JPH0359973B2 - - Google Patents

Info

Publication number
JPH0359973B2
JPH0359973B2 JP5355583A JP5355583A JPH0359973B2 JP H0359973 B2 JPH0359973 B2 JP H0359973B2 JP 5355583 A JP5355583 A JP 5355583A JP 5355583 A JP5355583 A JP 5355583A JP H0359973 B2 JPH0359973 B2 JP H0359973B2
Authority
JP
Japan
Prior art keywords
constant
alloy
modulus
properties
elastic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5355583A
Other languages
Japanese (ja)
Other versions
JPS59179765A (en
Inventor
Masami Myauchi
Masayuki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5355583A priority Critical patent/JPS59179765A/en
Priority to US06/578,702 priority patent/US4517158A/en
Priority to DE8484300843T priority patent/DE3460583D1/en
Priority to EP84300843A priority patent/EP0122689B1/en
Publication of JPS59179765A publication Critical patent/JPS59179765A/en
Publication of JPH0359973B2 publication Critical patent/JPH0359973B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は精密機器を中心に応用される弾性率の
温度依存性が極めて少ない恒弾性合金に関する。 〔発明の技術的背景とその問題点〕 一般に、恒弾性合金はトルク指示計、時計計測
用ぜんまい等の精密部品、精密ベロー、絶対圧力
計、流量計、工業用圧力計、ブルドン管等の精密
構造部品、或いは音叉音片、発振機等の振動体材
料などの温度変化による弾性率の変化をきらう機
器の材料として広く利用されている。 従来、上述した恒弾性合金としてはFe−Ni系
のエリンバー合金が著名であるが、この材料は冷
間加工状態で使わなければならず、しかも冷間加
工条件が恒弾性特性や機械的特性に大きく影響さ
れるという欠点があつた。 このようなことから、近年はFe−Ni−Cr−Ti
−Al系の析出形の恒弾性合金が多く利用される
ようになつてきた。この析出形の恒弾性合金は、
冷間加工と熱処理条件を選定することにより恒弾
性特性を評価する一つの指標である熱弾性係数
(TEC)を比較的容易に零にすることが可能であ
ると共に、強度的にも優れた特性を示すものであ
る。しかしながら、この析出形恒弾性特性は、通
常70〜80℃程度までしか保持できず、高温雰囲気
で使用する場合に大きな限界があり、その応用範
囲も限られていた。 〔発明の目的〕 本発明は上記事情に鑑みなされたもので、恒弾
性特性を130℃以上まで大幅に向上させると共に、
強度的にも従来の析出形恒弾性合金と同等以上の
優れた特性を有する恒弾性合金を提供しようとす
るものである。 〔発明の概要〕 本発明は重量%でニツケル(Ni)30.0〜44.5
%、コバルト(Co)0.4〜15.0%、クロム(Cr)
4.0〜6.5%、チタン(Ti)0.5〜1.9%、アルミニ
ウム(Al)0.1〜1.0%、ジルコニウム(Zr)0.2〜
2.0%、残部鉄(Fe)と附随的不純物からなるこ
とを第1発明とし、更にモリブデン(Mo)、ニ
オブ(Nb)、タンタル(Ta)及びタングステン
(W)のうちの1種又は2種以上の金属を0.1〜
5.5%配合することを第2発明とするものであり、
20℃から少なくとも130℃の温度範囲で熱弾性係
数が±20×10-6[1/℃]の恒弾性特性を有する
ものである。 次に、本発明の恒弾性合金を構成する各成分の
作用及びその添加量の限定理由について説明す
る。 ニツケル(Ni)は恒弾性特性を維持するため
に最も効果的な元素であり、その添加量が30.0%
未満及び44.5%を越えると、有効な恒弾性特性が
得られない。 コバルト(Co)はニツケルと同様に恒弾性特
性を維持するために有効な元素であり、とりわけ
合金の磁気変態点を上昇させるので、恒弾性特性
の温度範囲の向上に寄与する。こうしたコバルト
の添加量は0.5%未満及び15.0%を越えると、充
分な効果が得られない。 クロム(Cr)はニツケルと同様に恒弾性特性
を維持するために有効な元素で、その添加量が
4.0%未満及び6.5%を越えると、十分な恒弾性特
性が得られない。また、クロムの添加は合金の耐
食性の向上の点からも有効である。 チタン(Ti)は時効処理により析出して合金
強度を向上させるのに有効な元素であり、その添
加量が0.5%未満では十分な強度が得られず、か
といつて1.9%を越えると、恒弾性特性の劣化を
招く。 アルミニウム(Al)はチタンと同様に合金強
度を向上させるのに有効な元素であり、その添加
量が0.1%未満では十分な強度向上を達成できず、
かといつて1.0%を越えると、恒弾性特性の劣化
を招く。 ジルコニウム(Zr)はチタン及びアルミニウ
ムとの複合添加により強度向上に寄与する。こう
したジルコニウムの添加量が0.2%未満では十分
な強度向上を達成できず、かといつて2.0%を越
えると、恒弾性特性の劣化を招く。 更に、モリブデン(Mo)、ニオブ(Nb)、タン
タル(Ta)、タングステン(W)はその添加量を
0.1〜5.5%の範囲に規定することにより、単独又
は2種以上用いても、恒弾性特性を劣化させるこ
となく、合金の機械的特性の向上を図ることがで
きる。 次に、本発明の恒弾性合金の製造方法について
簡単に説明する。 まず、真空又は不活性ガス雰囲気中で誘導溶解
法等により所定の合金組成に溶成し、熱間加工に
より所定形状まで加工する。更に、冷間加工を行
なつて所定の形状にした後時効処理を施して恒弾
性合金を製造する。この場合、冷間加工は加工率
10〜90%の範囲で施され、時効処理条件として
は、例えば200〜750℃で0.1〜100時間の加熱を行
なう。 〔実施例〕 次に、本発明の実施例を説明する。 実施例 1 下記表に示す成分組成の合金を、高周波真空溶
解により製造し、得られたインゴツトを熱間加工
して厚さ2mmの板材とした。つづいて、この板材
を1000℃×1時間、加熱保持した後、水焼入れを
行ない、更に50%の冷間圧延を行なつて厚さ1mm
とした。 しかして、得られた板材を試験素材として時効
処理後、恒弾性特性温度範囲と引張強さを測定し
た。その結果を、同表に併記した。恒弾性特性
は、熱弾性係数を用いて評価し、測定は1×10×
100mmに切り出した試験片の固有振動数(横振動
法)の周波数の温度依存性で評価した。この測定
値をベースにして弾性率(ヤング率E)を求め、
温度による変化状態を図示の特性図中に曲線aで
示した。 また、弾性率の温度変化依存性(変化率)を
e、熱膨張係数の温度依存性(変化率)をαとす
ると、熱弾性係数=e+αで表わされる。この熱
弾性係数は恒弾性特性を評価する指標として用い
られ、これが零に近い程、恒弾性特性に優れてい
るが、本実施例1の合金はこの熱弾性係数が常温
(20℃)から160℃の間で5×10-6〔1/℃〕と極
めて低い値を示した。 実施例 2〜8 下記表に示す組成の合金を実施例1と同様な方
法で製造し、得られた板材から試験片を切り出
し、恒弾性特性温度範囲と引張強さを測定した。
その結果を同表に併記した。なお、表中には本発
明合金の成分組成からはずれる合金を比較例1〜
3として併用し、かつ従来合金についても従来例
として併記した。従来例の合金については弾性率
の温度依存性を図示の特性図に曲線bで示した。
