JPS6074814A - Delay circuit - Google Patents

Delay circuit

Info

Publication number
JPS6074814A
JPS6074814A JP58182038A JP18203883A JPS6074814A JP S6074814 A JPS6074814 A JP S6074814A JP 58182038 A JP58182038 A JP 58182038A JP 18203883 A JP18203883 A JP 18203883A JP S6074814 A JPS6074814 A JP S6074814A
Authority
JP
Japan
Prior art keywords
shift
clock
delay circuit
delay
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58182038A
Other languages
Japanese (ja)
Inventor
Masao Koyabu
小藪 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58182038A priority Critical patent/JPS6074814A/en
Publication of JPS6074814A publication Critical patent/JPS6074814A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/15013Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
    • H03K5/1506Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages
    • H03K5/15093Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages using devices arranged in a shift register
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)

Abstract

PURPOSE:To miniaturize the circuit constitution and also to improve the accuracy of delay time by using two shift registers which work at the rise and fall of a clock pulse and obtaining an OR and an AND of shift output signals of each stage. CONSTITUTION:The shift clock and input signal are applied to shift registers 1 and 2 from input terminals 3 and 5 respectively. The shift signal outputs of FFs of A2 and B2, A3 and B3 and A4 and B4 of the registers 1 and 2 are delivered to P2-P4 after an OR obtained through OR gates OR2-OR4 and then to N2- N4 after an AND obtained by AND gates AND2-AND4 respectively. If the register 1 works at the rise of the shift clock, for example, the register 2 works at the fall of the shift clock respectively by a buffer inverter 4. In such a constitution, a delay circuit can be miniaturized with conversion into an LSI and furthermore the accuracy of the delay time can be improved up to 1/2 cycle of the shift clock of the using shift register.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、シフトレジスタによる遅延回路に関する。[Detailed description of the invention] (a) Technical field of the invention The present invention relates to a delay circuit using a shift register.

(b) 技術の背景 ディジタル信号を扱う電子回路に於て、例えば電子計算
機のチャネル装置と入出力装置の信号転送にその例を見
る如く、信号の伝播には時間的ばらつきが避けられず、
それを補正するために遅延回路が用いられる。
(b) Background of the Technology In electronic circuits that handle digital signals, temporal variations in signal propagation are unavoidable, as can be seen in the signal transfer between the channel device and input/output device of a computer, for example.
A delay circuit is used to correct this.

上述の如き電子回路には、従来から誘導線輪■と容量(
Qより成る中間タッグを設けたLC遅延線が、総f!A
延時間を数十ナノ秒から数百ナノ秒としタップの遅延時
間を数ナノ秒から数十ナノ秒として多く用いられて来た
が、集積回路化(以下IC化と略″称する)が進んだ最
近の電子回路では、LC遅延線の寸法が大きく、実装ス
ペース上問題が出て来た。
Electronic circuits such as those mentioned above have traditionally been equipped with induction wires and capacitors (
An LC delay line with an intermediate tag consisting of Q has a total of f! A
The extension time is from several tens of nanoseconds to several hundred nanoseconds, and the tap delay time is from several nanoseconds to several tens of nanoseconds.However, integrated circuits (hereinafter referred to as ICs) have progressed. In recent electronic circuits, the dimensions of LC delay lines are large, creating problems in terms of mounting space.

電子回路には、特に遅延回路と称してはいないが、遅延
機能を有する回路にシフトレジスタがあ延線に代って置
き換えるには精度の改善が必要であった。
In electronic circuits, although not specifically called delay circuits, it is necessary to improve accuracy in order to replace shift registers in circuits with delay functions in place of wire extensions.

(C)′従来技術と問題点 近年、電子回路は大規模集積回路(以下LSIと略称す
る)の使用により、−装置が使用する部品数は減少しか
つ装置の大きさは小形化している。
(C)' Prior Art and Problems In recent years, electronic circuits have been using large-scale integrated circuits (hereinafter abbreviated as LSI), which has resulted in a decrease in the number of parts used in devices and a reduction in the size of devices.

然し乍ら、LC遅延線を使用する遅延回路は誘導fs輪
を内蔵するため、LSI化は難かしく、遅延回路に大き
なスペースを割かねばならず、装置の小形化に大きな障
害となっていた。
However, since a delay circuit using an LC delay line has a built-in induction fs ring, it is difficult to integrate it into an LSI, and a large space must be allocated to the delay circuit, which has been a major obstacle to miniaturizing the device.

