JPS6074300A - Method of producing beryllium window for radiating synchrotron - Google Patents

Method of producing beryllium window for radiating synchrotron

Info

Publication number
JPS6074300A
JPS6074300A JP18070283A JP18070283A JPS6074300A JP S6074300 A JPS6074300 A JP S6074300A JP 18070283 A JP18070283 A JP 18070283A JP 18070283 A JP18070283 A JP 18070283A JP S6074300 A JPS6074300 A JP S6074300A
Authority
JP
Japan
Prior art keywords
beryllium
electron beam
window
beryllium window
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18070283A
Other languages
Japanese (ja)
Other versions
JPH0544160B2 (en
Inventor
繁 佐藤
小出 常晴
永倉 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUENERUGII BUTSURIGAKU KENKYU
KOUENERUGII BUTSURIGAKU KENKYUSHO
Original Assignee
KOUENERUGII BUTSURIGAKU KENKYU
KOUENERUGII BUTSURIGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUENERUGII BUTSURIGAKU KENKYU, KOUENERUGII BUTSURIGAKU KENKYUSHO filed Critical KOUENERUGII BUTSURIGAKU KENKYU
Priority to JP18070283A priority Critical patent/JPS6074300A/en
Publication of JPS6074300A publication Critical patent/JPS6074300A/en
Publication of JPH0544160B2 publication Critical patent/JPH0544160B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はシンクロミーロン放射用へリリウノ\窓の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a synchromion window for radiation.

X線発生装置としては、良く知られCいるようにX線管
が挙げられる。X線慎・は電子発生源とI、jるフィシ
メン1〜等の陰極と、加速された電子が卜;・I突して
X線を発生する陽14i (金属ターグツ1へ)とから
なる。X線管には真空に封じ切った封入管と、真空排気
しながら使用する組立式のbのとがある。
An example of an X-ray generator is a well-known X-ray tube. The X-ray beam consists of an electron source, a cathode such as ficimen 1, and a cathode 14i (to the metal target 1) from which the accelerated electrons collide and generate X-rays. There are two types of X-ray tubes: an enclosed tube that is sealed in a vacuum, and an assembled type that is used while being evacuated.

何れの場合も、発生したX線は雲母、ベリリウム薄板等
でできた惹を通しC突気中に取り出し、′実験に使用す
る。封入管の場合は、ステンレス鋼製取り付は枠にベリ
リウム板を真空中で高周波銀ろう付すしたものを、管球
のメタライズした部分と溶接して用いる場合が多い。組
立式の場合1.J窓祠をエポキシ系接着材r枠に接着し
、ゴムガスグツト等で真空シールして使用する。何れの
場合し水冷f 7.)必要lJ’J < 、”<空電も
10−5〜1O−bTorr稈・X 一 度の通常真空C゛ある。
In either case, the generated X-rays are taken out into the atmosphere through a tube made of mica, beryllium thin plate, etc., and used for experiments. In the case of sealed tubes, stainless steel mounting is often done by welding a beryllium plate to the frame with high-frequency silver brazing in a vacuum to the metallized part of the tube. In case of assembly type 1. Glue the J window to the frame with epoxy adhesive and vacuum seal it with rubber gas grips. In either case, water cooling f7. ) Necessary lJ'J

近年、従来使用されてぎたX線管に較べて格段に性能の
優れたX kA光源としてシンクロI・ロン放射(SR
)が注目されている。S Rは従来のX線源よりも強度
が2〜3桁強く、指向性に1曇れ、連続スペクトルを示
り”等の特徴をもつ−Cいる。現在、本出願人の研究所
で25億電子ボルトの電子スト−1ノシリングからXi
外を取り出すために使われている窓(ま、鋼製の枠にベ
リリウム板を敲ろう付【ブして取り付け、それを水冷用
の孔をあけたステンレス鋼製コンフラッ1〜フランジに
稀カス溶接したしのである。この窓はベリリウム板の接
着方法が銀ろう付けなので、ベリリウム板の機械的強度
を保つために[よ細心の注、恒を必要とし、冷却も間接
的なのでX線強度がさらに増加した場合は改良を行なう
必要がある。−万、外国でのベリリウム窓の使用例とし
ては、スタッフォード大シンクロ1−ロン放躬研究所(
S S RL ’)が挙げられる。同所で使用されてい
るベリリウム窓は拡散接合により取り付(プたものであ
るが、接着強度か銀ろうf=11Jに較べて弱く、取出
されるX線の強度はベリリウム窓の強度により制限され
′ている。現在でIJ銀ろう付けによるベリリウム窓に
切り換えっ゛)ある。
In recent years, synchro I-ron radiation (SR
) is attracting attention. SR is two to three orders of magnitude stronger in intensity than conventional X-ray sources, has a cloudy directivity, exhibits a continuous spectrum, and has other characteristics. Xi from electron volt electron storage
The window used to take out the outside (well, a beryllium plate is brazed and attached to a steel frame, and then it is welded to a stainless steel conflag with holes for water cooling. This window uses silver brazing to bond the beryllium plates, so it requires very careful care and maintenance to maintain the mechanical strength of the beryllium plates, and since the cooling is indirect, the X-ray intensity is even higher. If the increase occurs, it is necessary to make improvements. - An example of the use of beryllium windows in foreign countries is the Stafford University Synchro 1-Lon Radio Institute (
S S RL '). The beryllium windows used at the site are attached by diffusion bonding, but the adhesive strength is weaker than that of silver solder f=11J, and the intensity of the X-rays extracted is limited by the strength of the beryllium window. Currently, there has been a switch to beryllium windows with IJ silver brazing.