[Technical Field of the Invention] The present invention relates to a constant modulus alloy whose modulus of elasticity has very little temperature dependence and is mainly applied to precision instruments. [Technical background of the invention and its problems] In general, constant elastic alloys are used for precision parts such as torque indicators, clock measurement springs, precision bellows, absolute pressure gauges, flow meters, industrial pressure gauges, Bourdon tubes, etc. It is widely used as a material for structural parts or devices that do not want the elastic modulus to change due to temperature changes, such as vibrating body materials such as tuning fork sound pieces and oscillators. Conventionally, the Fe-Ni-based Elinvar alloy has been well-known as the above-mentioned constant modulus alloy, but this material must be used in a cold-worked state, and the cold working conditions do not affect the constant modulus properties or mechanical properties. The drawback was that it was greatly influenced. For this reason, in recent years Fe−Ni−Cr−Ti
-Al-based precipitated constant modulus alloys have come into widespread use. This precipitated constant modulus alloy is
By selecting cold working and heat treatment conditions, it is possible to reduce the thermoelastic coefficient (TEC), which is an index for evaluating constant elastic properties, to zero relatively easily, and it also has excellent strength properties. This shows that. However, this precipitated constant elastic property can usually only be maintained up to about 70 to 80°C, which has a big limit when used in a high-temperature atmosphere, and the range of its application has also been limited. [Object of the invention] The present invention was made in view of the above circumstances, and it significantly improves the constant elasticity properties to 130°C or higher, and
The purpose of this invention is to provide a constant modulus alloy that has excellent properties equivalent to or superior to conventional precipitated constant modulus alloys in terms of strength. [Summary of the Invention] The present invention uses nickel (Ni) of 30.0 to 44.5% by weight.
%, cobalt (Co) 0.4-15.0%, chromium (Cr)
4.0~6.5%, titanium (Ti) 0.5~1.9%, aluminum (Al) 0.1~1.0%, zirconium (Zr) 0.2~
2.0%, the balance being iron (Fe) and incidental impurities, and further comprising one or more of molybdenum (Mo), niobium (Nb), tantalum (Ta), and tungsten (W). metal from 0.1 to
The second invention is to mix 5.5%,
It has constant elasticity with a thermoelastic coefficient of ±20×10 -6 [1/°C] in the temperature range from 20°C to at least 130°C. Next, the effect of each component constituting the constant modulus alloy of the present invention and the reason for limiting the amount added thereof will be explained. Nickel (Ni) is the most effective element for maintaining constant elastic properties, and its addition amount is 30.0%.
If it is less than or exceeds 44.5%, effective constant elastic properties cannot be obtained. Like nickel, cobalt (Co) is an effective element for maintaining constant elastic properties, and in particular increases the magnetic transformation point of the alloy, contributing to improving the temperature range of constant elastic properties. If the amount of cobalt added is less than 0.5% or more than 15.0%, sufficient effects cannot be obtained. Chromium (Cr), like nickel, is an effective element for maintaining constant elastic properties, and its addition amount
If it is less than 4.0% or more than 6.5%, sufficient constant elastic properties cannot be obtained. Addition of chromium is also effective in improving the corrosion resistance of the alloy. Titanium (Ti) is an element that precipitates during aging treatment and is effective in improving alloy strength. If the amount added is less than 0.5%, sufficient strength cannot be obtained, while if it exceeds 1.9%, permanent This leads to deterioration of elastic properties. Aluminum (Al), like titanium, is an effective element for improving alloy strength, and if the amount added is less than 0.1%, sufficient strength improvement cannot be achieved.
On the other hand, if it exceeds 1.0%, the constant elastic properties will deteriorate. Zirconium (Zr) contributes to strength improvement when combined with titanium and aluminum. If the amount of zirconium added is less than 0.2%, sufficient strength improvement cannot be achieved, while if it exceeds 2.0%, the constant elastic properties will deteriorate. Furthermore, the amounts of molybdenum (Mo), niobium (Nb), tantalum (Ta), and tungsten (W)