遅延機能を有するシフトレジスタはLSl、化が可能で
あり、これを遅延回路に活用できれば小形化の問題は一
挙に解決できるが、従来技術では下記の如ぐ精度上に問
題点があった。
A shift register having a delay function can be made into an LS1, and if this can be utilized in a delay circuit, the problem of miniaturization can be solved at once, but the conventional technology has the following accuracy problems.

第1図にシフトレジスタを使用した従来の遅延回路のブ
ロック図を示し、第2図に該遅延回路による遅延時間形
成をタイムチャートにて示す。
FIG. 1 shows a block diagram of a conventional delay circuit using a shift register, and FIG. 2 shows a time chart of delay time formation by the delay circuit.

第1図に於て、1はシフトレジスタにて複数のフリップ
フロップ(以下FFと略称する)を直列に接続したレジ
スタで、該FFがAI、 A2. A3゜A4と4個の
場合を示す。
In FIG. 1, 1 is a shift register in which a plurality of flip-flops (hereinafter abbreviated as FF) are connected in series, and the FFs are AI, A2 . A case of 4 pieces, A3° and A4, is shown.

シフトレジスタ1にシフトクロックが3より入力し入力
信号が5より入力して各FFよりシフト信号が出力する
。遅延時間は該入力信号の立上り或は立下りから該シフ
ト信号の立上り或は立下りまでの時間として得られるが
、こ\では入力信号の立上りからシフト信号の立上りま
での時間として説明する。
A shift clock is input to the shift register 1 from 3, an input signal is input from 5, and a shift signal is output from each FF. The delay time is obtained as the time from the rise or fall of the input signal to the rise or fall of the shift signal, but here it will be explained as the time from the rise of the input signal to the rise of the shift signal.

第2図にシフトレジスタ1の各FFから出力するシフト
信号をシフトクロックの時間軸でタイムチャートにて示
す。なお、各FFはシフトクロックの立上りで動作する
ものとする。
FIG. 2 shows a time chart of shift signals output from each FF of the shift register 1 on the time axis of the shift clock. It is assumed that each FF operates at the rising edge of the shift clock.

第2図に於て、入力信号の立上りとシフトクロックの立
上りのタイミングを考えるとき、入力信号の立上りがシ
フトクロックの直前にある場合と直後にある場合を考え
ておけば、すべての該タイミングはこの範囲内にある。
In Figure 2, when considering the timing of the rising edge of the input signal and the rising edge of the shift clock, if we consider cases where the rising edge of the input signal is immediately before and immediately after the shift clock, all such timings can be calculated. within this range.

第2図の入力信号(1)の場合が前者を示し、入力信号
(2)の場合が後者を示す。
The case of input signal (1) in FIG. 2 shows the former case, and the case of input signal (2) shows the latter case.

第2図に於て、入力信号(1)と(2)のシフト信号は
4通りあるが、Allは入力信号の立上りとAllの立
上りが近接していて遅延時間が取れない場合がある。し
たがって第1図に示す通り、遅延時間をめるシフト信号
出力はFF2段目のA2出力から62.63.64とし
て取り出す。出力端子62からの入力信号(1)と(2
)に対するシフト信号を第2図にて比較するとA21及
びA22となり、夫々の持つ遅延時間tとrの間にはク
ロック信号の1周期Tの差があることが分かる。この差
Tは他の出力端子63.64でも同様に発生するもので
、これが第1図の遅延回路の精度となる。
In FIG. 2, there are four types of shift signals for the input signals (1) and (2), but the rising edge of the input signal All is close to the rising edge of the All signal, so there are cases where it is not possible to take a delay time. Therefore, as shown in FIG. 1, the shift signal output for determining the delay time is taken out as 62.63.64 from the A2 output of the second stage of FF. Input signals (1) and (2) from output terminal 62
), the shift signals A21 and A22 are compared in FIG. 2, and it can be seen that there is a difference of one period T of the clock signal between the delay times t and r of each. This difference T occurs similarly at the other output terminals 63 and 64, and this is the accuracy of the delay circuit shown in FIG.

