JPS607359A - Alkaline metal ion detection - Google Patents

Alkaline metal ion detection

Info

Publication number
JPS607359A
JPS607359A JP11662183A JP11662183A JPS607359A JP S607359 A JPS607359 A JP S607359A JP 11662183 A JP11662183 A JP 11662183A JP 11662183 A JP11662183 A JP 11662183A JP S607359 A JPS607359 A JP S607359A
Authority
JP
Japan
Prior art keywords
alkaline metal
valve
metal ions
switched
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11662183A
Other languages
Japanese (ja)
Inventor
Toshibumi Kita
俊文 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP11662183A priority Critical patent/JPS607359A/en
Publication of JPS607359A publication Critical patent/JPS607359A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To detect alkaline metal ions selectively regardless of the influence of heat by a method wherein the alkaline metal ion components are separated one after another from a specimen containing the alkaline metal ions by an ion exchange resin and detected by cyclic voltammetry. CONSTITUTION:In the case of selective quantitative analysis of Na<+>, a specimen is introduced from a moving phase solution sink 1 into an ion exchange column 4 through by a solution feeding pump 2. A flow path from the column 4 is switched to a waste solution sink 7 by a switching valve 6. When a retention time of Na<+> comes near, the valve 6 is switched to feed the eluate into a cell 8 and after Na<+> is sufficiently separated, the valve 6 is switched to the waste solution sink 7. The solution in the cell 8 is scanned by a voltage and a cyclic voltamgramm is recorded. When K<+> and Rb<+> are to be detected, the same measurement is performed by switching the valve 6 corresponding to the retention time. With this constitution, alkaline metal ions are selectively detected regardless of the influence of heat.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、各皿イオン混在中の試料液からアルカリ金
属イオンを選択的に検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for selectively detecting alkali metal ions from a sample liquid in which ions are mixed in each dish.

(ロ)従来技術 従来、 Na 、 K などのアルカリ金属イオンを選
択的に検出する方法としては、放射能検出器を用いる方
法があった。
(b) Prior Art Conventionally, as a method for selectively detecting alkali metal ions such as Na and K, there has been a method using a radioactivity detector.

しかし、この検出器は、ラベル物質を用いたり、あるい
は放射能を生じるので汎用性に乏しく、またバンドの広
がりも大きいという欠点を有していた。
However, this detector lacks versatility because it uses a label substance or generates radioactivity, and it also has the disadvantage of a large band spread.

また、これ以外の方法としては熱検出器を用いるものが
あるが、熱検出器は、サーミスターの自己熱のために、
流れに敏感であり、流れの変化に伴ないドリフトとなっ
て現われるという欠点を有しでいる。さらには、これら
の方法ではクロマトグラムをかいている途中にチャート
紙がなくなったり、装置が停電などで止まったり等の故
障が生じた場合は、再度試料を打ち込んで最初の過程か
ら測定を行わねばならなかった。
Another method is to use a heat detector, but the heat detector is
It has the disadvantage that it is sensitive to flow and appears as a drift as the flow changes. Furthermore, with these methods, if a malfunction occurs such as running out of chart paper while drawing a chromatogram or the device stops due to a power outage, etc., the sample must be reloaded and the measurement restarted from the beginning. did not become.

(ハ) 目 的 この発明は、上記の事情に鑑みなされたもので、汎用性
のある。また熱の影qlも関係なくアルカリ金属イオン
を選択的に検出する方法を提供することを目的とする。
(c) Purpose This invention was made in view of the above circumstances and has versatility. Another object of the present invention is to provide a method for selectively detecting alkali metal ions regardless of the influence of heat.

に)構成 この発明は、Na、K などのアルカリ金属イオンを含
有する試料をイオン交換樹脂を用いて各々のアルカリ金
属イオン成分に分離した後。
B) Structure This invention is performed after a sample containing alkali metal ions such as Na and K is separated into each alkali metal ion component using an ion exchange resin.

順次分離される各アルカリ金属イオンをサイクリックポ
ルタンメトリーにより検出する検出方法である。
This is a detection method in which each alkali metal ion that is sequentially separated is detected by cyclic portammetry.

(力 実Jm例 この発明を図面にもとづいて説明する。第1図はこの発
明の方法を実施するための装置を示す。1は移動相液溜
、2は送液ポンプ、3は試料導入部、4は陽イオン交換
樹脂(例えばAm1nex Q−15O8)が充てんさ
れているイオン交換カラム、8は支持電解塩が溶解して
いる溶液を封入した電気化学検出用セルである。このセ
ル8はポテンシオスタット9 、 Iineag Sw
eep電源10.レコーダ11と公知の方法ヤ幼囁七学
貢麦快檜吟≠=→ゴ惰セ磯峰七→で接続している。なお
5は恒温循環装置、6は流路切換バルブ、7は廃液留、
Wは作用電極、Cは対極。
(Example) This invention will be explained based on the drawings. Fig. 1 shows an apparatus for carrying out the method of this invention. 1 is a mobile phase reservoir, 2 is a liquid feeding pump, and 3 is a sample introduction section. , 4 is an ion exchange column filled with a cation exchange resin (for example, Am1nex Q-15O8), and 8 is an electrochemical detection cell filled with a solution in which a supporting electrolyte is dissolved. Ostat 9, Iineag Sw
eep power supply 10. The recorder 11 is connected to the recorder 11 by a known method. In addition, 5 is a constant temperature circulation device, 6 is a flow path switching valve, 7 is a waste liquid reservoir,
W is the working electrode, C is the counter electrode.

