JPS6074580A - Detecting element for acceleration - Google Patents

Detecting element for acceleration

Info

Publication number
JPS6074580A
JPS6074580A JP18049483A JP18049483A JPS6074580A JP S6074580 A JPS6074580 A JP S6074580A JP 18049483 A JP18049483 A JP 18049483A JP 18049483 A JP18049483 A JP 18049483A JP S6074580 A JPS6074580 A JP S6074580A
Authority
JP
Japan
Prior art keywords
acceleration
electrodes
tunnel
electrons
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18049483A
Other languages
Japanese (ja)
Inventor
Kunio Yasue
邦夫 保江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18049483A priority Critical patent/JPS6074580A/en
Publication of JPS6074580A publication Critical patent/JPS6074580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Abstract

PURPOSE:To detect acceleration with high accuracy while miniaturizing and lightening the constitution of a device by sensing variation by acceleration of tunnel currents flowing between electrodes. CONSTITUTION:First and second electrodes 2, 3 consisting of a conductor such as Au are brought sufficiently close and formed separately on an insulating substrate 1 so that the tunneling of electrons is enabled. When DC voltage V is applied between the first and second electrodes 2, 3, tunnel currents flow between the electrodes 2, 3 by a tunnel effect. When acceleration (the A direction) is applied to an element, inertia force works to electrons, and tunnel currents flowing between the electrodes 2, 3 vary. When the relationship of a variation section and acceleration is obtained previously, acceleration can be detected easily from the current variation section measured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、トンネル効果を利用した加速度検知素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an acceleration sensing element that utilizes the tunnel effect.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、移動物体の加速度を検出する加速度計としては、
力学における運動法則を利用した機械的な慣性計が用い
られている。この慣性計は、所望する検出精度にもよる
が、一般に高精度部品と高度な組立技術とを必要とし、
装置価格が極めて高いものである。さらに、装置の重量
及び体積が限定されるので、微小化・軽量化をはかるこ
とは困難であった。
Conventionally, accelerometers that detect the acceleration of moving objects include:
A mechanical inertia meter is used that utilizes the laws of motion in mechanics. This inertial meter generally requires high-precision components and advanced assembly techniques, depending on the desired detection accuracy.
The equipment price is extremely high. Furthermore, since the weight and volume of the device are limited, it has been difficult to reduce the size and weight of the device.

一方、上記の慣性計に代わるものとして、最近光ファイ
ノ々を利用した加速度計が考案されている。これは、光
ファイバに質量を取シ付け、加速度によシ光ファイバが
伸縮することにより生じた光路差を干渉法を用いて感知
するものである。しかしながら、この種の加速度計にあ
っても、加速度を直接検知する部分は、従来の機械的な
慣性計と同様に質量に対する運動法則を利用している。
On the other hand, as an alternative to the above-mentioned inertial meter, an accelerometer using optical fins has recently been devised. This involves attaching a mass to an optical fiber and using interferometry to sense the optical path difference caused by the expansion and contraction of the optical fiber due to acceleration. However, even in this type of accelerometer, the part that directly detects acceleration utilizes the law of motion for mass, similar to conventional mechanical inertia meters.

このため、慣性計と同様に微小化・軽量化をはかること
は困難であった。
For this reason, it has been difficult to make it smaller and lighter like inertial meters.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微小化及び軽量化をはかシ得ると共に
、高精度の加速度測定を可能とし、かつその製造も容易
な加速度検知素子を提供することにある。
An object of the present invention is to provide an acceleration sensing element that is miniaturized and lightweight, enables highly accurate acceleration measurement, and is easy to manufacture.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、トンネル効果により電極間に流れるト
ンネル電流の加速度による変動を感知することにある。
The gist of the present invention is to sense changes in tunnel current flowing between electrodes due to acceleration due to the tunnel effect.

電子や中性子等の原子的スケールでの運動に、重力及び
慣性力が外力として作用することが最近の実験により確
認されている( S 、 A 、 We r r e 
r 。
Recent experiments have confirmed that gravity and inertial force act as external forces on the movement of electrons, neutrons, etc. on an atomic scale (S, A, Werre
r.

