JPS607359A - Alkaline metal ion detection - Google Patents
Alkaline metal ion detectionInfo
- Publication number
- JPS607359A JPS607359A JP11662183A JP11662183A JPS607359A JP S607359 A JPS607359 A JP S607359A JP 11662183 A JP11662183 A JP 11662183A JP 11662183 A JP11662183 A JP 11662183A JP S607359 A JPS607359 A JP S607359A
- Authority
- JP
- Japan
- Prior art keywords
- alkaline metal
- valve
- metal ions
- switched
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/96—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
この発明は、各皿イオン混在中の試料液からアルカリ金
属イオンを選択的に検出する方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for selectively detecting alkali metal ions from a sample liquid in which ions are mixed in each dish.
(ロ)従来技術
従来、 Na 、 K などのアルカリ金属イオンを選
択的に検出する方法としては、放射能検出器を用いる方
法があった。(b) Prior Art Conventionally, as a method for selectively detecting alkali metal ions such as Na and K, there has been a method using a radioactivity detector.
しかし、この検出器は、ラベル物質を用いたり、あるい
は放射能を生じるので汎用性に乏しく、またバンドの広
がりも大きいという欠点を有していた。However, this detector lacks versatility because it uses a label substance or generates radioactivity, and it also has the disadvantage of a large band spread.
また、これ以外の方法としては熱検出器を用いるものが
あるが、熱検出器は、サーミスターの自己熱のために、
流れに敏感であり、流れの変化に伴ないドリフトとなっ
て現われるという欠点を有しでいる。さらには、これら
の方法ではクロマトグラムをかいている途中にチャート
紙がなくなったり、装置が停電などで止まったり等の故
障が生じた場合は、再度試料を打ち込んで最初の過程か
ら測定を行わねばならなかった。Another method is to use a heat detector, but the heat detector is
It has the disadvantage that it is sensitive to flow and appears as a drift as the flow changes. Furthermore, with these methods, if a malfunction occurs such as running out of chart paper while drawing a chromatogram or the device stops due to a power outage, etc., the sample must be reloaded and the measurement restarted from the beginning. did not become.
(ハ) 目 的
この発明は、上記の事情に鑑みなされたもので、汎用性
のある。また熱の影qlも関係なくアルカリ金属イオン
を選択的に検出する方法を提供することを目的とする。(c) Purpose This invention was made in view of the above circumstances and has versatility. Another object of the present invention is to provide a method for selectively detecting alkali metal ions regardless of the influence of heat.
に)構成
この発明は、Na、K などのアルカリ金属イオンを含
有する試料をイオン交換樹脂を用いて各々のアルカリ金
属イオン成分に分離した後。B) Structure This invention is performed after a sample containing alkali metal ions such as Na and K is separated into each alkali metal ion component using an ion exchange resin.
順次分離される各アルカリ金属イオンをサイクリックポ
ルタンメトリーにより検出する検出方法である。This is a detection method in which each alkali metal ion that is sequentially separated is detected by cyclic portammetry.
(力 実Jm例
この発明を図面にもとづいて説明する。第1図はこの発
明の方法を実施するための装置を示す。1は移動相液溜
、2は送液ポンプ、3は試料導入部、4は陽イオン交換
樹脂(例えばAm1nex Q−15O8)が充てんさ
れているイオン交換カラム、8は支持電解塩が溶解して
いる溶液を封入した電気化学検出用セルである。このセ
ル8はポテンシオスタット9 、 Iineag Sw
eep電源10.レコーダ11と公知の方法ヤ幼囁七学
貢麦快檜吟≠=→ゴ惰セ磯峰七→で接続している。なお
5は恒温循環装置、6は流路切換バルブ、7は廃液留、
Wは作用電極、Cは対極。(Example) This invention will be explained based on the drawings. Fig. 1 shows an apparatus for carrying out the method of this invention. 1 is a mobile phase reservoir, 2 is a liquid feeding pump, and 3 is a sample introduction section. , 4 is an ion exchange column filled with a cation exchange resin (for example, Am1nex Q-15O8), and 8 is an electrochemical detection cell filled with a solution in which a supporting electrolyte is dissolved. Ostat 9, Iineag Sw
eep power supply 10. The recorder 11 is connected to the recorder 11 by a known method. In addition, 5 is a constant temperature circulation device, 6 is a flow path switching valve, 7 is a waste liquid reservoir,
W is the working electrode, C is the counter electrode.
Rは参照電極を各々示す。また、セル8内は。R each represents a reference electrode. Also, inside cell 8.