上述は入力信号の立上りからの遅延時間やシフトクロッ
クの立上りでオンオフするFFを例にした説明であるが
、これを夫々の立下りで機能させても結果は同様で、遅
延時間の精度は上述のTで抑えられる。すなわち、従来
技術ではシフトレジスタを使用する遅延回路では該シフ
トレジスタの77トクロツクの周期以上には精度が上げ
られない。シフトクロックの周期は、使用する素子の動
作速度の制約から無暗に短くすることはできず、現在実
現できる周期のま\ではLC遅延線の精度には及ばない
という問題点があった。
The above explanation uses an example of an FF that turns on and off with the delay time from the rising edge of the input signal or the rising edge of the shift clock, but the result is the same even if this function is operated at each falling edge, and the accuracy of the delay time is as described above. It can be suppressed by T. That is, in the prior art, a delay circuit using a shift register cannot improve accuracy beyond the 77 clock cycle of the shift register. The cycle of the shift clock cannot be arbitrarily shortened due to restrictions on the operating speed of the elements used, and there is a problem in that the cycle that can be realized at present cannot reach the accuracy of the LC delay line.

(d)発明の目的 上述の従来技術の問題点に鑑み、本発明は遅延回路にシ
フトレジスタを使用してLSI化して小形化すると共に
、それにより得られる遅延時間の精度を該シフトレジス
タのシフトクロックの周期より短縮して向上させること
を目的とする。
(d) Purpose of the Invention In view of the problems of the prior art described above, the present invention uses a shift register in a delay circuit to reduce the size of the delay circuit by making it into an LSI. The purpose is to shorten and improve the clock cycle.

(e) 発明の構成 本発明は、入力信号を所定の遅延時間遅らせる遅延回路
に於て、該遅延時間に対して充分短い周期を有するクロ
ック信号と該クロック信号の立上りで動作する第1シフ
トレジスタと該クロック信号の立下りで動作する第2シ
フトレジスタと該第1及び第2シフトレジスタの2段目
以降n段目の出力の論理和及び論理積を形成する手段を
備え、上記入力信号を上記第1及びM2シフトレジスタ
同 に入力して上記クロック信号に壊期してシフト動作を行
い、上記論理和及び論理積の出力信号を検出するもので
ありて、本発明により遅延回路は、LSI化されて小形
になり、遅延時間の精度はシフトレジスタのシフトクロ
ックの周期の1/2にすることができ、上述の目的は充
分達成される。
(e) Structure of the Invention The present invention provides a delay circuit that delays an input signal by a predetermined delay time, which includes a clock signal having a cycle sufficiently short with respect to the delay time, and a first shift register that operates at the rising edge of the clock signal. and a second shift register that operates at the falling edge of the clock signal, and means for forming a logical sum and a logical product of the outputs of the second and subsequent n stages of the first and second shift registers, The delay circuit is input to the first and M2 shift registers and performs a shift operation in response to the clock signal, and detects the output signals of the logical sum and logical product. The precision of the delay time can be reduced to 1/2 of the period of the shift clock of the shift register, and the above object is fully achieved.

(f) 発明の実施例 第3図に本発明によるシフトレジスタを使用する遅延回
路の回路構成の実施例をブロック図にて示し、第4図(
a)、 (b)、 (c)、(d)に本発明の遅延回路
実施例による遅延時間形成のタイムチャートを、シフト
クロックに対し4種類の異なるタイミングで入力する入
力信号について示す。
(f) Embodiment of the Invention Fig. 3 shows a block diagram of an embodiment of the circuit configuration of a delay circuit using a shift register according to the invention, and Fig. 4 (
Figures a), (b), (c), and (d) show time charts of delay time formation by the delay circuit embodiments of the present invention for input signals input at four different timings with respect to the shift clock.

第3図に於て、1は4個のFF Al、A2.A3゜A
4より成るシフトレジスタ、2は4個のFF Bl。
In FIG. 3, 1 is four FFs Al, A2. A3゜A
4 shift registers, 2 is 4 FF Bl.

B2.B3.B4より成るシフトレジスタを示し、3は
デユーティファクタ50%のシフトクロックの入力端、
4は該シフトクロックをシフトレジスタ1と2に夫々逆
位相で入力させるバッファインバータを示し、5は入力
信号の入力端を示す〇シフトレジスタ1及び2のA2と
B2.A3とB3゜A4とB4のFFのシフト信号出力
は夫々論理和ゲートOR2,0R3,OR4にて論理和
がとられてB2゜B3.B4に出力し、論理積ゲートA
ND2.AND3゜AND4にて論理積がとられてN2
.N3.N4に出力する。これ等P2.P3.P4及び
N2. N3. N4の信号は遅延時間の情報を持ち、
これを取り出して使用する。
B2. B3. B4 shows a shift register, 3 is the input end of the shift clock with a duty factor of 50%,
4 indicates a buffer inverter that inputs the shift clock into shift registers 1 and 2 with opposite phases, and 5 indicates an input terminal of an input signal A2 and B2 of shift registers 1 and 2. The shift signal outputs of the FFs A3, B3°A4, and B4 are logically summed by OR gates OR2, 0R3, and OR4, respectively, and outputted as B2°B3. Output to B4 and AND gate A
ND2. AND3゜AND4 performs logical product and N2
.. N3. Output to N4. These are P2. P3. P4 and N2. N3. The N4 signal has delay time information,
Take this out and use it.