Rは参照電極を各々示す。また、セル8内は。R each represents a reference electrode. Also, inside cell 8.

N2ボンベ(図示せず)からのノズル12が挿入されて
おり、酸素ガス除去が行えるようになっている。
A nozzle 12 from an N2 cylinder (not shown) is inserted so that oxygen gas can be removed.

まずNaのみを選択的に定量する時の操作手順を説明す
る。試料が試料導入部3より打ち込まれイオン交換カラ
ム4に到達するのであるが。
First, the operating procedure for selectively quantifying only Na will be explained. The sample is introduced from the sample introduction section 3 and reaches the ion exchange column 4.

このイオン交換カラム4で分離されて出てくる+ Na のリテンションタイムは第2図a)のように決ま
っているのでNaが出てくるまでは切換バルブ6により
カラム4からの流路を廃液溜7へ行くようにしておく。
The retention time of +Na separated and released by this ion exchange column 4 is determined as shown in Figure 2 a), so until Na comes out, the flow path from the column 4 is connected to the waste liquid reservoir 7 by the switching valve 6. I'll make sure to go there.

次にNtのリテンションタイム付近になると切換バルブ
6を切換えて溶出液をセル8へ送り、Naが充分用たで
あろう時間にまたバルブ6を切換えて液を廃液溜7へ送
る。
Next, when the retention time of Nt approaches, the switching valve 6 is switched to send the eluate to the cell 8, and when the Na has been used sufficiently, the valve 6 is switched again to send the solution to the waste liquid reservoir 7.

そして、このようにしてセル8へ送られたNaを含む溶
液に電圧を゛掃引させてサイクリックポルタングラムを
かかせて検出を行う。なお電圧掃引を行う前にセル8内
の溶液中にN2ガスを通じさせてサイクリックポルタン
プラムに02のピークが出現するのを防いでおかねばな
らない。このようにして得られるサイクリックポルタン
グラムが第2図b)に示しである。横軸は標準電極電位
、縦軸は電流値を示しており、横軸は定性に縦軸は定量
に利用される。よってNa の電位は−2,7vである
ことが知られているので、この電圧値に対するピーク高
さをめることによりNa の濃度がわかる。
Detection is then performed by sweeping a voltage across the Na-containing solution sent to the cell 8 in this manner to apply a cyclic portangram. Note that before performing the voltage sweep, it is necessary to pass N2 gas into the solution in the cell 8 to prevent the appearance of the 02 peak in the cyclic portan plum. The cyclic portangram thus obtained is shown in FIG. 2b). The horizontal axis shows the standard electrode potential, and the vertical axis shows the current value, and the horizontal axis is used for qualitative determination and the vertical axis for quantitative determination. Therefore, since it is known that the potential of Na is -2.7V, the concentration of Na can be determined by calculating the peak height with respect to this voltage value.

次にNa、に、Rh 等を定性、定量分析する時の手順
を示す。この時もNaのリテンションタイム付近までは
切換バルブ6により溶出液を廃液溜7に送り、リテンシ
ョンタイム付近になるとバルブ6を切換えてアルカリ金
属イオンが全て溶出したであろう時まで溶出液をセル8
へ送る。セル8内へ入った溶液は除酸素した後同様に電
圧掃引してサイクリックポルタングラムをかかせる。こ
の場合ピークが多数現われるがそのピークに対応する電
圧が各々のイオンを現わし、そのピーク高さに相応する
電流値より濃度がまる。
Next, we will show the procedure for qualitative and quantitative analysis of Na, Rh, etc. At this time as well, the eluate is sent to the waste reservoir 7 using the switching valve 6 until the Na retention time is reached, and when the retention time is near, the valve 6 is switched and the eluate is sent to the cell 8 until all the alkali metal ions have been eluted.
send to After the solution that has entered the cell 8 is deoxidized, it is similarly voltage swept to produce a cyclic portangram. In this case, many peaks appear, and the voltage corresponding to the peak represents each ion, and the concentration is lower than the current value corresponding to the peak height.

