JPS6074267A - Thermal battery - Google Patents

Thermal battery

Info

Publication number
JPS6074267A
JPS6074267A JP18255483A JP18255483A JPS6074267A JP S6074267 A JPS6074267 A JP S6074267A JP 18255483 A JP18255483 A JP 18255483A JP 18255483 A JP18255483 A JP 18255483A JP S6074267 A JPS6074267 A JP S6074267A
Authority
JP
Japan
Prior art keywords
heat
iron sulfide
negative electrode
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18255483A
Other languages
Japanese (ja)
Inventor
Shin Kashiwara
柏原 伸
Masanao Terasaki
正直 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP18255483A priority Critical patent/JPS6074267A/en
Publication of JPS6074267A publication Critical patent/JPS6074267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent decomposition of iron sulfide and melting of lithium alloy by the heat generated from heat pat by forming heat insulating layers both sides of heat pat in a thermal battery where an iron sulfide is used for positive electrode while a lithium alloy for negative electrode. CONSTITUTION:A power generating cell 2 integrating a positive electrode consisting of iron sulfide, a negative electrode consisting of lithium-aluminum alloy and an electrolyte layer and a heat pat 1 integrating heat insulating layers 21, 22 such as kaoline at both sides of a power generating layer 23 which is a mixure of zirconium and barium chlomate are laminated and these are housed within a case 11 in order to form a thermal battery. Accordingly, when the heat pad 1 is fired with a firing ball 8 through a fusing plate 10, a high temperature does not reach directly the power generating cell 2. Therefore, the electrolyte layer can be melted and operating condition can be obtained without decomposition of iron sulfide of the positive electrode and melting of lithium alloy of the negative electrode and thereby, life span of battery can be improved.

Description

【発明の詳細な説明】 本発明は正極に硫化鉄を負極にリチウム合金を用いる熱
電池の改良にかかるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a thermal battery using iron sulfide as a positive electrode and a lithium alloy as a negative electrode.

従来の熱電池は正極にクロム酸カルシウムを負極にカル
シウムをそれぞれ用いる電池系であったが、クロム酸カ
ルシウムが電解質である塩化リチウム−塩化カリウム共
融混合物に溶解するため溶解したクロム酸カルシウムが
負極であるカルシウムと接触し反応して自己放電するた
め、放電寿命が短かいという欠点があった。
Conventional thermal batteries use calcium chromate as the positive electrode and calcium as the negative electrode, but since calcium chromate dissolves in the electrolyte, a eutectic mixture of lithium chloride and potassium chloride, the dissolved calcium chromate is used as the negative electrode. It has the disadvantage of short discharge life because it reacts with calcium and self-discharges.

従来のクロム酸カルシウム−カルシウム系熱電池のこの
欠点を解消するため、正極として電解質に溶解しない硫
化鉄を採用した硫化鉄−リチウム合金系熱電池が新たに
導入されたが、この硫化鉄−リチウム合金系熱電池もリ
チウム合金の融点がカルシウムに比べ約150℃低く、
従来の発熱剤であるヒートバットを使用した場合リチウ
ム合金が溶融して、正極と負極が短絡するという重大な
不具合がしばしば生じた。
In order to overcome this drawback of conventional calcium chromate-calcium thermal batteries, a new iron sulfide-lithium alloy thermal battery was introduced that uses iron sulfide, which does not dissolve in the electrolyte, as the positive electrode. In alloy thermal batteries, the melting point of lithium alloy is about 150℃ lower than that of calcium.
When a heat bat, which is a conventional exothermic agent, was used, the lithium alloy often melted, resulting in a short circuit between the positive and negative electrodes, a serious problem.

本発明は放電寿命が長い硫化鉄−リチウム合金系であっ
て、短絡のない高性能かつ高信頼性の熱電池と可能にす
るものである。すなわちジルコニウムとクロム酸バリウ
ムからなる発熱剤を板状に成型したヒートバットの両面
に断熱層を形成せしめて、瞬時に熱が負極リチウム合金
及び正極・硫化鉄に伝わるのを防ぎリチウム合金が容融
したり、硫化鉄が分解するのを防ぐことによって短絡の
ない高性能な熱電池を可能にするものである。
The present invention is an iron sulfide-lithium alloy system having a long discharge life, and enables a high performance and highly reliable thermal battery without short circuits. In other words, a heat insulating layer is formed on both sides of a heat bat made of a heat generating agent made of zirconium and barium chromate, which instantly prevents heat from being transferred to the negative electrode lithium alloy and the positive electrode iron sulfide, thereby causing the lithium alloy to melt. By preventing iron sulfide from decomposing, it enables high-performance thermal batteries without short circuits.