By specifying the amount in the range of 0.1 to 5.5%, it is possible to improve the mechanical properties of the alloy without deteriorating the constant modulus properties even if it is used alone or in combination of two or more. Next, the method for manufacturing the constant modulus alloy of the present invention will be briefly explained. First, it is melted into a predetermined alloy composition by induction melting or the like in a vacuum or an inert gas atmosphere, and then processed into a predetermined shape by hot working. Further, the alloy is subjected to cold working to form a predetermined shape and then subjected to aging treatment to produce a constant modulus alloy. In this case, cold working is the processing rate
The aging treatment conditions include heating at 200 to 750°C for 0.1 to 100 hours, for example. [Example] Next, an example of the present invention will be described. Example 1 An alloy having the composition shown in the table below was produced by high-frequency vacuum melting, and the obtained ingot was hot worked into a plate material with a thickness of 2 mm. Next, this plate material was heated and held at 1000℃ for 1 hour, water quenched, and further cold rolled by 50% to a thickness of 1 mm.
And so. The obtained plate material was used as a test material and after aging treatment, the constant elastic characteristic temperature range and tensile strength were measured. The results are also listed in the same table. The constant elastic properties are evaluated using the thermoelastic coefficient, and the measurement is 1×10×
Evaluation was made based on the temperature dependence of the frequency of the natural frequency (transverse vibration method) of a test piece cut to 100 mm. Based on this measured value, determine the elastic modulus (Young's modulus E),
The state of change due to temperature is shown by curve a in the illustrated characteristic diagram. Further, if the temperature change dependence (rate of change) of the elastic modulus is e and the temperature dependence (change rate) of the thermal expansion coefficient is α, then the thermoelastic coefficient is expressed as = e + α. This thermoelastic coefficient is used as an index to evaluate the constant elasticity property, and the closer it is to zero, the better the constant elasticity property is.The alloy of Example 1 has a thermoelastic coefficient of 160% from room temperature (20°C). ℃ showed an extremely low value of 5×10 -6 [1/℃]. Examples 2 to 8 Alloys having the compositions shown in the table below were produced in the same manner as in Example 1, and test pieces were cut out from the obtained plates, and the temperature range of constant elastic properties and tensile strength were measured.
The results are also listed in the same table. In addition, in the table, alloys that deviate from the composition of the present invention alloy are shown in Comparative Examples 1 to 2.
3, and the conventional alloy is also described as a conventional example. Regarding the conventional alloy, the temperature dependence of the elastic modulus is shown by curve b in the illustrated characteristic diagram.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば恒弾性特性
を130℃以上まで大巾に向上させると共に、強度
的にも従来の析出形恒弾性合金と同等以上の優れ
た特性を有し、応用範囲の広い恒弾性合金を提供
できる。
As detailed above, according to the present invention, the constant modulus properties are greatly improved up to 130°C or higher, and the strength is also superior to that of conventional precipitated constant modulus alloys. We can offer a wide range of constant modulus alloys.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明合金と従来合金の弾性率の温度変化
依存性を示す特性図である。
The figure is a characteristic diagram showing the temperature change dependence of the elastic modulus of the alloy of the present invention and the conventional alloy.