J、−L、 Staudenmnn、 R,Co15l
la、 Phys、 Rev−Lstt、 42 、1
103 (1979)。 この点に着目して本発明者等
が鋭意研究を重ねた結果、十分に近接して分離した2つ
の導体電極間に流れるトンネル電流が、加速度による慣
性力によって変動することを見出した。そして、本発明
者等の更なる鋭意研究によれば、上記慣性力によるトン
ネル電流の測定により、十分な精度で加速度を検出でき
るのが判明した。
J,-L,Staudenmnn,R,Co15l
la, Phys, Rev-Lstt, 42, 1
103 (1979). Focusing on this point, the inventors of the present invention conducted extensive research and found that the tunnel current flowing between two conductor electrodes separated sufficiently close to each other fluctuates due to the inertial force caused by acceleration. According to further intensive research by the present inventors, it has been found that acceleration can be detected with sufficient accuracy by measuring the tunnel current due to the inertial force.

すなわち本発明は、一方向の加速度を検知する素子であ
って、絶縁基板上に第1及び第2の電極を、これらの電
極間にトンネル電流が流れ得る程度に十分近接し、かつ
検知すべき加速度の方向に対向配置し、各電極間に流れ
るトンネル電流の加速度による変動量を測定するように
したものである。
That is, the present invention is an element that detects acceleration in one direction, and has first and second electrodes on an insulating substrate sufficiently close to each other to allow a tunnel current to flow between these electrodes, and which should be detected. The electrodes are arranged opposite to each other in the direction of acceleration, and the amount of variation in tunnel current flowing between each electrode due to acceleration is measured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1及び第2の電極間に流れるトンネ
ル電流の変動分を測定することによシ、その変動の原因
である装置にかかる加速度の慣性力を感知することがで
き、これにより加速度を検出することができる。しかも
、従来の加速度計と異なシ、質量に対する加速度の力学
的効果を利用した機械的な部分を全く必要としないので
、装置構成の微小化及び軽量化をはかることができ、さ
らに集積化することも可能である。また、各電極間を流
れるトンネル電流はトンネル効果による電子の移動によ
シ生じるが、その移動度は電子に印加される外力(加速
度)に極めて敏感に反応する。このため、加速度の検出
を高精度に行い得る等の利点がある。
According to the present invention, by measuring the variation in the tunnel current flowing between the first and second electrodes, it is possible to sense the inertial force of acceleration applied to the device, which is the cause of the variation. Acceleration can be detected by Moreover, unlike conventional accelerometers, it does not require any mechanical parts that utilize the mechanical effect of acceleration on mass, so the device configuration can be made smaller and lighter, and it can be further integrated. is also possible. Further, the tunnel current flowing between each electrode is caused by the movement of electrons due to the tunnel effect, and the mobility responds extremely sensitively to external force (acceleration) applied to the electrons. Therefore, there are advantages such as being able to detect acceleration with high precision.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例に係わる加速度検知素子の概
略構造を示す斜視図である。図中1は絶縁性の基板でお
り、この基板1上にAu等の導体からなる第1及び第2
の電極2,3が、電子がトンネル可能となるよう十分近
接して分離形成されている。ここで、基板1は例えばシ
リコン基板上に酸化膜を形成したものであってもよい。
FIG. 1 is a perspective view showing a schematic structure of an acceleration sensing element according to an embodiment of the present invention. In the figure, reference numeral 1 indicates an insulating substrate, and on this substrate 1 there are first and second electrodes made of a conductor such as Au.
The electrodes 2 and 3 are formed sufficiently close to each other and separated so that electrons can tunnel therethrough. Here, the substrate 1 may be, for example, a silicon substrate on which an oxide film is formed.

また、電極2,3は基板1上に導体薄膜を被着形成し、
これをエツチングにより分離したものであってもよい。
Further, the electrodes 2 and 3 are formed by depositing a conductive thin film on the substrate 1,
This may be separated by etching.