用いるリチウム合金としてはリチウム−アルミニウム合
金及びリチウム−ケイ素合金があり、融点はリチウム−
アルミニウム合金で680℃、リチウム−ケイ素で70
0℃である。なおカルシウムの融点は838℃である。
Lithium alloys used include lithium-aluminum alloys and lithium-silicon alloys, and their melting points are lithium-aluminum alloys and lithium-silicon alloys.
680℃ for aluminum alloy, 70℃ for lithium-silicon
It is 0°C. Note that the melting point of calcium is 838°C.

硫化鉄(FeS2)の分解温度は約600℃であって、
電池作動温度としては550℃が望ましい。
The decomposition temperature of iron sulfide (FeS2) is about 600°C,
A desirable battery operating temperature is 550°C.

発熱剤であるジルコニウムとクロム酸バリウムとの混合
物は点火すると瞬時に発熱して、その表面は1200℃
にも達する。したがってこの発熱剤とリチウム合金ある
いは硫化鉄が直接、接しているとリチウウ合金の溶融あ
るいは硫化鉄の分解が生じて、電池は満足すべき性能を
発揮しえない。
When the mixture of zirconium and barium chromate, which are exothermic agents, is ignited, it instantly generates heat, and its surface reaches a temperature of 1200°C.
reach even. Therefore, if the exothermic agent is in direct contact with the lithium alloy or iron sulfide, the lithium alloy will melt or the iron sulfide will decompose, making it impossible for the battery to exhibit satisfactory performance.

すなわちリチウム合金が溶融すると溶融したリチウム合
金が正極と接触して短絡し放電電圧が急速に低下する。
That is, when the lithium alloy melts, the molten lithium alloy comes into contact with the positive electrode, causing a short circuit, and the discharge voltage rapidly decreases.

また硫化鉄(FeS2)が分解するとイオウ(S)と1
価の硫化鉄(FeF2)が生じ放電電圧が低くなる。
Also, when iron sulfide (FeS2) decomposes, it produces sulfur (S) and 1
Iron sulfide (FeF2) is generated and the discharge voltage is lowered.

本発明は上述の不具合を解除するためにジルコニウムと
クロム酸バリウムとの混合物からなる発熱剤を主体とし
て板状に成型したヒットバットの両面に断熱層を形成せ
しめて、発熱剤から発生した熱が瞬時に極板層及び負極
層に伝わるのを防いで、硫化鉄の分解及びリチウム合金
の溶融をなくするものである。ヒートパットの両面に断
熱層を形成さす方法としては、ヒートパットの発熱層と
断熱層とが一体になったいわゆる断熱層付ヒートパット
を用いる方法あるいはヒートパットと正極層及び負極層
との間に薄い断熱板を介在させる方法がある。断熱層あ
るいは断熱板としてはカオリン、マグネシア、あるいは
アルミナなどの無機粉末とガラスフアイバー、セラミッ
クフアイバーなどの無機繊維とからなるペーパー状ある
いはフエルト状の0.05mmから0.2mmの厚みの
ものが望ましい。この無機粉末及び無機繊維からなる断
熱層は熱伝導率が非常に小さく、例えばカリオンとセラ
ミックフアイバーからなるもので0.1Kcal/mh
rCであって、ヒートパットの発熱層自体は瞬時に12
00℃まで温度上昇するが0.1mm厚の断熱層を介在
させると580℃の温度上昇にとどまり、硫化鉄の分解
及びリチウムの合金の溶融は起らない。
In order to solve the above-mentioned problems, the present invention forms a heat insulating layer on both sides of a hit bat made of a plate-shaped heat generating agent mainly composed of a mixture of zirconium and barium chromate, so that the heat generated from the exothermic agent can be prevented. This prevents instantaneous transmission to the electrode plate layer and negative electrode layer, thereby eliminating the decomposition of iron sulfide and the melting of the lithium alloy. The method of forming a heat insulating layer on both sides of a heat pad is to use a so-called heat pad with a heat insulating layer, in which the heat generating layer and the heat insulating layer of the heat pad are integrated, or to form a heat insulating layer between the heat pad and the positive electrode layer and the negative electrode layer. There is a method of interposing a thin heat insulating plate. The heat insulating layer or board is preferably a paper-like or felt-like material with a thickness of 0.05 mm to 0.2 mm made of inorganic powder such as kaolin, magnesia, or alumina and inorganic fiber such as glass fiber or ceramic fiber. This heat insulating layer made of inorganic powder and inorganic fiber has a very low thermal conductivity, for example, a layer made of carrion and ceramic fiber has a thermal conductivity of 0.1 Kcal/mh.
rC, and the heating layer of the heat pad itself instantly becomes 12
Although the temperature rises to 00°C, when a 0.1 mm thick heat insulating layer is interposed, the temperature rise remains at 580°C, and neither decomposition of iron sulfide nor melting of the lithium alloy occurs.