Claims (1)

【特許請求の範囲】 1 重量%でニツケル(Ni)30.0〜44.5%、コバ
ルト(Co)0.4〜15.0%、クロム(Cr)4.0〜6.5
%、チタン(Ti)0.5〜1.9%、アルミニウム
(Al)0.1〜1.0%、ジルコニウム(Zr)0.2〜2.0、
残部鉄(Fe)と附随的不純物からなり、20℃か
ら130℃の温度範囲で熱弾性係数が±20×10-6
[1/℃]以内の恒弾性特性を有することを特徴
とする恒弾性合金。 2 重量%でニツケル(Ni)30.0〜44.5%、コバ
ルト(Co)0.4〜15.0%、クロム(Cr)4.0〜6.5
%、チタン(Ti)0.5〜1.9%、アルミニウム
(Al)0.1〜1.0%、ジルコニウム(Zr)0.2〜2.0、
モリブデン(Mo)、ニオブ(Nb)、タンタル
(Ta)及びタングステン(W)のうちの1種又は
2種以上の金属0.1〜5.5%、残部鉄(Fe)と附随
的不純物からなり、20℃から130℃の温度範囲で
熱弾性係数が±20×10-6[1/℃]以内の恒弾性
特性を有することを特徴とする恒弾性合金。
[Claims] 1. Nickel (Ni) 30.0 to 44.5%, cobalt (Co) 0.4 to 15.0%, chromium (Cr) 4.0 to 6.5% by weight.
%, titanium (Ti) 0.5-1.9%, aluminum (Al) 0.1-1.0%, zirconium (Zr) 0.2-2.0,
The balance consists of iron (Fe) and incidental impurities, and the thermoelastic coefficient is ±20×10 -6 in the temperature range from 20℃ to 130℃.
A constant elastic alloy characterized by having constant elastic properties within [1/℃]. 2 Nickel (Ni) 30.0-44.5%, cobalt (Co) 0.4-15.0%, chromium (Cr) 4.0-6.5% by weight
%, titanium (Ti) 0.5-1.9%, aluminum (Al) 0.1-1.0%, zirconium (Zr) 0.2-2.0,
Consisting of 0.1 to 5.5% of one or more metals of molybdenum (Mo), niobium (Nb), tantalum (Ta), and tungsten (W), the balance iron (Fe) and incidental impurities, from 20℃ A constant-modulus alloy characterized by having a constant-modulus property with a thermoelastic coefficient within ±20×10 -6 [1/℃] in a temperature range of 130℃.
JP5355583A 1983-03-31 1983-03-31 Elinvar constant-modulus alloy Granted JPS59179765A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5355583A JPS59179765A (en) 1983-03-31 1983-03-31 Elinvar constant-modulus alloy
US06/578,702 US4517158A (en) 1983-03-31 1984-02-09 Alloy with constant modulus of elasticity
DE8484300843T DE3460583D1 (en) 1983-03-31 1984-02-10 An alloy with constant modulus of elasticity
EP84300843A EP0122689B1 (en) 1983-03-31 1984-02-10 An alloy with constant modulus of elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5355583A JPS59179765A (en) 1983-03-31 1983-03-31 Elinvar constant-modulus alloy