(へ)効果 この発明によれば、クロマトグラムをとらずに定量する
ことができるのでバンドの広がりに影響を受けず、また
、セル内に溶液が入っている間中何回でもサイクリック
ポルタングラムをかかせることができるので、測定の精
度も上がるという効果がある。さらには、測定の途中チ
ャート紙がなくなった等のアクシデントがあっても再度
試料を打ち込んで最初の過程から測定をしなくてもよい
ので試料のムダを省くという効果もある。
(f) Effects According to this invention, it is possible to perform quantitative determination without taking a chromatogram, so it is not affected by band broadening, and the cyclic portanogram can be measured any number of times while the solution is in the cell. This has the effect of increasing measurement accuracy. Furthermore, even if there is an accident such as the chart paper running out during measurement, there is no need to reload the sample and start the measurement from the beginning, which has the effect of eliminating sample waste.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を実施するための装置の一実施例、
第2図a)はアルカリ金屑イオンのクロマトグラム、第
2図b)はNa のサイクリックポルタングラムである
。 j・・・・・・試料導入部 4・・・・・・イオン交換
カラム8・・・・・・電気化学検出用セル 9・・・・・・ポテンシオスタット IQ−−−−・−l1nean Sweep[源W・・
−・・・作用電極 C・・・・・・対極R・・−・・・
参照電極
FIG. 1 shows an example of an apparatus for carrying out this invention,
Figure 2a) is a chromatogram of alkali gold scrap ions, and Figure 2b) is a cyclic portangram of Na. j... Sample introduction part 4... Ion exchange column 8... Electrochemical detection cell 9... Potentiostat IQ-----l1nean Sweep [Gen W...
--- Working electrode C --- Counter electrode R ---
reference electrode

Claims (1)

【特許請求の範囲】[Claims] LNa、K などのアルカリ金属イオンを含有する試料
からイオン交換樹脂を用いてアルカリ金属イオン成分を
分離した後、順次分離される各アルカリ金属イオンをサ
イクリックポルタンメトリーにより検出することを特徴
とするアルカリ金属イオン検出方法。
It is characterized by separating alkali metal ion components from a sample containing alkali metal ions such as LNa and K using an ion exchange resin, and then sequentially detecting each alkali metal ion separated by cyclic portammetry. Alkali metal ion detection method.
JP11662183A 1983-06-27 1983-06-27 Alkaline metal ion detection Pending JPS607359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11662183A JPS607359A (en) 1983-06-27 1983-06-27 Alkaline metal ion detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11662183A JPS607359A (en) 1983-06-27 1983-06-27 Alkaline metal ion detection

Publications (1)

Publication Number Publication Date
JPS607359A true JPS607359A (en) 1985-01-16

Family

ID=14691715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11662183A Pending JPS607359A (en) 1983-06-27 1983-06-27 Alkaline metal ion detection

Country Status (1)

Country Link
JP (1) JPS607359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512093U (en) * 1991-07-26 1993-02-19 日本耐酸壜工業株式会社 Tape cutter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512093U (en) * 1991-07-26 1993-02-19 日本耐酸壜工業株式会社 Tape cutter

Similar Documents

Publication Publication Date Title
US3907657A (en) Gas analysis apparatus
EP0102958B1 (en) Method for measuring ionic concentration utilizing an ion-sensing electrode
CA1199968A (en) Automatic chromatographic metal detection
ES2033854T3 (en) METHOD AND APPARATUS FOR ELECTROCHEMICAL MEASURES.
Underkofler et al. Investigation of AC Polarography at Stationary Electrodes, with Application to Stripping Analysis.
EP2995941B1 (en) Karl fischer titration method
Vogt et al. Separation of metal ions by capillary electrophoresis–diversity, advantages, and drawbacks of detection methods
US3883414A (en) Detector of trace substance in water
JPS607359A (en) Alkaline metal ion detection
US4036704A (en) Liquid chromatographical method
Cedergren Coulometric trace determination of water by using Karl Fischer reagent and potentiometric end-point detection
Johansson Analysis of column effluents by controlled-potential coulometry
KR102121732B1 (en) (Electrolytic eluent modification device for suppressed ion chromatography and ion chromatography system with the same
US4468289A (en) Coulometric titration method
US3835008A (en) Automatic controlled-current coulometric environmental monitor
JP3116052B2 (en) Environmental component measurement device
Eads et al. Electrochemical Fractionation: Potentiostatic Chromatography and Elution Voltammetry.
Everett et al. Coulometric Titrations with Photometric End Point
Propst A High Sensitivity Scanning Coulometer with Automatic Background Correction and Proportional Scan Rate. Titration of Plutonium and Other Redox Species.
JPH0113059B2 (en)
JPS6243134B2 (en)
Vacik et al. Analytical isotachophoresis
Wilson Millicoulometric determination of n-values in the polarographic reduction of cadmium and iodate ions
JPH1038838A (en) Flow type electrolytic analysis cell
JPS6066161A (en) Method and device for simultaneous measurement of different species of ions