次に本発明の実施例につき図面とともに説明する。第1
図は本発明の一実施例を示す電池断面図で、第2図と第
3図とは本発明電池に用いるヒートパットとペレットの
斜視図である。図において(1)は発熱層(23)の両
面に断熱層(21)及び(22)をもうけたヒートパッ
トであって、発熱層の発熱剤はジルコニウムとクロム酸
バリウムの混合物であり、これら少量のセラミックフア
イバーを混入させて1mm厚の板状に成型する。断熱層
はカオリンとセラミックフアイバーとから成型した0.
1mm厚の板状である。発熱層と断熱層とは一体に製造
した方が積層において取扱いが容易で便利であるが、発
熱層と断熱層とが別々であってもかまわない。
Next, embodiments of the present invention will be described with reference to the drawings. 1st
The figure is a sectional view of a battery showing one embodiment of the present invention, and FIGS. 2 and 3 are perspective views of a heat pad and pellets used in the battery of the present invention. In the figure, (1) is a heat pad with heat insulating layers (21) and (22) on both sides of a heat generating layer (23), and the heat generating agent in the heat generating layer is a mixture of zirconium and barium chromate. of ceramic fibers and molded into a plate with a thickness of 1 mm. The heat insulating layer is made of 0.00 mm made of kaolin and ceramic fiber.
It is a plate shape with a thickness of 1 mm. Although it is easier and more convenient to handle the heat generating layer and the heat insulating layer in lamination when they are manufactured integrally, the heat generating layer and the heat insulating layer may be separate.

(2)は正極層(24)、電解質層(25)及び負極層
(26)の3層からなるペレットであって、正極層(2
4)は硫化鉄からなり、電解質層(25)は塩化リチウ
ムと塩化カリウムとの共融混合物60%にマグネシア4
0%を混入したものからなり、負極層(26)はリチウ
ム−アルミニウム合金からなる。これら3層は一体に成
型される。このペレットが発電セルであって1セルの電
圧は1.7Vである。(3)はセル間を電気的に接続す
る接続板である。
(2) is a pellet consisting of three layers: a positive electrode layer (24), an electrolyte layer (25), and a negative electrode layer (26).
4) is made of iron sulfide, and the electrolyte layer (25) is a 60% eutectic mixture of lithium chloride and potassium chloride with magnesia 4.
The negative electrode layer (26) is made of a lithium-aluminum alloy. These three layers are integrally molded. This pellet is a power generation cell, and the voltage of one cell is 1.7V. (3) is a connection plate that electrically connects cells.

(4)は正極電板であってペレット(1)の正極層(2
4)に接しており、リード線を介して正極端子(6)に
接続されている。(5)は負極集電板であってペレット
(1)の負極層(26)に接し、リード線を介して負極
端子(7)に接続されている。(8)は点火玉であって
、(9)は点火用端子である。(10)は発熱層からな
る導火板である。本実施例では5枚のヒートパットと5
枚のペレットを積層して積層スタックを形成している。
(4) is a positive electrode plate, which is a positive electrode layer (2) of pellet (1).
4) and is connected to the positive electrode terminal (6) via a lead wire. (5) is a negative electrode current collector plate that is in contact with the negative electrode layer (26) of the pellet (1) and connected to the negative electrode terminal (7) via a lead wire. (8) is an ignition ball, and (9) is an ignition terminal. (10) is a fuse plate consisting of a heat generating layer. In this example, there are 5 heat pads and 5 heat pads.
The pellets are stacked on top of each other to form a laminate stack.