Publications (2)

Publication Number Publication Date
JPS59179765A JPS59179765A (en) 1984-10-12
JPH0359973B2 true JPH0359973B2 (en) 1991-09-12

Family

ID=12946045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5355583A Granted JPS59179765A (en) 1983-03-31 1983-03-31 Elinvar constant-modulus alloy

Country Status (1)

Country Link
JP (1) JPS59179765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690582B2 (en) 2005-09-26 2014-04-08 Apple Inc. Magnetic connector for electronic device
US8888500B2 (en) 2011-06-30 2014-11-18 Apple Inc. Robust magnetic connector
US8970332B2 (en) 2005-09-26 2015-03-03 Apple Inc. Electromagnetic connector for electronic device
US9065205B2 (en) 2011-08-11 2015-06-23 Apple Inc. Connector insert having a cable crimp portion with protrusions and a receptacle having label in the front
US9281612B2 (en) 2009-10-20 2016-03-08 Apple Inc. Magnetic connector having a unitary housing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690582B2 (en) 2005-09-26 2014-04-08 Apple Inc. Magnetic connector for electronic device
US8970332B2 (en) 2005-09-26 2015-03-03 Apple Inc. Electromagnetic connector for electronic device
US9112304B2 (en) 2005-09-26 2015-08-18 Apple Inc. Magnetic connector for electronic device
US9281612B2 (en) 2009-10-20 2016-03-08 Apple Inc. Magnetic connector having a unitary housing
US8888500B2 (en) 2011-06-30 2014-11-18 Apple Inc. Robust magnetic connector
US9065205B2 (en) 2011-08-11 2015-06-23 Apple Inc. Connector insert having a cable crimp portion with protrusions and a receptacle having label in the front

Also Published As

Publication number Publication date
JPS59179765A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
US3157495A (en) Alloy characterized by controlled thermoelasticity at elevated temperatures
JPH0359973B2 (en)
US3243287A (en) Hot strength iron base alloys
JPH0359974B2 (en)
JPH0611900B2 (en) Constant elasticity alloy
EP0122689B1 (en) An alloy with constant modulus of elasticity
JPH0762202B2 (en) Constant elasticity alloy
JPH0353386B2 (en)
JPH066772B2 (en) Dispersion strengthened constant elasticity alloy
JP2574528B2 (en) High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JPS60187652A (en) High-elasticity alloy
JPS6187852A (en) Heat resisting austenitic stainless cast steel
JP2732934B2 (en) Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance
JPS6396234A (en) Shape memory alloy material
JPS613859A (en) High-strength heat-resistant co alloy for gas turbine
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JPS582259B2 (en) A high chromium alloy that exhibits excellent corrosion resistance against mixed acids consisting of nitric acid and hydrofluoric acid.
JPS60131940A (en) Alloy having thermally recovering function
JPS6067645A (en) Constant elasticity alloy
JPS5956564A (en) Dispersion-strengthened constant elasticity alloy
JPH06256890A (en) Heat resistant iron alloy for casting
JPS6075555A (en) Diaphragm
JP2002105561A (en) Low thermal expansion alloy
WO2002004688A1 (en) Ti-Ni-Cu-Mo SHAPE MEMORY ALLOYS