ベリリウム窓は、S R取出用の超畠↓″1窄11−仔
ビームラインの下流終端に接続されるので、超高真空を
得るためには窓を1j]0℃〜250℃ま7: tノ’
a出り必要がある。接着部が焼出しに耐え得るのは銀ろ
う付け、拡散接合、電子ビーム溶接である。銀ろう付け
は接着@ひ広くどれ、丈夫で確天ひあるが、d接温度が
高く、ベリリウム板の1■j結晶化による強度低下を1
13 <危険性がある。拡散接合は接71温度は低いか
、ベリリウムと取付数との間の原fの拡散で接着させる
ため、強度的に問題かあ63当然、材質、接着表面のエ
ツチング、クリーニングに細心の注意を払う必要がある
。電子ど−ム渚11;は加熱個所の幅が狭く、結晶成長
が少なく、泪みが小さいが、ベリリウム祠を直接電子ζ
・照射づるど割れるという欠点がある。
The beryllium window is connected to the downstream end of the ultra-fine beam line for SR extraction, so in order to obtain an ultra-high vacuum, the window must be heated between 0°C and 250°C. of'
It is necessary to get out a. Bonds that can withstand bakeout include silver brazing, diffusion bonding, and electron beam welding. Silver brazing is adhesive @ wide, strong and stable, but the d junction temperature is high and the strength decreases due to crystallization of the beryllium plate.
13 <There is a risk. In diffusion bonding, the bonding temperature is low, or the bonding is done by diffusion of the original f between the beryllium and the number of attachments, so there may be problems with strength.63 Of course, pay close attention to the material, etching and cleaning of the bonding surface. There is a need. Electron Dome Nagisa 11; has a narrow heating area, little crystal growth, and small depression;
・There is a drawback that the irradiation string cracks.

本発明はベリリウム窓を窓枠に真空気密溶接づることを
目的とする。
The present invention is directed to vacuum-tight welding of beryllium windows to window frames.

本発明(ユ3゛つの分野に関連しでいる。製作技術の点
て溶接工学に関連し、製造したベリリウム窓を電子蓄植
リングに取り角(ブるので加速器H学に関連し、ベリリ
ウム窓からX線を取り出して実現に供η−るのでX線光
学に関連伊る。
The present invention is related to three fields: the fabrication technology is related to welding engineering; the fabricated beryllium window is attached to an electronic implantation ring; therefore, it is related to accelerator technology; It is related to X-ray optics because it extracts X-rays from η- and uses them for realization.

金itバ/\リリ1クムは軽く(比重はアルミニウムの
2、/3)、強く(引張り強さは軟鋼以上)、比熱か犬
で、熱伝)Z孕が良く(アルミニウムと同程度)、?、
ii!点力1278°C−’C′軽金属中で最、BI 
C,ある等の特性に加え−C1中性子の吸収断面41’
lが小さく、X Oi!の透過4′がアルミニウムの2
O−60倍と非常(二大きい等のB;1子核的i9. 
Mにも1“J徴がある。どころか、溶融等の4()加」
二を行う場合には酸化し易く(酸化物(J猛Fii )
、700 ’C以上に熱Uられると結晶粒か成長して脆
弱化し易い等の欠点を有する。例えば、780 ”Cで
10分間限ろう付1ノを行なうど、670℃で10分間
ろう(qけしたとぎに比べてベリリウム板の剪lす1強
度が1/3に落ちる。この為、X線用ベリリウム窓を作
成するにあたって、如何にづ−ればベリリウム板を本来
の優れた特性を損わ刀゛に1′、(窄ノランジに接着で
きるかが、溶接工学−[の問題とされている。
Metallic steel is light (specific gravity is 2 to 3 that of aluminum), strong (tensile strength is higher than mild steel), has a specific heat or heat conduction), and has good Z fertility (same as aluminum). ? ,
ii! Point force 1278°C-'C'The highest among light metals, BI
In addition to the characteristics such as C, -C1 neutron absorption cross section 41'
l is small and X Oi! Transmission 4' of aluminum 2
O-60 times and very (two large B; one nuclear i9.
M also has a 1"J sign.In fact, it has 4() additions such as melting."
When performing 2, it is easy to oxidize (oxide (J)
, when heated to 700'C or higher, crystal grains tend to grow and become brittle. For example, brazing at 780"C for 10 minutes, brazing at 670"C for 10 minutes (compared to the shearing strength of the beryllium plate is reduced to 1/3. When making a beryllium window for wires, it is a problem in welding engineering how to bond the beryllium plate to a narrow plate without damaging its original excellent properties. There is.

電子ス1ヘーレシリング中では1兆分の1気月10 (101−orr )という超高真空か実現されCd3
す、そこを高−Lネルキーの電子が貼込で回転し、S 
Rを放出しCいる。S Rは赤外線からX線まC含む連
続スペクトルを示J0待にX線領域C・は、波J。
An ultra-high vacuum of 1/1 trillionth of a month (101-orr) has been achieved in the electron beam Schilling, and Cd3
The electrons of the high-L Nel key rotate there, and the S
Releases R and enters C. SR indicates a continuous spectrum including infrared rays to X-rays.

範囲を任意に選べること、大強f良か賀られること等の
点で通塔のX線慎に較べて鴎れてa5す、物l’+?i
1+究、結晶4M造解析、リソグラフィー、11!、1
包診而等、多数にね1ごる用途が計画され、実現され(
いる。これらの什4Kに用いられるX線成分tit、/
\リリウム窓を通して超高真空中から低J″r <:′
:′)/、1.L /\リウム雰囲気中に取り出され、
供給される。このロ1ベリリウム窓は全波長成分を含/
υだS RにJ、り照射される。SRは非常に強く、吸
収された16ルギーは熱に変換され、ベリリウム板の調
度を−1’I’l’させる。各種の用途を実現さぼるに
あたり一1必シ2不可欠なベリリウム窓を制作する為に
は、人気用に削え、必隅なX線を良く透過し、熱負荷に
耐える等、窓口身の性能の問題と、加速器及びX線実験
系に係わることから1覆゛る異なる真空度の状態を結合
し紐ノ:′iするという技術的要請を解決する必要かd
つる。
Compared to Toto's X-Ray Shin, it's a5 better in terms of being able to choose the range arbitrarily, being able to receive great strength, etc. i
1+ study, crystal 4M structural analysis, lithography, 11! ,1
A large number of applications have been planned and realized, such as prenatal care, etc.
There is. The X-ray component tit used for these 4K, /
\Low J″r <:′ from ultra-high vacuum through a lyllium window
:')/, 1. L/\taken out into a lium atmosphere,
Supplied. This lo1 beryllium window contains all wavelength components.
J is irradiated to υ. The SR is very strong and the absorbed 16 lg is converted into heat, making the beryllium plate furnish -1'I'l'. In order to produce beryllium windows, which are indispensable for a variety of applications, it is necessary to improve the performance of the window body, such as being able to cut it down for popular use, transmitting X-rays well, and withstanding heat loads. Is it necessary to solve the problem and the technical requirement of combining and linking a range of different degrees of vacuum as it relates to accelerators and X-ray experimental systems?
Vine.

