JPS60221967A - Thermal battery - Google Patents

Thermal battery

Info

Publication number
JPS60221967A
JPS60221967A JP7970884A JP7970884A JPS60221967A JP S60221967 A JPS60221967 A JP S60221967A JP 7970884 A JP7970884 A JP 7970884A JP 7970884 A JP7970884 A JP 7970884A JP S60221967 A JPS60221967 A JP S60221967A
Authority
JP
Japan
Prior art keywords
battery
heat
lithium
insulating material
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7970884A
Other languages
Japanese (ja)
Other versions
JPH0479110B2 (en
Inventor
Masanao Terasaki
正直 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP7970884A priority Critical patent/JPS60221967A/en
Publication of JPS60221967A publication Critical patent/JPS60221967A/en
Publication of JPH0479110B2 publication Critical patent/JPH0479110B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To obtain a thermal battery whose self-discharge is eliminated and operation at high temperature is capable by using yttria fibers as heat-insulating material in a thermal battery in which lithium or lithium alloy is used as a negative eletrode. CONSTITUTION:A unit cell 1 consists of a three-layer pellet of a negative electrode, electrolyte, and a positive electrode. The unit cells are mutually stacked with heat generating agents 2. The negative electrode layer is composed of lighium-aluminium alloy, the electrolyte layer is composed of the mixture of LiCl-KCl eutectic salt and magnesia powder, and the positive electrode layer is mainly composed of iron disulfide. When current is instantly applied to an ignition terminal 6, an ignition unit 5 is ignited, then the heat generating agents 2 are burned to activate the battery. Yttria fibers are used as heat insulating material 7 which insulates heat of the battery. Yttria is stable to lithium alloy and the heat insulating ability is increased by forming it to fibrous form.

Description

【発明の詳細な説明】 本発明は、リチウムもしくはリチウム合金を負極に用い
るリチウム系熱電池に関するもので、電池作動時の自己
放電がなく、高温作動のid能な熱電池を提供づるもの
である。
[Detailed Description of the Invention] The present invention relates to a lithium-based thermal battery that uses lithium or a lithium alloy as a negative electrode, and provides a thermal battery that does not self-discharge during battery operation and is capable of high-temperature operation. .

熱電池(よ溶融塩を電Wr賀に用いてJ3す、常温ては
電流を流づことはできないが、使用部に高温に加熱する
と、電解質が溶融して極めて高い導電性を示ツにうにな
り、大電流での放電が可能どなる。
Thermal batteries (using molten salt as electricity) cannot conduct current at room temperature, but when the parts used are heated to high temperatures, the electrolyte melts and exhibits extremely high conductivity. This makes it possible to discharge at a large current.

このため、熱電池は未使用状態では自己放電がなく、長
期間の保存が可能であり、信頼性の高い緊急用高山ツノ
電源として優れた電池である。
For this reason, thermal batteries do not self-discharge when unused and can be stored for long periods of time, making them excellent as highly reliable emergency alpine horn power sources.

熱電池は弁熱剤を内部に保持してd3す、その光熱剤に
点火することにより、電池内部を作動温度まで瞬時に加
熱して活性化させる。電池の発電部は断熱材により断熱
保温されており、電池作動温度に長時間保たれ”(いる
A thermal battery holds a heating agent inside and ignites the heating agent to instantaneously heat the inside of the battery to an operating temperature and activate it. The power generation section of the battery is insulated and kept warm by insulation material, and is kept at the battery operating temperature for a long time.

従来、電池内部を保湿−aるための断熱材としてアスベ
ストやガラス111i1[Iおよびセラミック繊維等が
用いられている。このような断熱材は軽量で安価な保温
材料であるが、リチウムもしくはリチウム合金を負極に
用いるリチウム系熱電池には好ましくないことが判明し
た。すなわち、従来の断熱材はシリカ(S102)やア
ルミナ(△1203 )等を主成分とするものであるが
、このような成分は高温度においてリチウムと容易に反
応し、還元されることが明らかとなった。還元されたこ
れらの断熱材は、一般に黒く変色し、導電性を示すよう
になった。断熱材が導電性を帯びると、電池が自己放電
して放電容量が減少したり、電圧変動の原因や、甚だし
い場合は、内部短絡の原因となったりした。このような
現象は、従来のカルシウムやマグネシウムを負極に用い
た熱電池では認められなかったものであり、リチウムの
高活性に起因するものと思われる。
Conventionally, asbestos, glass 111i1[I, ceramic fibers, and the like have been used as heat insulating materials for keeping the inside of a battery moisturized. Although such a heat insulating material is a lightweight and inexpensive heat-retaining material, it has been found that it is not suitable for lithium-based thermal batteries that use lithium or lithium alloy for the negative electrode. In other words, conventional insulation materials have silica (S102) and alumina (△1203) as their main components, but it is clear that these components easily react with lithium at high temperatures and are reduced. became. These reduced insulators generally turned black and became electrically conductive. When the insulation material became conductive, the battery self-discharged, reducing its discharge capacity, causing voltage fluctuations, and in severe cases, causing internal short circuits. Such a phenomenon has not been observed in conventional thermal batteries using calcium or magnesium as the negative electrode, and is thought to be due to the high activity of lithium.