N2ボンベ(図示せず)からのノズル12が挿入されて
おり、酸素ガス除去が行えるようになっている。A nozzle 12 from an N2 cylinder (not shown) is inserted so that oxygen gas can be removed.
まずNaのみを選択的に定量する時の操作手順を説明す
る。試料が試料導入部3より打ち込まれイオン交換カラ
ム4に到達するのであるが。First, the operating procedure for selectively quantifying only Na will be explained. The sample is introduced from the sample introduction section 3 and reaches the ion exchange column 4.
このイオン交換カラム4で分離されて出てくる+
Na のリテンションタイムは第2図a)のように決ま
っているのでNaが出てくるまでは切換バルブ6により
カラム4からの流路を廃液溜7へ行くようにしておく。The retention time of +Na separated and released by this ion exchange column 4 is determined as shown in Figure 2 a), so until Na comes out, the flow path from the column 4 is connected to the waste liquid reservoir 7 by the switching valve 6. I'll make sure to go there.
次にNtのリテンションタイム付近になると切換バルブ
6を切換えて溶出液をセル8へ送り、Naが充分用たで
あろう時間にまたバルブ6を切換えて液を廃液溜7へ送
る。Next, when the retention time of Nt approaches, the switching valve 6 is switched to send the eluate to the cell 8, and when the Na has been used sufficiently, the valve 6 is switched again to send the solution to the waste liquid reservoir 7.
そして、このようにしてセル8へ送られたNaを含む溶
液に電圧を゛掃引させてサイクリックポルタングラムを
かかせて検出を行う。なお電圧掃引を行う前にセル8内
の溶液中にN2ガスを通じさせてサイクリックポルタン
プラムに02のピークが出現するのを防いでおかねばな
らない。このようにして得られるサイクリックポルタン
グラムが第2図b)に示しである。横軸は標準電極電位
、縦軸は電流値を示しており、横軸は定性に縦軸は定量
に利用される。よってNa の電位は−2,7vである
ことが知られているので、この電圧値に対するピーク高
さをめることによりNa の濃度がわかる。Detection is then performed by sweeping a voltage across the Na-containing solution sent to the cell 8 in this manner to apply a cyclic portangram. Note that before performing the voltage sweep, it is necessary to pass N2 gas into the solution in the cell 8 to prevent the appearance of the 02 peak in the cyclic portan plum. The cyclic portangram thus obtained is shown in FIG. 2b). The horizontal axis shows the standard electrode potential, and the vertical axis shows the current value, and the horizontal axis is used for qualitative determination and the vertical axis for quantitative determination. Therefore, since it is known that the potential of Na is -2.7V, the concentration of Na can be determined by calculating the peak height with respect to this voltage value.
次にNa、に、Rh 等を定性、定量分析する時の手順
を示す。この時もNaのリテンションタイム付近までは
切換バルブ6により溶出液を廃液溜7に送り、リテンシ
ョンタイム付近になるとバルブ6を切換えてアルカリ金
属イオンが全て溶出したであろう時まで溶出液をセル8
へ送る。セル8内へ入った溶液は除酸素した後同様に電
圧掃引してサイクリックポルタングラムをかかせる。こ
の場合ピークが多数現われるがそのピークに対応する電
圧が各々のイオンを現わし、そのピーク高さに相応する
電流値より濃度がまる。Next, we will show the procedure for qualitative and quantitative analysis of Na, Rh, etc. At this time as well, the eluate is sent to the waste reservoir 7 using the switching valve 6 until the Na retention time is reached, and when the retention time is near, the valve 6 is switched and the eluate is sent to the cell 8 until all the alkali metal ions have been eluted.
send to After the solution that has entered the cell 8 is deoxidized, it is similarly voltage swept to produce a cyclic portangram. In this case, many peaks appear, and the voltage corresponding to the peak represents each ion, and the concentration is lower than the current value corresponding to the peak height.
(へ)効果
この発明によれば、クロマトグラムをとらずに定量する
ことができるのでバンドの広がりに影響を受けず、また
、セル内に溶液が入っている間中何回でもサイクリック
ポルタングラムをかかせることができるので、測定の精
度も上がるという効果がある。さらには、測定の途中チ
ャート紙がなくなった等のアクシデントがあっても再度
試料を打ち込んで最初の過程から測定をしなくてもよい
ので試料のムダを省くという効果もある。(f) Effects According to this invention, it is possible to perform quantitative determination without taking a chromatogram, so it is not affected by band broadening, and the cyclic portanogram can be measured any number of times while the solution is in the cell. This has the effect of increasing measurement accuracy. Furthermore, even if there is an accident such as the chart paper running out during measurement, there is no need to reload the sample and start the measurement from the beginning, which has the effect of eliminating sample waste.