シンクロ1−ロン放射(S R)のスベク1ヘル分布1
i、fj3子スト−レジリングを周る電子のエネルギー
とその曲り二半径のみで′決められる。SRに含まれる
X線成分は従来のX線管等の線踪に較べると数十イ、・
3から故白倍強い。SRに含まれるX線は物質イA′A
’#のイ1′If造解析、物性の?11F究、放射線効
果、微仔分4iT ′:″l−の手段どしく t(hA
めて有用である。また、今のどころ1匁シ1λ用どじて
のSR利用は端緒についICばかりであるか、この分野
は将来、大きく発展す◇ものど予悲されている。これら
の研究1ii1発は通常の真空又はヘリウム雰囲気中で
行なわれるものが多い。1足って、電子蓄相リングの超
高真空ドーナツと低真空又はヘリウム雰囲気にある研究
装置を仕り〕つ、かつX線を透過ざぜるベリリウム窓は
必須のものC゛、これなしには研究を遂行することはで
きない。然しながら、ベリリウム窓は巨人な電子M積す
ングに接続される為、それ(二児合−)だ厳しい使用条
件が課ゼられるJ I!!I j超高1′↓卆に面する
ので、肉太rR1からの脱ガスが小さく、リークが検出
されない清浄な超高真空仕様である必す一:がある。ざ
らに、前述したように、超高ij 7.Y(10−!l
〜io 1−Orr )ど人気辻の空気又(,1ヘリウ
ムを完全に遮断しながら、一方CX線をできる!′ご(
プ多最に実験装置に向けC透視させる役1゛1か訝1ら
れる。ざらにS l’<が窓に熱負向を乙たらし、ベリ
リウム板の温度を上胃さぜる為、窓4A自j’、J /
)Yり:1応力に耐えることができ、全体を冷却しくい
Qことが必要である。−反意が破れC大気の’LIIN
人A’ ii’lすと大きな被害73X発生ずるのC゛
、なるへくルくして上記の応力に耐える方がいい。然し
、他力(゛は、窓厚を厚くすると研究に必要なX線は透
過しHくなるので、両方の条件を満足゛9るギリギリの
Jj;4さである約0.5畦以下、特に約0.2〜0 
、3 a以上を通常選ぶ。
Synchro 1-Subek 1 Hell distribution 1 of Ron radiation (S R)
It is determined only by the energy of the electrons orbiting the i, fj ternary storage ring and its radius of curvature. The X-ray component contained in SR is several tens of thousands of rays higher than that of conventional X-ray tubes, etc.
From 3 onwards, it's twice as strong as white. The X-rays contained in SR are a substance A'A
'#a1'If structural analysis, physical properties? 11F research, radiation effects, microscopic fraction 4iT': "l-'s means t(hA
It is very useful. In addition, at present, the use of SR for 1 monme and 1 λ is limited to ICs, and it is predicted that this field will develop greatly in the future. Most of these studies are conducted in a normal vacuum or helium atmosphere. The ultra-high vacuum donut of the electron phase storage ring and the beryllium window that serves as a research device in a low vacuum or helium atmosphere and that transmits X-rays are essential. cannot be carried out. However, since the beryllium window is connected to a giant electronic device, strict usage conditions are imposed on it. ! Since it faces the I j ultra-high 1'↓ volume, it is essential that it has a clean ultra-high vacuum specification in which the outgassing from the thick rR1 is small and no leakage is detected. Roughly, as mentioned above, super high ij 7. Y(10-!l
~io 1-Orr) How popular is air at the intersection (, 1) While completely blocking helium, CX-rays can be produced!'go(
The first thing you need to do is point it at the experimental equipment and see through it. Roughly, S l'< gives a negative heat to the window, and in order to increase the temperature of the beryllium plate, the window 4A j', J /
)Y: 1 It is necessary to be able to withstand stress and to cool the whole. -The antipathy is broken C atmospheric 'LIIN'
If the person A'ii'l were to do so, it would cause severe damage 73X, so it is better to be strong enough to withstand the above stress. However, if the window thickness is made thicker, the X-rays necessary for research will pass through and the window will become H. Especially about 0.2~0
, 3a or higher is usually selected.

本発明の目的は、上記の使用条件を渦−!l S l<
川ベリリウム窓を製作づ“るにある。
The purpose of the present invention is to improve the above-mentioned conditions of use. l S l<
The company is in the process of manufacturing beryllium windows.

A(発明によれば、耐久性に畠′んだ性能の良いベリリ
ウム窓を1iif突に製作し、使用でさ°、S R利用
を口指す゛広い分野に貢献することができる。また、放
射13j検出器窓、中性子線透過用具窄窓、各種X線管
取出惹、シンクロトロン放射応用研究用X線取出前で)
の各種製品を製作りることができる。
A (According to the invention, a beryllium window with excellent durability and performance can be produced and used, which can contribute to a wide range of fields that involve the use of SR. 13j detector window, neutron beam transmission equipment narrow window, various X-ray tube extraction drawers, in front of X-ray extraction for synchrotron radiation applied research)
We can manufacture various products.

本発明においては、+9いベリリウム窓数とアルミニウ
ノ\:ゴ憚とを?d子ビーム溶接により溶接して大気圧
に耐える気密なベリリウム窓を形成する。
In the present invention, the number of beryllium windows is +9 and the aluminum UNO is used. Welded using d-beam welding to form an airtight beryllium window that can withstand atmospheric pressure.