本発明【よこのような欠点を改良するものであり、リチ
ウムもしくはリチウム合金を負極に用いる熱電池におい
て、断熱材としてイソ1−リア(Y203)I帷を用い
ることを特徴とするものである。
The present invention is an attempt to improve such drawbacks, and is characterized by using iso1-ria (Y203) I film as a heat insulating material in a thermal battery using lithium or a lithium alloy as a negative electrode.

イツトリアはリチウムおよびリチウム−アルミニウム合
金、リヂウムーケイ素合金、リチウムーホウ素合金等の
リチウム合金に対して安定であり、織布あるいはフェル
ト等の411If状とすることにより、保温性も向上し
、熱電池の断熱材として最適なものとなった。
Ittria is stable against lithium and lithium alloys such as lithium-aluminum alloys, lithium-silicon alloys, and lithium-boron alloys. By making it into a 411If form such as woven cloth or felt, it can improve heat retention and serve as insulation for thermal batteries. It has become the perfect material.

以ト、その実施例について説明覆る。Hereinafter, the embodiment will be explained.

第1図は本発明熱電池の断面図である。図において、(
1)は積層電池を構成する素電池である。
FIG. 1 is a sectional view of the thermal battery of the present invention. In the figure, (
1) is a unit cell that constitutes a stacked battery.

紫電ii!!(1)は負極層と電解質層と正極層との三
層よりなるペレッ1〜であり、発熱剤(2)と交互に積
層されている。(3)は負極端子、(4)は正極端子で
ある。(5)は点火具であり、点火用端子(6)に瞬間
電流を流すと点火具(5)が発火し、発熱剤(2)に着
火して電池が活性化される。(7)は電池を断熱保温す
るだめの断熱材であり、イツトリア繊維を使用した。(
8)は電池容器であり、電池内を気密に保っている。
Shiden II! ! Pellet (1) is composed of three layers: a negative electrode layer, an electrolyte layer, and a positive electrode layer, which are alternately laminated with exothermic agents (2). (3) is a negative terminal, and (4) is a positive terminal. (5) is an igniter, and when an instantaneous current is passed through the ignition terminal (6), the igniter (5) ignites, ignites the exothermic agent (2), and activates the battery. (7) is a heat insulating material that insulates and keeps the battery warm, and uses Ittria fiber. (
8) is a battery container that keeps the inside of the battery airtight.

直径54n+m、厚さ 1.05.+nmの三層ペレッ
トよりなる素電池16枚を、FeとK CI O4との
混合物よりなる発熱剤と交互に積層して積層電池を構成
した。
Diameter 54n+m, thickness 1.05. A stacked battery was constructed by alternately stacking 16 unit cells made of +nm three-layer pellets and a heat generating agent made of a mixture of Fe and K CI O4.

素電池の負極層はリチウム−アルミニウム合金0.75
g、電解質層はLI CI −K C1共晶塩と酸化マ
グネシウム粉末の混合物2(1,正極層は二硫化鉄を主
成分とする混合物1.5gから構成されている。
The negative electrode layer of the unit cell is made of lithium-aluminum alloy 0.75
g. The electrolyte layer was composed of LI CI-K C1 eutectic salt and magnesium oxide powder mixture 2 (1. The positive electrode layer was composed of 1.5 g of a mixture whose main component was iron disulfide.

第2図は本発明実施電池Aと、従来電池Bとを環境温度
80℃のもとて活性化させ、IOAの電流で放電した時
の端子電圧の変化を示したものである。
FIG. 2 shows the change in terminal voltage when battery A according to the present invention and conventional battery B were activated at an environmental temperature of 80° C. and discharged with a current of IOA.

熱電池は、一般に一55℃〜80℃と広い温度範囲で使
用可能であるが、本発明の効果をより明らかにするため
に高温度で比較した。
Although thermal batteries can generally be used in a wide temperature range of -55°C to 80°C, comparisons were made at high temperatures in order to more clearly demonstrate the effects of the present invention.