第1図は、この発明を実施するための装置の一実施例、
第2図a)はアルカリ金屑イオンのクロマトグラム、第
2図b)はNa のサイクリックポルタングラムである
。
j・・・・・・試料導入部 4・・・・・・イオン交換
カラム8・・・・・・電気化学検出用セル
9・・・・・・ポテンシオスタット
IQ−−−−・−l1nean Sweep[源W・・
−・・・作用電極 C・・・・・・対極R・・−・・・
参照電極FIG. 1 shows an example of an apparatus for carrying out this invention,
Figure 2a) is a chromatogram of alkali gold scrap ions, and Figure 2b) is a cyclic portangram of Na. j... Sample introduction part 4... Ion exchange column 8... Electrochemical detection cell 9... Potentiostat IQ-----l1nean Sweep [Gen W...
--- Working electrode C --- Counter electrode R ---
reference electrode
Claims (1)
からイオン交換樹脂を用いてアルカリ金属イオン成分を
分離した後、順次分離される各アルカリ金属イオンをサ
イクリックポルタンメトリーにより検出することを特徴
とするアルカリ金属イオン検出方法。It is characterized by separating alkali metal ion components from a sample containing alkali metal ions such as LNa and K using an ion exchange resin, and then sequentially detecting each alkali metal ion separated by cyclic portammetry. Alkali metal ion detection method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11662183A JPS607359A (en) | 1983-06-27 | 1983-06-27 | Alkaline metal ion detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11662183A JPS607359A (en) | 1983-06-27 | 1983-06-27 | Alkaline metal ion detection |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS607359A true JPS607359A (en) | 1985-01-16 |
Family
ID=14691715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11662183A Pending JPS607359A (en) | 1983-06-27 | 1983-06-27 | Alkaline metal ion detection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS607359A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0512093U (en) * | 1991-07-26 | 1993-02-19 | 日本耐酸壜工業株式会社 | Tape cutter |
-
1983
- 1983-06-27 JP JP11662183A patent/JPS607359A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0512093U (en) * | 1991-07-26 | 1993-02-19 | 日本耐酸壜工業株式会社 | Tape cutter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3907657A (en) | Gas analysis apparatus | |
EP0102958B1 (en) | Method for measuring ionic concentration utilizing an ion-sensing electrode | |
CA1199968A (en) | Automatic chromatographic metal detection | |
ES2033854T3 (en) | METHOD AND APPARATUS FOR ELECTROCHEMICAL MEASURES. | |
Underkofler et al. | Investigation of AC Polarography at Stationary Electrodes, with Application to Stripping Analysis. | |
EP2995941B1 (en) | Karl fischer titration method | |
Vogt et al. | Separation of metal ions by capillary electrophoresis–diversity, advantages, and drawbacks of detection methods | |
US3883414A (en) | Detector of trace substance in water | |
JPS607359A (en) | Alkaline metal ion detection | |
US4036704A (en) | Liquid chromatographical method | |
Cedergren | Coulometric trace determination of water by using Karl Fischer reagent and potentiometric end-point detection | |
Johansson | Analysis of column effluents by controlled-potential coulometry | |
KR102121732B1 (en) | (Electrolytic eluent modification device for suppressed ion chromatography and ion chromatography system with the same | |
US4468289A (en) | Coulometric titration method | |
US3835008A (en) | Automatic controlled-current coulometric environmental monitor | |
JP3116052B2 (en) | Environmental component measurement device | |
Eads et al. | Electrochemical Fractionation: Potentiostatic Chromatography and Elution Voltammetry. | |
Everett et al. | Coulometric Titrations with Photometric End Point | |
Propst | A High Sensitivity Scanning Coulometer with Automatic Background Correction and Proportional Scan Rate. Titration of Plutonium and Other Redox Species. | |
JPH0113059B2 (en) | ||
JPS6243134B2 (en) | ||
Vacik et al. | Analytical isotachophoresis | |
Wilson | Millicoulometric determination of n-values in the polarographic reduction of cadmium and iodate ions | |
JPH1038838A (en) | Flow type electrolytic analysis cell | |
JPS6066161A (en) | Method and device for simultaneous measurement of different species of ions |