ベリリウム窓板はJjjj己約0 、 b +++in
以下特に約0.3m1i JスFの乙のC′ある。アル
ミニウムの浴接面は特別にii’l’+ ’/にどを加
工する必要はなく、表面約6ミクIJン程麿の平面が良
い。ベリリウム板は縁を(it) Iaして酸化物を除
去Jることが好ましい。何れも有);(溶媒゛C脱脂洗
浄することが好ましい。電子ビーム↓ミ空)1ツ中にア
ルミニウム窓枠どベリリウム板を銅ブ[1ツク等の錘り
で抑えつけ固定する。真空度は約10″4〜10−′″
l−o+ゴどりる。SR用ベリリウム窓は横広の幅jム
いビームを利用するため、長方形である必要がある。従
来、電子ビーム)?り接の場合溶接の始まりの点でビー
ムをオンする時、及び浴接の終りの点て゛オフJる時に
、ツレ−ター状のJLが生じ、ここから真空洩れが生じ
易い。X発明℃゛はアルミニウム台枠に深さ11IIN
程度のiノ1〜か牛し1◇ようにビーム電流を調’Bi
S L、長方形のヘリリ・”ツノ、板の縁に平行に第1
図に水力ように直線的に7.Lloiし、コーナーを余
分に艮く定食し’Cli′i線・l)絹Liけで好の字
形の溶接ヒートを得る(第11)・中、a−1(1は溶
接の順序を示す)。このどきコーーノーーは、1.l子
ビームを直交して重ね合−U◇。これ(二3]す、1′
1空シ一ル部分にクレータ−を牛成りることはl)j 
IIされる。fへ子ビームの91j型的使用例は別速電
I−L #′す50〜150K V 、電流約5〜8 
m A r u 7* +l電了じ一ム溶接の始点終点
は、弓へ(/\リリウムJl* /)l +−。
The beryllium window plate is approximately 0, b +++in
Below, in particular, there is about 0.3m1i JsF's C'. It is not necessary to specially process the aluminum bath-contacting surface, and it is best to have a flat surface of about 6 mm. The beryllium plate is preferably edge-treated to remove oxides. (It is preferable to degrease and clean with solvent C. Electron beam ↓ empty) Inside one aluminum window frame, a beryllium plate is pressed down and fixed with a weight such as a copper block. The degree of vacuum is approximately 10″4~10-′″
lo+godoriru. The beryllium window for SR needs to be rectangular because it uses a wide beam. Conventional, electron beam)? In the case of bath welding, when the beam is turned on at the beginning of welding and when it is turned off at the end of bath welding, a turret-shaped JL is generated, from which vacuum leakage is likely to occur. X invention ℃゛ has a depth of 11 IIN on an aluminum underframe.
Adjust the beam current so that the degree of
S L, rectangular helical horn, first parallel to the edge of the board
7. In a straight line like hydraulic power in the figure. Lloi, make extra corners and set the 'Cli'i wire・l) Obtain a good-shaped welding heat with silk wire (No. 11)・Medium, a-1 (1 indicates the welding order) . Nowadays, Koh-now is 1. Superposition of l beams orthogonally -U◇. This (23), 1'
1) It is possible to create a crater in the empty seal part.
II will be done. An example of using the 91j type f beam is a different speed electric IL #'50~150KV, current about 5~8
m A r u 7* +l The starting and ending points of the same beam welding are to the bow (/\Lilium Jl* /)l +-.

故1iill離れたアルミニウム窓枠十とする、(!)
−)C、クレータ−状の孔はへツリウム窓の溶接141
1分には生成しない。クレータ−状の孔の生成を1iJ
)+lす<、)為、容易に真空気藍な溶接を得ることか
7E ’ja”<)。
The aluminum window frame is 1iill apart, and (!)
-) C, the crater-shaped hole is a welded hethulium window 141
It does not generate in 1 minute. generation of crater-shaped holes by 1iJ
)+l<,) Therefore, it is easy to obtain vacuum-like welding.7E 'ja''<).

電子ビームを透過さじないて・ベリリウム板を照射加熱
り一◇とへリリウム仮に亀裂が入り破損してしまう。ま
た、ベリリウム板のちょうど縁上を前用Jるど、;?り
接ビードにひび割れが入ることが多い。不発明者新(J
五電子ビームのスポッl〜任を1」視で2〜J 1ll
Ifl 4¥度にし、ビームの中心位置を仮の縁の約0
.2〜O、J mm外側に照準して照射する(第2図6
照)と最良の結果か15ノられることを見出した。
If the beryllium plate is irradiated and heated without the electron beam passing through it, the helium will crack and break. Also, if you put it just above the edge of the beryllium plate in front of it;? Cracks often appear in the welding bead. New non-inventor (J
Spot the five electron beams ~ 1'' with 2 ~ J 1ll
Set Ifl to 4¥ degrees, and set the center position of the beam to about 0 of the temporary edge.
.. Aim and irradiate 2 to O, J mm outside (Fig. 2 6
I found that the best result was 15 points.

141] B、人!’:Tt分ノフルミニウムを)谷F
AI: L、ヘリリウムを少ツi溶lノ\し込む。溶接
速度は毎秒的1.7CIIl(毎分約′l m )程度
を可とJ′る。
141] B. People! ':Ttminofluminium)TaniF
AI: L, pour in a little helium. The welding speed can be approximately 1.7 CIIl per second (approximately lm per minute).

究)伝ii411. (1)艮い材料どして、狂1、ア
ルミニウムがあ0か、S同を上述の方法C′溶接して−
し、長方形の4辺1工]の溶接で大きな応力がかかり必
ずベリリウム窓に亀裂が入る。、、真空気密な溶接はア
ルミニウムを使用したj易合にのみ得られる。
Research) Legend ii411. (1) The material used is 1, aluminum is 0, and S is welded using the above method C'.
However, when welding four sides of a rectangle, a large amount of stress is applied and the beryllium window inevitably cracks. Vacuum-tight welds can only be obtained using aluminum.

本発明を応用して製作したアルミニウム製ベリリウム惹
しま、1シリえば第3〜/1図に示Jような超高貞窒フ
フンジ10の構造をしCいる。第3〜4図にd3いて、
1はF3e4&、2はアルミニウム、3は溶接部、4は
ステンレス鋼、5はアルミニウムとステンレス鋼どのク
ラッド扱、6はコンフノツ1〜)11゜又は全屈中空O
リング溝、7は冷ム(j水〕スノいII;、ε1は冷却
水4ノ1出部、9は取伺ポルh孔、l OIIl、 a
fj 1″:+1 :”Jl空フフンジである。
An aluminum beryllium conductor fabricated by applying the present invention has a structure of an ultra-high purity nitride flange 10 as shown in Figures 3 to 1. d3 in Figures 3-4,
1 is F3e4&, 2 is aluminum, 3 is welded part, 4 is stainless steel, 5 is cladding of aluminum and stainless steel, 6 is Confunots 1~) 11° or fully bent hollow O
Ring groove, 7 is cooling water (j water) snow II;, ε1 is cooling water 4/1 outlet, 9 is receiving port h hole, l OIIl, a
fj 1″:+1:”Jl is empty.