本発明実施電池Aは断熱材としてイツトリアフェルト(
米国、ZIRCARPRODUCTS社製)を使用した
。従来電池Bは断熱材として、セラミックII Ilt
であるファイバーフラックス(東芝モノフラックス(株
)製)を使用したものである。従来電池Bは内部短絡現
象が認められ、放電電圧、放電容量ともに低下した。放
電試験後、電池を解体したところ、従来電池Bの断熱材
は、素電池との接触部分が黒く変色し、一部溶融してい
るのが観察された。また変色した断熱材は導電性を示ず
ことが認められた。これはセラミック111mが高温度
で負極のリチウム合金により還元されたことによるもの
であり、内部短絡の原因どなっている。本発明実施電池
Aには自己放電や内部短絡現象はなく、また断熱材とし
て使用したイツトリア繊維の変化bgめられなかった、
1 以上のように断熱材としてイツトリア繊維を用いること
により、高温度にa3いても安定な熱電池を得ることが
可能となった。なお、断熱材として全てイツトリア繊維
を用いる必要はなく、少なくとも素電池と接する部分に
のみ用いれば、その効果が期待できる。
Battery A according to the present invention uses ittria felt (
(manufactured by ZICAR PRODUCTS, USA) was used. Conventional battery B uses ceramic II Ilt as a heat insulating material.
This fiber flux (manufactured by Toshiba Monoflux Corporation) is used. In conventional battery B, an internal short circuit phenomenon was observed, and both discharge voltage and discharge capacity decreased. When the battery was disassembled after the discharge test, it was observed that the heat insulating material of conventional battery B had turned black at the part where it came into contact with the unit cell, and was partially melted. It was also observed that the discolored heat insulating material did not exhibit electrical conductivity. This is because the ceramic 111m was reduced by the lithium alloy of the negative electrode at high temperature, which caused an internal short circuit. Battery A according to the present invention had no self-discharge or internal short-circuit phenomenon, and no change in the ittria fiber used as a heat insulating material was observed.
1 By using ittria fiber as a heat insulating material as described above, it has become possible to obtain a stable thermal battery even at high temperatures. It should be noted that it is not necessary to use all the Ittria fibers as the heat insulating material, and the effect can be expected if it is used at least only in the portion that comes into contact with the unit cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施電池の断面図、第2図は本発明実施
電池と従来電池の比較を示す放電特性図である。
FIG. 1 is a sectional view of a battery according to the present invention, and FIG. 2 is a discharge characteristic diagram showing a comparison between a battery according to the present invention and a conventional battery.

Claims (1)

【特許請求の範囲】[Claims] 1、リチウムもしく(よりブウム合金を負極に用いる、
熱電池において、断熱材どしてイン1〜リアmuを用い
ることを特徴と覆る熱電池。
1. Lithium or (bum alloy is used for the negative electrode,
A thermal battery characterized by using insulators as insulation materials.
JP7970884A 1984-04-19 1984-04-19 Thermal battery Granted JPS60221967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7970884A JPS60221967A (en) 1984-04-19 1984-04-19 Thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7970884A JPS60221967A (en) 1984-04-19 1984-04-19 Thermal battery

Publications (2)

Publication Number Publication Date
JPS60221967A true JPS60221967A (en) 1985-11-06
JPH0479110B2 JPH0479110B2 (en) 1992-12-15

Family

ID=13697701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7970884A Granted JPS60221967A (en) 1984-04-19 1984-04-19 Thermal battery

Country Status (1)

Country Link
JP (1) JPS60221967A (en)

Also Published As

Publication number Publication date
JPH0479110B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
GB1281849A (en) Thermal battery
JPS60221967A (en) Thermal battery
JPS60230363A (en) Thermal battery
JPH0326911B2 (en)
JPH03119661A (en) Thermal battery
JPS60221966A (en) Thermal battery
JP2808652B2 (en) Thermal battery
US4053690A (en) Thermal cells
JP2653065B2 (en) Stacked thermal battery
JPH03673Y2 (en)
JPS6074267A (en) Thermal battery
JPH0536423A (en) Manufacture of thermal battery
JPS63298971A (en) Thermal battery
JP3185303B2 (en) Thermal battery
JPS6057186B2 (en) molten salt battery
JPH0878023A (en) Thermal battery
JPS6319769A (en) Thermal battery
JPH0234762Y2 (en)
US3540937A (en) Thermal battery with thallium sesquioxide depolarizer
JPH0311809Y2 (en)
JP2815354B2 (en) Stacked thermal battery
JP3177854B2 (en) Thermal battery manufacturing method
JPH0541502Y2 (en)
JP2964768B2 (en) Thermal battery
JP2537043Y2 (en) Thermal battery