このような構造において、第1及び第2の電極2,3間
に直流電圧Vを印加すると、トンネル効果によシミ極2
,3間には = Jo exp (−一・tlを百I−;V−E )
 ・・・(1)なるトンネル電流が流れる( K、 Y
asus、 Phys。
In such a structure, when a DC voltage V is applied between the first and second electrodes 2 and 3, the stain electrode 2
, between 3 = Jo exp (-1 tl to 100 I-; V-E)
...(1) A tunnel current flows (K, Y
asus, Phys.

Ray、 Latt、 40 、665 (1977)
 )。 ここで1、roは比例定数、t□は電極2,3
間の間隔、eは電荷質量、Eは導体中での電子のエネル
ギ、is = h/2π(h:fランク定数)、Uは電
極2゜3間の相対的なエネルギギャップである。
Ray, Latt, 40, 665 (1977)
). Here, 1, ro is a proportionality constant, t□ is electrodes 2 and 3
e is the charge mass, E is the energy of the electron in the conductor, is = h/2π (h: f rank constant), and U is the relative energy gap between the electrodes 2°3.

いま、上記素子にgなる加速度(ただし加速度方向は入
方向)が加わったとすると、電子には−gなる慣性力が
作用し、トンネル効果によシミ極2,3間に流れるトン
ネル電流J′はとなシ、指数で 1− i m−g−112(U−e @V−E)−’ 
・(3)だけ変動する。ここで、mは電子の質量である
Now, if an acceleration of g is applied to the above element (however, the acceleration direction is the incoming direction), an inertial force of -g acts on the electrons, and the tunnel current J' flowing between the stain poles 2 and 3 due to the tunnel effect is Tonashi, the index is 1-i m-g-112 (U-e @V-E)-'
・It changes by (3). Here, m is the mass of the electron.

したがって、電極2,3間に印加する電圧Vを調節する
ことによシ、上記(3)式で示す指数部における変動を
有意な値にすることができ、トンネル電流の変動分(J
’−J)を測定検知することが可能となる。そして、上
記変動分と加速度との関係を予めめておけば、測定され
た電流変動分から前記入方向の加速度を容易に検出する
ことができる。
Therefore, by adjusting the voltage V applied between the electrodes 2 and 3, it is possible to make the fluctuation in the index part shown in the above equation (3) a significant value, and the fluctuation in the tunnel current (J
'-J) can be measured and detected. If the relationship between the variation and the acceleration is established in advance, the acceleration in the input direction can be easily detected from the measured current variation.

かくして本実施例によれば、絶縁基板1上に2つの電極
2,3を設けた極めて簡易な構成で加速度を検出するこ
とができる。このため、全体構成の微小化及び軽量化を
はかることができ、集積化することも可能となる。
Thus, according to this embodiment, acceleration can be detected with an extremely simple configuration in which two electrodes 2 and 3 are provided on the insulating substrate 1. Therefore, the overall configuration can be made smaller and lighter, and it is also possible to integrate it.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記電極2,3は必ずしも同一平面上に分
離されたものである必要はなく、第2図に示す如く第1
の電極2上に絶縁膜4を介して第2の電極3を設けたも
のであってもよい。この場合、紙面上下方向(B方向)
の加速度が検出されることになる。まだ、電極2.3の
材質や電極2.3間の距離等は、仕様に応じて適宜定め
ればよい。その他、本発明の要旨を逸脱しない範囲で、
種々変形して実施することかできる。
Note that the present invention is not limited to the embodiments described above. For example, the electrodes 2 and 3 do not necessarily have to be separated on the same plane, and as shown in FIG.
The second electrode 3 may be provided on the electrode 2 with an insulating film 4 interposed therebetween. In this case, the vertical direction of the paper (B direction)
acceleration will be detected. However, the material of the electrodes 2.3, the distance between the electrodes 2.3, etc. may be determined as appropriate according to the specifications. In addition, without departing from the gist of the present invention,
It can be implemented with various modifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる加速度検知素子の概
略構造を示す斜視図、第2図は変形例を説明するだめの
断面図である。 1・・・絶縁基板、2,3・・・電極、4・・・絶縁膜
。 第1図 □A 第2図
FIG. 1 is a perspective view showing a schematic structure of an acceleration sensing element according to an embodiment of the present invention, and FIG. 2 is a sectional view for explaining a modification. 1... Insulating substrate, 2, 3... Electrode, 4... Insulating film. Figure 1□A Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一方向の加速度を検知する素子であって、絶縁基板上に
第1及び第2の電極を、これらの電極間にトンネル電流
が流れ得る程度に近接し、かつ上記検知すべき加速度の
方向に対向配置してなることを特徴とする加速度検知素
子。
An element that detects acceleration in one direction, in which first and second electrodes are placed on an insulating substrate close enough to allow a tunnel current to flow between these electrodes, and facing in the direction of the acceleration to be detected. An acceleration sensing element characterized by being arranged.
JP18049483A 1983-09-30 1983-09-30 Detecting element for acceleration Pending JPS6074580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18049483A JPS6074580A (en) 1983-09-30 1983-09-30 Detecting element for acceleration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18049483A JPS6074580A (en) 1983-09-30 1983-09-30 Detecting element for acceleration