アルミニウム板とステンレス鋼板を1)〆光用Q”r 
L、+たクラッド扱(脂化成製)を加工しC超高−′↓
ワSノランシ10を製作する。ステンレス6014 +
!!’I ’c加−1シフ、コンフラツト渦あるいはO
リンクシール!i’: (、) ’e M”’tりる。
Aluminum plate and stainless steel plate 1) Q”r for light
L, C super high-'↓ by processing + cladding (manufactured by Fukaisei)
Build 10 waS Noranshi. Stainless steel 6014 +
! ! 'I'c +1 shift, conflat vortex or O
Link sticker! i': (,) 'e M''t ril.

フランジ10のアルミニウム部分2に孔をあり、終端を
ステンレス鋼板て゛溶接し、原を!Jり5 、、冷却水
送入部7に図示せぬ流水用二〕イクタを一つ(−」て通
水し、フランジ10全体を冷加りる。ヘリリウl\(J
〕1は冷却され/こアルミニ・クム台(7I2−.1.
 L Jiユj′ヒビー渚接されているので、S F<
照射に1J、す+’iuj j’JJ= ’j’? シ
ても極めて効率良く冷ム07することか(さ◇1本発明
の好適な一実施例にa3いC(よ、ベリリウム板を2枚
使用し、中間を真空′IJ+気1]で最初の1枚口で熱
負荷のみを受け吐め、次の2枚口(大気圧を支えて、l
\リリウム窓の安全性を高+V)る1、′1枚窓の場合
は熱負荷による圧縮応力と人気圧にJ、る圧#!?i 
f+6カの双方ん11枚のベリリウム窓にかかるからで
ある。
A hole is made in the aluminum part 2 of the flange 10, and the end is welded to a stainless steel plate. 5. Water is passed through the cooling water inlet 7 through one (-) tank for running water (not shown) to cool the entire flange 10.
]1 is cooled/this aluminum kumu stand (7I2-.1.
L Ji Yuj'Hibby Nagisa is touched, so S F<
1J for irradiation +'iuj j'JJ='j'? In a preferred embodiment of the present invention, two beryllium plates are used, and the middle is vacuumed with a vacuum 'IJ + air 1]. One opening can receive only the heat load, and the next two openings (supporting atmospheric pressure,
\ High safety of Lilium windows + V) 1, 'In the case of single-pane windows, compressive stress due to heat load and human pressure J, pressure #! ? i
This is because both of the f+6 forces cover 11 beryllium windows.

本発明によれば、全金hパ製で150〜250℃まで焼
出し可ffa /に眉間真空へシリウム窓を容易に製作
でさる。S Rの照射にまり熱−けられたベリリウムk
を効求的に冷却リーるへく、水冷色を近接し′C配置づ
−るごどがでさる。まノ〔、電子ビームスボッhの中心
をベリリウム板の縁から位7)1外側に外して+i11
いを・つi、J、かつ迅速に被溶接体を走査する為、熱
かへリリウムイシに作用リーる簡1ハlは約1〜2秒で
あり、ベリリウム板の温度が上界し結晶粒が成長し7C
/\リリウム板目身を脆弱化さける危険性(J小ざい。
According to the present invention, it is possible to easily produce a silium window for the glabella vacuum, which is made of all-metal metal and can be baked out at temperatures of 150 to 250°C. Beryllium k oxidized by SR irradiation
In order to effectively cool the water, it is necessary to place the water-cooled parts close to each other. 7) Remove the center of the electron beam from the edge of the beryllium plate to the outside +i11
In order to quickly scan the object to be welded, the time it takes for the heat to act on the helium plate is approximately 1 to 2 seconds, and the temperature of the beryllium plate reaches an upper limit, causing the crystal grains to melt. grows to 7C
/\Danger of weakening Lilium board grain (J small.

この方法は約0 、3 +nnj1,1nn性に約0.
1vhi1以下の菖・いベリリウム窓を署作り”る時に
クツ末的である。
This method yields approximately 0.3 + nnj1,1nn characteristics.
This is particularly useful when creating irises and beryllium windows with a diameter of less than 1vhi1.

、しい窓を1シソ作づる揚台に通’71’+の11(ろ
うイ」レプによると周囲2#′uiずが士かり過ぎC結
晶粒子が成長し易く、へ94反かり皮になっ’Cf+i
危い窓かて゛さるからである。
According to a representative of 11 (Roui) of '71'+, when a new window is made, the C crystal grains tend to grow and become warped. 'Cf+i
This is because there is a dangerous window.

ベリリウム窓を透過してさだX線を各分野に利用Jる揚
台、窓の外側はイ1(真空又は□ヘリウムカス雰囲気に
更る。空気中に直接取り出すと、強力なX線により酸素
かイオン化されAシンにk ’、) ’−(”ベリリウ
ムを11チ1食する。ベリリウム(ルを’ 1ife 
−CC内部を超17石真空を保つ必要かある為、i?y
 J&部(:、へりパ]−−川 ムガスに対しでどんな小ざなi[りれ〈例λfi11(
ITOI・r−℃/秒程度の洩れ)があつCしい()な
い。
X-rays that pass through the beryllium window are used in various fields. Ionized to A-syn k',)'-("Beryllium (beryllium)
-Is it necessary to maintain a super 17 stone vacuum inside the CC? y
J & Department (:, Helipa) - What kind of small i [rere〈example λfi11 (
There is no leakage (on the order of ITOI/r-℃/sec).

本発明によれは、洩れに対しCNrも敏感なl\リウム
に対しでも気落なベリリウム4及か−T′ili¥に!
iff’ J51ご1■られる。
According to the present invention, CNr is also sensitive to leakage, and l\ium can be reduced to beryllium 4 or -T'ili\, which is disappointing!
If' J51 Go 1 ■ is received.

詳述りるど、7i(発明は次の如く種々のHt4 +t
 /、父iH果を杓する。
In detail, 7i (the invention includes various Ht4 +t
/、Ladles the fruit of my father iH.

