Date Title
US8127616B1 (en) Elevated temperature pressure sensor
AU2001281917B2 (en) Pressure transmitter
US5508676A (en) Strain gauge on a flexible support and transducer equipped with said gauge
US7437939B1 (en) Pressure and mechanical sensors using titanium-based superelastic alloy
JP3084304B2 (en) Metal diaphragm for pressure sensor
CN104328325A (en) Iron-nickel-based low-delaying constant-elastic alloy used in diaphragm capsule sensor and preparation method thereof
JPS6135264B2 (en)
US3157495A (en) Alloy characterized by controlled thermoelasticity at elevated temperatures
CA2412268C (en) Pressure sensor with a radially tensioned metal diaphragm
JPS6075553A (en) Diaphragm
Wilner A diffused silicon pressure transducer with stress concentrated at transverse gages
JPS6075555A (en) Diaphragm
JPS6075556A (en) Diaphragm
EP2056085B2 (en) Package for a strain sensor
JPH0359973B2 (en)
JPH0762202B2 (en) Constant elasticity alloy
JPS60189269A (en) Diaphragm
JPS6059050A (en) Permanently elastic alloy strengthened by dispersion
JPH0359974B2 (en)
JPH0353386B2 (en)
JPH0611900B2 (en) Constant elasticity alloy
EP0122689B1 (en) An alloy with constant modulus of elasticity
JP7130358B2 (en) Metal elastic element and diaphragm using the same
JPH06248399A (en) Amorphous alloy for strain gage and strain gage
JP3160796B2 (en) Semiconductor pressure detector