(11)はステンレス鋼からなる電池ケースであって、
(12)はステンレス鋼からなる電池カバーであり、端
子(6、7、9)と電池カバーとはガラス(13)によ
って電気的に絶縁されている。電池ケース(11)と積
層スタックとの間には石綿あるいはセラミックフアイバ
ーなどの断熱体(14)が充填されている。かくして点
火用端子(9)に電気を印可すると点火玉(8)が発火
し、導火板に火がつき、次にヒートパット(1)の発熱
層に着火し、発熱層自体は1200℃に達する。発熱層
から発した熱は両方の断熱層(21、23)を徐々に伝
わってペレットの正極層及び負極層に達するので、両層
は600℃以上には温度が上がらず、正極層の硫化鉄の
分解及び負極層のリチウム合金の溶融はなく、電解質層
の塩化リチウム、塩化カリウム共融混合物(融点352
℃)が溶融して電導性を生じて発電セルは作動状態に達
する。
(11) is a battery case made of stainless steel,
(12) is a battery cover made of stainless steel, and the terminals (6, 7, 9) and the battery cover are electrically insulated by glass (13). A heat insulating material (14) such as asbestos or ceramic fiber is filled between the battery case (11) and the laminated stack. Thus, when electricity is applied to the ignition terminal (9), the ignition ball (8) ignites, the fuse plate ignites, and then the heat generating layer of the heat pad (1) ignites, and the heat generating layer itself reaches 1200°C. reach The heat emitted from the heat generating layer gradually travels through both heat insulating layers (21, 23) and reaches the positive and negative electrode layers of the pellet, so the temperature of both layers does not rise above 600°C, and the iron sulfide in the positive electrode layer There is no decomposition of the lithium alloy and no melting of the lithium alloy in the negative electrode layer, and the eutectic mixture of lithium chloride and potassium chloride (melting point 352) in the electrolyte layer does not occur.
°C) melts and becomes conductive, and the power generating cell reaches its operating state.

両面に断熱層を形成させないヒートパットを用いて積層
した電池を10個組立て試験したところ7個が短絡した
が、本発明になるヒートパットの両面に断熱層を形成さ
せたもので積層した電池を10個組立て試験したところ
短絡したものは1個もなくすべて正常に放電した。
When 10 batteries were assembled and tested using a heat pad that did not have a heat insulating layer formed on both sides, 7 batteries were short-circuited. When 10 batteries were assembled and tested, none were short-circuited and all discharged normally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電池断面図である。第
2図とは本発明電池に用いるヒートパットとペレットの
斜視図である。
FIG. 1 is a sectional view of a battery showing an embodiment of the present invention. FIG. 2 is a perspective view of a heat pad and pellets used in the battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 正極に硫化鉄を負極にリシウム合金を用い、かつ正極・
電解質・負極の3層からなるペレットと発熱材であるヒ
ートパットとを積層する熱電池において、発熱材である
ヒートパットの両面に断熱層を形成せしめてなることを
特徴とする熱電池。
The positive electrode uses iron sulfide and the negative electrode uses lithium alloy.
A thermal battery in which a pellet consisting of three layers of an electrolyte and a negative electrode and a heat pad as a heat generating material are laminated, characterized in that a heat insulating layer is formed on both sides of the heat pad as a heat generating material.
JP18255483A 1983-09-29 1983-09-29 Thermal battery Pending JPS6074267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18255483A JPS6074267A (en) 1983-09-29 1983-09-29 Thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18255483A JPS6074267A (en) 1983-09-29 1983-09-29 Thermal battery

Publications (1)

Publication Number Publication Date
JPS6074267A true JPS6074267A (en) 1985-04-26

Family

ID=16120302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18255483A Pending JPS6074267A (en) 1983-09-29 1983-09-29 Thermal battery

Country Status (1)

Country Link
JP (1) JPS6074267A (en)

Similar Documents

Publication Publication Date Title
US3575714A (en) Thermal type primary cell
US3463670A (en) High energy density thermal cell
GB1281849A (en) Thermal battery
JPH0326911B2 (en)
JPS6074267A (en) Thermal battery
JPH0740489B2 (en) Thermal battery
JPH0311806Y2 (en)
JPS6091566A (en) Thermal cell
JPH0554224B2 (en)
JP4381092B2 (en) Thermal battery
JP2502741B2 (en) Thermal battery
JPH0878023A (en) Thermal battery
JPS58220367A (en) Nonaqueous electrolyte battery
JPS60221967A (en) Thermal battery
JPH0552035B2 (en)
US3540937A (en) Thermal battery with thallium sesquioxide depolarizer
JPS6057185B2 (en) thermal battery
JPS6057186B2 (en) molten salt battery
JPH0542781B2 (en)
JP3185303B2 (en) Thermal battery
JPS63298971A (en) Thermal battery
JPH0755817Y2 (en) Thermal battery
JP2537043Y2 (en) Thermal battery
JPH0745885Y2 (en) Thermal battery
JP3478307B2 (en) Thermal battery