(1)短時間の電子ビーム浴接にJ、すlベリリウム板
どアルミニウム枠を直接溶接し、超% ’=’Q 紫及
びヘリウムカス雰囲気にλ) L、−?:リークの43
−い煎を装作りることかできる。従来の銀2))付けで
は溶接に要Jる時間と)品用りく成占をiノシめる単要
な因子であった。本発明によれば)前接時間は数秒のオ
ーダーで−済み、ヘリリウノ\板材の変質は断面写真に
より調べCち’if’: Alど見当らない。この方法
は特に約0.11[lN以下の薄いベリリウム窓を作製
する揚台に有効−C(s’+る。呂いベリリウム窓は超
高真空と低真空を仕切るしのC′、低真空内0行なう超
微細加工(リソグラフィー)、生体高力゛子の研究等に
欠かヂことがCさない。試料照射槽は10−4〜4O−
J−旧゛1゛程度の低真空にして、リソグラフィー用の
マスクや感光イイ、l192カスの多い)捉っだ生物試
M”1等をセラ1〜しても、”laiい真空1J+気1
(1間で照OJ実験をかλ・(り返りことがてきる。作
業面体か茗しく向、11 ′?lる。
(1) Direct welding of the aluminum frame to the J, Sl beryllium plates in a short-time electron beam bath, ultra%' = 'Q λ) L, -? in a purple and helium gas atmosphere. :Leak 43
- I can make roasted rice. In conventional silver attachment, the only factor that affects the success of the welding process is the time required for welding and the quality of the product. According to the present invention, the contact time is on the order of several seconds, and the deterioration of the plate material was investigated using cross-sectional photographs.If: No Al was found. This method is particularly effective for producing thin beryllium windows of approximately 0.11[lN or less] -C(s'+). C is indispensable for ultrafine processing (lithography), research on biological high-strength particles, etc.The sample irradiation tank is 10-4 to 4O-
J- Even if you make a low vacuum of about 1 ゛, use a lithography mask, photosensitive material, etc. to remove the captured biological sample M 1, etc.
(The OJ experiment will be repeated in 1 hour.The working surface will be dark, 11'?l.

(2)シンク1−11〜F−1ンD9.04は超高真空
中で光生り−る。不ブを明に、」、すr ffされたベ
リリウム窓は、超6−i+真?七二jンノラットフシン
ジとしてそのまま使用C′さる。すした、fi3+ i
11%構造であり、かつ 150℃〜200 ’Cに焼
出しC容易に超高真空に到j)二でさる。従〕)ξσハ
゛l(るう(q+リブ−製作したものに比較ケると、(
1〜S造の簡単さ、冷]JI効亭の良さて格段に1少れ
でいる。
(2) Sink 1-11 to F-1 D9.04 generate light in an ultra-high vacuum. Is the beryllium window super 6-i + true? Used as is as 72J's Noratfu Shinji C'saru. Sushita, fi3+ i
11% structure, and can be baked out at 150°C to 200'C and easily reach ultra-high vacuum. Comparing with the manufactured one, (
The simplicity of 1-S construction, coldness] The advantages of JI Ekutei are far less than 1.

(3)通出のシンク1」トロン放射は水平方向に広かつ
CいるのC゛、有効に使うlこめ横幅の広い (ビーム
を取り出し−Cいる。銀ろう付(づによる窓はそれ成長
);1円のレーストノ・ツク形状Cある。同じ形状のし
のを電子ビーム浴1’i CL 、l、−)で作ろうと
覆ると、レーストラック形())λ1で周辺を一定の線
速度C゛走査つ二):’jJ格を?−1’ % 、l)
な(プればならない。通常、電子線源をシ」:査りるこ
とは難しいので、被溶接物体を走査4る3゜このどき、
問題になる・のはコープ一部分の浴接で゛、特殊な冶具
かマイクロブ[」し・ツリーC走査の線速度と方向をオ
°N’+eに;11すtallづく)必要/〕−必る。
(3) Output sink 1' The tron radiation is wide in the horizontal direction and the width is wide because it can be used effectively. ; There is a 1-circle race track shape C. If we try to make a circle of the same shape with an electron beam bath 1'i CL , l, -), we can create a racetrack shape ()) with a constant linear velocity C around the periphery at λ1.゛Scan Tsu2):'jJ case? -1'%, l)
Normally, it is difficult to scan the electron beam source, so scan the object to be welded by 4 degrees.
The problem is that a part of the cope is in contact with the bath, so a special jig or microbe is required to set the linear velocity and direction of tree C scanning to N'+e; .

ところが本発明(は第、1図に月\りように、直線走査
の組合ゼにより1Fの字11≧fJi’?f I入り−
ることC1特殊な装置を使用り−ること4I゛り長方形
窓を簡単に1i−することがてさる。plJLJ>、ヒ
ートを直交させることによって、小4.H7)iこ部分
に孔もあかずに良好なイ芥1′i;結宋か1“」゛られ
る。ベリリウム4及は”Al6 < 、3同とは相性が
jj7.4 (て割れか入る。アルミニラl\とは整合
1’l−hll、、lく、電子ビーム溶接が可能である
However, in the present invention (as shown in FIG.
It is possible to easily convert a rectangular window into a rectangular window using special equipment. plJLJ>, by orthogonalizing the heat, small 4. H7) A good scratch with no holes in this part. Beryllium 4 and Al6 have a compatibility of 7.4 and 3 and 4 and 3, respectively. Beryllium 4 and 3 have a compatibility of 1'l-hll, , 1, and are compatible with alumina l\, and electron beam welding is possible.

4)ベリリウム板を直接電子線C照射づると、亀裂が生
じる。ベリリウム板の縁を照則しくも’+’;’)れる
。ヘリリウム板の縁の面か0,2〜0.3龍15fl戊
の外側を照射チると初めて良好な浴;a結柴か得られる
。この方法は熱的に11亀い全屈、1シtICjで溶接
げる場合の溶接技術とし’C5iii用C′さ◇(し′
づ2図参照)。
4) When a beryllium plate is directly irradiated with electron beam C, cracks occur. Even if the edge of the beryllium plate is illuminated, '+';') will be applied. A good bath can only be obtained by irradiating the edge of the helium plate or the outside of the helium plate. This method is a welding technique that can be thermally welded with 11 degrees of full bending and 1 spot ICj.
(See Figure 2).