Publications (1)

Publication Number Publication Date
JPS6074580A true JPS6074580A (en) 1985-04-26

Family

ID=16084216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18049483A Pending JPS6074580A (en) 1983-09-30 1983-09-30 Detecting element for acceleration

Country Status (1)

Country Link
JP (1) JPS6074580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1708291A3 (en) * 2005-03-31 2009-04-08 TDK Corporation Tunneling effect element and physical quantity to electrical quantity transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1708291A3 (en) * 2005-03-31 2009-04-08 TDK Corporation Tunneling effect element and physical quantity to electrical quantity transducer
US7743666B2 (en) 2005-03-31 2010-06-29 Tdk Corporation Tunneling effect element and physical quantity to electrical quantity transducer

Similar Documents

Publication Publication Date Title
CN102047126B (en) Capacitive sensor having cyclic and absolute electrode sets
EP2972417B1 (en) Magnetometer using magnetic materials on accelerometer
US10759656B2 (en) MEMS sensor with dual pendulous proof masses
JP2009288247A (en) Self-calibrating laser semiconductor accelerometer
US11467181B2 (en) Low-noise multi-axis MEMS accelerometer
CN109142784B (en) Differential mass block type tunnel magnetoresistive accelerometer device based on lever mechanism
TWI538096B (en) Mems apparatus with pn-junction
Ravi Sankar et al. Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer
Sankar et al. Design, fabrication and testing of a high performance silicon piezoresistive Z-axis accelerometer with proof mass-edge-aligned-flexures
CN109085384A (en) A kind of high stability quartz flexible accelerometer using Novel swing modular construction
CN110068318A (en) A kind of tunnel magnetoresistive microthrust test device based on snakelike hot-wire coil
US7308827B2 (en) Integrated gyroscope and temperature sensor
CN206725600U (en) A kind of multiple range MEMS closed-loop accelerometers
JPS6074580A (en) Detecting element for acceleration
Yang et al. A novel bulk micromachined gyroscope based on a rectangular beam-mass structure
US3084558A (en) Capacitance pickoff with low coercion
CN108717206A (en) A kind of quartz pendulous reed and metal spring Combined heavy force sensor
He et al. Drift of mems closed-loop accelerometers induced by dielectric charging
JPS6074581A (en) Detector for acceleration
JPH0677052B2 (en) Magnetic detection device
CN112504534A (en) Vertical pendulum type micro thrust test board device, calibration method and weak force test method
JP2896374B1 (en) Seismograph
Brookes Basic Instrumentation for Engineers and Physicists: The Commonwealth and International Library: Applied Electricity and Electronics Division
JP2009068936A (en) Physical quantity detecting apparatus
US3527106A (en) Accelerometer