第3図の遅延回路は入力信号の立上り又は立下りから遅
延時間を形成できるが、本説明は立上りから遅延時間を
形成する場合を例に採る。シフトレジスタ1及び2は同
一の機能を持つが、バッファインバータ4により例えば
シフトレジスタ1がシフトクロックの立上りで動作する
とすればシフトレジスタ2はシフトクdjりの立下りで
動作する0 第4図は、第2図と同様に周期をTとしデユーティファ
クタ50チのシフトクロックを時間軸としてシフトレジ
スタ1及び2の各段のFFの出力をA及びBを付して示
し、これ等FFの出力の論理和及び論理積の出力をP及
びNを付して示す。
Although the delay circuit shown in FIG. 3 can form a delay time from the rising or falling edge of an input signal, this explanation will take as an example the case where the delay time is formed from the rising edge. Shift registers 1 and 2 have the same function, but due to the buffer inverter 4, for example, if shift register 1 operates on the rising edge of the shift clock, shift register 2 operates on the falling edge of the shift clock. As in Figure 2, the outputs of the FFs in each stage of shift registers 1 and 2 are shown with A and B, with the period being T and the shift clock of duty factor 50 being the time axis. The outputs of the logical sum and logical product are shown with P and N attached.

第2図と同様に入力信号の立上りとシフトクロックの立
上り及び立下りのタイミングには夫々入力信号の立上り
がシフトクロックの立上りの前後にある場合と立下りの
前後にある場合を考慮しなければならない。前者の場合
第4図の(a)と(6)が対応し、後者の場合第4図の
(c)と(d)が対応する。
As in Figure 2, the timing of the rising edge of the input signal and the rising and falling edges of the shift clock must be taken into account when the rising edge of the input signal is before and after the rising edge of the shift clock, and when it is before and after the falling edge of the shift clock. No. In the former case, (a) and (6) in FIG. 4 correspond, and in the latter case, (c) and (d) in FIG. 4 correspond.

第4図(a)、 (b)−(c)、 (d3のPとNを
比較すると、夫々の入力信号の立上りからの遅延時間は
次表の通りである。
FIG. 4(a), (b)-(c), (Comparing P and N of d3, the delay time from the rise of each input signal is as shown in the following table.

表 上表より、遅延時間はPとNを合わせて本例では6種類
取れるが、いずれの場合も精度は1/2Tである。
From the above table, there are six types of delay times in this example including P and N, but the accuracy is 1/2T in all cases.

以上は入力信号の立上りからの遅延時間を例にとって説
明したが、入力信号の立下りから遅延時間を同様にめる
ことができ、この場合も遅延時間の精度は1/2Tとな
る。すなわち、本発明は、クロックパルスの立上り及び
立下りで動作する2個のシフトレジスタを使用し、該シ
フトレジスタの各段のFFのシフト出力信号の論理和と
論理積より遅延時間を得ることが特徴であり、その結果
遅延時間の精度を従来の2倍の1/2Tに向上させるこ
とができる。
The above explanation has been given by taking as an example the delay time from the rise of the input signal, but the delay time can be similarly calculated from the fall of the input signal, and in this case as well, the precision of the delay time is 1/2T. That is, the present invention uses two shift registers that operate on the rising and falling edges of a clock pulse, and obtains the delay time from the logical sum and logical product of the shift output signals of the FFs in each stage of the shift register. As a result, the accuracy of delay time can be improved to 1/2T, twice that of the conventional method.