以上本発明で!iq定の例につぎ詳細に説明したが、本
発明がこれらの1りlのみに限定8れるものではなく、
本発明の広汎な精神ど視野を逸脱リ−ることなく(・1
j−7の・館史ど113整かtIJ能なこと勿論−(゛
ある。
That's all for this invention! Although the example of iq constant has been described in detail, the present invention is not limited to only one of these examples.
Without departing from the broad spirit and vision of the present invention (・1
Of course, the history of J-7 is complete.

【図面の簡単な説明】[Brief explanation of the drawing]

、2’i11♀1(J水兆明万)去により長方形ベリリ
ウムイ19板をアルミニウム台枠に井の字形に゛重子ビ
ーム溶接りる状態を承り一説明図、 第2図はベリリウムli9板と1も子ビーム照射位置と
の関係を示9説明図、 第3図は本発明方法により汲作したシンクロ1へに1ン
放射用へリジウム窓を右する超高真空フランジの正m1
図、 第4図はそのA−A線上の断面図ひある。 1・・・ヘリリウム板 2・・・アルミニウム窓枠3・
・・溶接部 4・・・ステンレス1145・・・クツラ
ド板 6・・・コンフラン1〜渦又は金属中:qt Oリンク
iM7・・・冷ム1j/FK送入部 8・・・冷去1]
水排出部9・・・取付ポルI〜孔 10・・・超高真空
フランジa〜d・・・溶j長のl1li! H−特ル9
出l911人 1圃エネルギー物理学11)1究所長づ
−1 代理人弁理士 杉 村 暁 秀 、′、・4、) 第1図 、 b 第2図 第3図 第4図
, 2'i11♀1 (J Suichou Akiman) An explanatory diagram of a state in which a rectangular beryllium Li-19 plate is welded to an aluminum underframe in a square shape, and Figure 2 shows a beryllium Li9 plate and 1 also shows the relationship with the child beam irradiation position. Figure 3 shows the positive m1 of the ultra-high vacuum flange with a helidium window for radiation on the synchro 1 made by the method of the present invention.
Figure 4 is a sectional view taken along the line A--A. 1... Helium board 2... Aluminum window frame 3.
...Welding part 4...Stainless steel 1145...Kutsurado plate 6...Conflan 1 to vortex or metal: qt O-link iM7...Cold comb 1j/FK feeding part 8...Cooling 1]
Water discharge part 9...Mounting port I~hole 10...Ultra high vacuum flange a~d...Weld j length l1li! H-special 9
1911 people 1 Field Energy Physics 11) 1 Institute Director - 1 Agent Patent Attorney Akihide Sugimura,',・4,) Figure 1, b Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、f%方形の薄いベリリウム窓板とアルミニ・クム窓
枠とを電子ビーム溶接により溶接して大気圧に耐える気
田なベリリウム窓を形成することを特徴とするシンクロ
トロン放射用ベリリウム窓の製造方法。 2、特許請求の範囲1記載の方法において、ベリリウム
窓板の厚さか約0.5vm以下であること。 3、特許請求の範fil 2記載の方法において、ベリ
リウム窓板の厚さが約0.3+11m以下であること。 4、特許請求の範囲1記載の方法に83いて、へ1ノI
Jウム窓板の形状が債広の長方形であること。 5、特訂晶求の化1811記載のアルミニウム窓枠どし
て表面約6ミクロン程度の平面のものを用いること。 64特許請求の範囲10記絨の方法にJjいで、ベリリ
ウム窓板として縁を研磨しC耐化物を除去したものを用
いること。 7、特許請求の範囲1記軟の方法においC、ベリリウム
窓板として有機溶媒て11)1脂洗i’# L/ fこ
ものを用いること。 8、特許請求の範囲1記載の方法において、−Pルミニ
ウム窓枠として有機溶媒v ++q脂洗)コ1したもの
を用いること。 98特許請求の範囲]記載の方法にJjいて、iU電子
ビーム溶接約10−4へ一1o−5丁Or rの勇紫磨
で行なうこと。 10、特許請求の範囲1記戦の方法にd′3いで、加速
電圧約50〜150K V 、電流約!□)〜8111
への゛電子ビームを用いること。 11、特許請求の範囲10記絨の方法においC1−1フ
ルミニウム窓枠に深さ約1藺の溝かケじるように電子ビ
ームを調節ケること。 12、特許請求の範囲1記載の方法にJjいて、電子ビ
ーム溶接の始点終点はベリリウム窓板から数Ti11 
’28れたアルミニウム窓枠上とすること。 13、特許請求の範囲1記載の方法において、電子ビー
ムをベリリウム窓板の縁と平行な外方に直線的にベリリ
ウム窓板のコーナーの近くを通るように走査して、ベリ
リウム窓板を外方から取囲む井の字形の溶接ビードを1
qること。 14、特許請求の化1■13記載の方法において、電子
ビームの井の字形の走査を井の字の左縦棒、石縦棒、下
横枠、下横枠の順序に行なうこケ。 15、特許請求の範+114113記載の方法におい−
C1電子ビームの中心位置をベリリウム窓板の縁の約0
.2〜0 、3 +i++外側に照準すること。 16、特許請求の範囲13記載の方法において、電子ビ
ームのスポラ1〜径を目視で約2〜3胛とすること。 17、特許請求の範囲1記載の方法において、溶接速度
を毎秒約1 、7 CIIIとすること。 18、特許請求の範囲1記載の方法において、2枚のベ
リリウム窓板を相与に離間してアルミニウム窓枠に溶接
し、中間を排気して真空としたベリリウム窓を製作゛り
ること。
[Claims] 1. A synchrotron characterized by welding an f% rectangular thin beryllium window plate and an aluminum cum window frame by electron beam welding to form a strong beryllium window that can withstand atmospheric pressure. Method of manufacturing radiant beryllium windows. 2. In the method according to claim 1, the thickness of the beryllium window plate is approximately 0.5 vm or less. 3. In the method according to claim 2, the thickness of the beryllium window plate is about 0.3+11 m or less. 4. In the method according to claim 1,
The shape of the window board must be a rectangular shape. 5. Use an aluminum window frame with a flat surface of about 6 microns, such as the one described in the Special Edition of the Crystal Report 1811. 64. Claim 10: Use a beryllium window plate whose edges have been polished and the C-resistance removed by Jj in the method of claim 10. 7. In the method described in claim 1, C. using an organic solvent as the beryllium window plate. 8. In the method according to claim 1, a -P aluminum window frame containing an organic solvent (v ++ q fat washing) is used. 98 Claims] According to the method described in the claim, iU electron beam welding is carried out at about 10-4 to 11-5 orr. 10. In the method of claim 1, at d'3, the acceleration voltage is about 50 to 150 KV, and the current is about! □)~8111
``Using an electron beam to 11. In the method described in claim 10, the electron beam is adjusted so as to create a groove approximately 1 inch deep in the C1-1 fulminium window frame. 12. In the method recited in claim 1, the start and end points of electron beam welding are several Ti11 away from the beryllium window plate.
'28 aluminum window frame top. 13. In the method according to claim 1, the electron beam is scanned outward in a straight line parallel to the edge of the beryllium window plate so as to pass near the corner of the beryllium window plate, so that the electron beam is scanned outwardly from the beryllium window plate. 1. The well-shaped weld bead surrounding the
q things. 14. In the method described in claim 1-13, the electron beam scans the square shape in the order of the left vertical bar of the square, the stone vertical bar, the lower horizontal frame, and the lower horizontal frame. 15. In the method described in claim +114113-
The center position of the C1 electron beam is approximately 0 on the edge of the beryllium window plate.
.. 2-0, 3 +i++ Aim outward. 16. In the method according to claim 13, the diameter of the electron beam sporae is about 2 to 3 by visual observation. 17. In the method according to claim 1, the welding speed is about 1.7 CIII per second. 18. In the method according to claim 1, a beryllium window is manufactured by welding two beryllium window plates spaced apart from each other to an aluminum window frame and evacuating the middle to create a vacuum.
JP18070283A 1983-09-30 1983-09-30 Method of producing beryllium window for radiating synchrotron Granted JPS6074300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18070283A JPS6074300A (en) 1983-09-30 1983-09-30 Method of producing beryllium window for radiating synchrotron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18070283A JPS6074300A (en) 1983-09-30 1983-09-30 Method of producing beryllium window for radiating synchrotron

Publications (2)

Publication Number Publication Date
JPS6074300A true JPS6074300A (en) 1985-04-26
JPH0544160B2 JPH0544160B2 (en) 1993-07-05

Family

ID=16087816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18070283A Granted JPS6074300A (en) 1983-09-30 1983-09-30 Method of producing beryllium window for radiating synchrotron

Country Status (1)

Country Link
JP (1) JPS6074300A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364253A (en) * 1986-09-04 1988-03-22 Nec Corp Soft x-ray pickup window
JPS6391944A (en) * 1986-10-03 1988-04-22 Nec Corp Berylium window for x-ray
US4783674A (en) * 1986-10-13 1988-11-08 Minolta Camera Kabushiki Kaisha Photographic camera with built-in E2PROM
JP2009016120A (en) * 2007-07-03 2009-01-22 Ihi Corp Laser introduction-cum-x-ray extraction mechanism for x-ray generating device
US7492660B2 (en) 1989-04-13 2009-02-17 Sandisk Corporation Flash EEprom system
CN105874546A (en) * 2013-11-26 2016-08-17 斯玛特电子公司 Method for manufacturing shunt resistor and shunt resistor assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158600A (en) * 1981-03-03 1982-09-30 Siemens Ag Radiation projecting window and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158600A (en) * 1981-03-03 1982-09-30 Siemens Ag Radiation projecting window and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364253A (en) * 1986-09-04 1988-03-22 Nec Corp Soft x-ray pickup window
JPS6391944A (en) * 1986-10-03 1988-04-22 Nec Corp Berylium window for x-ray
US4783674A (en) * 1986-10-13 1988-11-08 Minolta Camera Kabushiki Kaisha Photographic camera with built-in E2PROM
US7492660B2 (en) 1989-04-13 2009-02-17 Sandisk Corporation Flash EEprom system
JP2009016120A (en) * 2007-07-03 2009-01-22 Ihi Corp Laser introduction-cum-x-ray extraction mechanism for x-ray generating device
CN105874546A (en) * 2013-11-26 2016-08-17 斯玛特电子公司 Method for manufacturing shunt resistor and shunt resistor assembly
JP2017505899A (en) * 2013-11-26 2017-02-23 スマート エレクトロニクス インク CURRENT MEASURING ELEMENT AND METHOD FOR MANUFACTURING CURRENT MEASURING ELEMENT ASSEMBLY

Also Published As

Publication number Publication date
JPH0544160B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
Carman et al. Observation of harmonics in the visible and ultraviolet created in C O 2-laser-produced plasmas
Yang et al. Fast Radio Bursts and Their High-energy Counterparts from Magnetar Magnetospheres
JPS6074300A (en) Method of producing beryllium window for radiating synchrotron
Leontowich et al. The lower energy diffraction and scattering side-bounce beamline for materials science at the Canadian Light Source
Walko et al. Developments in time-resolved x-ray research at APS beamline 7ID
Apatin et al. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br–Ar mixture
JP4234546B2 (en) Vacuum sealed container and manufacturing method thereof
Witting et al. Generation and characterization of isolated attosecond pulses at 100 kHz repetition rate
Watteau et al. Experimental program on the 20 TW laser system
Travinsky et al. Effects of heavy ion radiation on digital micromirror device performance
Kovalchuk et al. Laser-Synchrotron Facility of the National Research Centre “Kurchatov Institute”
JPS6364253A (en) Soft x-ray pickup window
US3165658A (en) Directly-cooled x-ray tube anode
Kroó et al. Surface-plasmon–assisted electron pair formation in strong electromagnetic field
Thiell et al. The PHEBUS experimental facility operating at 250 ps and 0· 53 μm
Peng et al. Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm
JP2013148478A (en) Particle beam transmission window and particle beam irradiation device having the same
Baruchel et al. Present status of the topography and high-resolution diffraction beamline at the ESRF
JP2001338588A (en) Gyrotron and its manufacturing method
Singer Diamond: a high-power optical material
Tang et al. A micro-focusing and high-flux-throughput beamline design using a bending magnet for microscopic XAFS at the High Energy Photon Source
US2309566A (en) Window for X-ray tubes
Toyokawa Transmission computerized tomography with a high-energy and quasi-monochromatic photon beam
Haque et al. Performance of the far-IR beamline of the 6 MeV tabletop synchrotron light source
Giles et al. Compact arrangement for femtosecond laser-induced generation of broadband hard x-ray pulses