(g) 発明の効果 本発明により、遅延回路をLSI化して小形化でき、か
つ使用するシフトレジスタのシフトクロックの周期のI
Aに高精度化でき、電子装置の実装スペースの向上及び
高信頼化に極めて大きな効果がある。
(g) Effects of the Invention According to the present invention, the delay circuit can be made smaller by integrating it into an LSI, and the period I of the shift clock of the shift register used can be reduced.
A, high precision can be achieved, and it has an extremely large effect on improving the mounting space of electronic devices and increasing reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に従来のシフトレジスタを利用した遅延回路のブ
ロック図を示し、第2図に第1図の遅延回路が遅延時間
を形成するタイムチャートを示し、第3図に本発明のシ
フトレジスタを利用した遅延回路の実施例をブロック図
にて示し、第4図に第3図の遅延回路が4種類の信号入
力に対し遅延時間を形成するタイムチャートを(a)、
(b)、 (c)及1d)に示す。
Fig. 1 shows a block diagram of a delay circuit using a conventional shift register, Fig. 2 shows a time chart in which the delay circuit of Fig. 1 forms a delay time, and Fig. 3 shows a shift register of the present invention. An example of the delay circuit used is shown in a block diagram, and FIG. 4 shows a time chart in which the delay circuit of FIG. 3 forms delay times for four types of signal inputs (a),
Shown in (b), (c) and 1d).

Claims (1)

【特許請求の範囲】[Claims] 入力信号を所定の遅延時間遅らせる遅延回路に於て、該
遅延時間に対して充分短い周期を有するクロック信号と
該りpツク信号の立上りで動作する第1シフトレジスタ
と骸クロック信号の立下りで動作する第2シフトレジス
タと該第1及び第2シフトレジスタの2段目以降n段目
の出力の論理和及び論理積を形成する手段を備え、上記
入力信号を上記第1及び第2シフトレジメタに入力して
上記りayり信号に同期してシフト動作を行い、上記論
理和及び論理積の出力信号を検出することを特徴とする
遅延回路。
In a delay circuit that delays an input signal by a predetermined delay time, a clock signal having a sufficiently short period relative to the delay time, a first shift register that operates at the rising edge of the clock signal, and a clock signal that operates at the falling edge of the clock signal are used. comprising means for forming a logical sum and a logical product of an operating second shift register and the outputs of the second and subsequent n stages of the first and second shift registers, the input signal being input to the first and second shift registers; A delay circuit characterized in that it performs a shift operation in synchronization with an input signal and detects an output signal of the logical sum and the logical product.
JP58182038A 1983-09-30 1983-09-30 Delay circuit Pending JPS6074814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182038A JPS6074814A (en) 1983-09-30 1983-09-30 Delay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182038A JPS6074814A (en) 1983-09-30 1983-09-30 Delay circuit

Publications (1)

Publication Number Publication Date
JPS6074814A true JPS6074814A (en) 1985-04-27

Family

ID=16111247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182038A Pending JPS6074814A (en) 1983-09-30 1983-09-30 Delay circuit

Country Status (1)

Country Link
JP (1) JPS6074814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308619A (en) * 1989-05-22 1990-12-21 Matsushita Electric Ind Co Ltd Signal delay device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308619A (en) * 1989-05-22 1990-12-21 Matsushita Electric Ind Co Ltd Signal delay device

Similar Documents

Publication Publication Date Title
US5087828A (en) Timing circuit for single line serial data
JPH0795013A (en) Edge trigger type flip-flop
JPS62245814A (en) Pulse circuit
EP1050792A2 (en) Clock Signal generator for generating sub-sampling clock signals with fast and precisely-timed edges
JPH03127526A (en) Synchronizing device
US5185537A (en) Gate efficient digital glitch filter for multiple input applications
JPS6074814A (en) Delay circuit
KR102491690B1 (en) Clock detector and clock detecting method
TWI736359B (en) Integrated circuit with static combinational circuit mixed dynamic combinational circuit and associated design method
US8890594B1 (en) System for functional reset across multiple clock domains
JP2000276504A (en) Device for converting logical connection information
US6400188B1 (en) Test mode clock multiplication
JPH04186913A (en) Edge detecting circuit
JP2562995B2 (en) Data processing circuit control method
JP3425580B2 (en) Test signal generation circuit for semiconductor integrated circuit
JPH04105412A (en) Flip-flop
JP2543108B2 (en) Synchronous pulse generator
JPH04207218A (en) Pulse selecting circuit
KR0158640B1 (en) Data bus control circuit
JPH03117208A (en) Data latch circuit
JPS62254515A (en) Buffer circuit
JPS6137718B2 (en)
JP2000236062A (en) Semiconductor integrated circuit
JPH0277914A (en) Multi-phase clock generating circuit
JPH02285708A (en) Flip-flop ic