JPS607353A - Gas sensitive element - Google Patents

Gas sensitive element

Info

Publication number
JPS607353A
JPS607353A JP11423383A JP11423383A JPS607353A JP S607353 A JPS607353 A JP S607353A JP 11423383 A JP11423383 A JP 11423383A JP 11423383 A JP11423383 A JP 11423383A JP S607353 A JPS607353 A JP S607353A
Authority
JP
Japan
Prior art keywords
gas
layer
catalyst
sensitive element
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11423383A
Other languages
Japanese (ja)
Other versions
JPH0315976B2 (en
Inventor
Tadashi Sakai
忠司 酒井
Osamu Takigawa
修 滝川
Masaki Katsura
桂 正樹
Masayuki Shiratori
白鳥 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11423383A priority Critical patent/JPS607353A/en
Publication of JPS607353A publication Critical patent/JPS607353A/en
Publication of JPH0315976B2 publication Critical patent/JPH0315976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a gas sensitive element which is excellent in response and durability by providing a specified catalytic layer on a gas sensitive body provided on a substrate. CONSTITUTION:A substrate 1 made of Al2O3 is equipped with a pair of electrodes 2 on its front and a heater 3 made of RuO2 on its back, and a gas sensitive body 4 is also provided on its surface by spattering method. On the body, a thin film of Al is formed by spattering, using the target of Al, and a porous anodic oxidized alumina layer 5 is formed by anodic oxidation. Over the layer, a catalytic metal layer 6 consisting of Pd-Pt is formed by spattering. A catalytic layer 7 composed of the alumina layer 5 and the catalytic metal layer 6 is stabilized by keeping the substrate at 440 deg.C for 30min by the heater. By this method, a gas sensitive element which is excellent in response and durability can be obtained.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は感ガス素子、特に触媒層を有する感ガス素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas-sensitive element, particularly to a gas-sensitive element having a catalyst layer.

[発明の技術的背景とその問題点] 従来から、各種のガスに接触して抵抗値の変化する例え
ば5n02系酸化物半導体等のガス感応体を用いた感ガ
ス素子について各種の研究がなされている。このような
感ガス素子においては、ガスに対する検出感度をあげる
ため等の目的で触媒を用いるが、この触媒を用いる感ガ
ス素子の1つの構造として、ガス感応体上に触媒層を設
けたものがある0 このような触媒層としては一般にM2O3等の担体にP
t等の触媒金属を混入した厚膜が用いられている。しか
しながら厚膜はペースト状の原料の塗布・焼結工程を経
て形成されるため、非常に再現性が悪く感ガス素子の特
性のばらつく場合があるという問題点があった。さらに
との厚膜は厚さが102μm程度のオーダーとなってし
まうため、ガス検出の際の応答速度が比較的遅いという
欠点があった。また通常感ガス素子はヒータを具備し、
ガス感応体を加熱しながらガス検出を行なうが、この様
に膜厚が厚いと触媒層内に温度勾配が生じ熱応力が発生
しやすく、これに伴ない触媒層にクラック等の生ずる恐
れがあった。さらに触媒層の膜厚が厚いと熱容量等の関
係でガス感応体の正確な温度設定が困難であり、感ガス
素子の特性にバラツキが生じてしまうという問題点もあ
った。
[Technical background of the invention and its problems] Various studies have been conducted on gas-sensitive elements using gas-sensitive materials, such as 5n02-based oxide semiconductors, whose resistance changes upon contact with various gases. There is. In such a gas-sensitive element, a catalyst is used for the purpose of increasing the detection sensitivity to gas, and one structure of a gas-sensitive element using this catalyst is one in which a catalyst layer is provided on a gas-sensitive member. Yes 0 Such a catalyst layer is generally made of P on a carrier such as M2O3.
A thick film containing a catalytic metal such as t is used. However, since the thick film is formed through a process of applying and sintering a paste-like raw material, there is a problem in that the reproducibility is very poor and the characteristics of the gas-sensitive element may vary. Furthermore, since the thickness of the thick film is on the order of 102 μm, there is a drawback that the response speed during gas detection is relatively slow. In addition, gas-sensitive elements are usually equipped with a heater.
Gas detection is performed while heating the gas sensing element, but such a thick film creates a temperature gradient within the catalyst layer, which tends to generate thermal stress, which may cause cracks in the catalyst layer. Ta. Furthermore, if the catalyst layer is thick, it is difficult to accurately set the temperature of the gas-sensitive element due to heat capacity, etc., and there is also the problem that the characteristics of the gas-sensitive element vary.

以上の様な厚膜の触媒層を用いた場合の欠点を解消すべ
く、触媒金属弗らなる薄膜を触媒層として用いることが
研究されている。薄膜はスパッタリング法、蒸着法等に
よシ焼結工程を経ないで形成され、再現性良くかつ膜厚
も数nm程度まで薄くすることができるので前述のよう
な欠点は解消できるものの新たな問題点が生ずる。
In order to overcome the drawbacks of using a thick catalyst layer as described above, research has been carried out on using a thin film of catalyst metal as the catalyst layer. Thin films are formed by sputtering, vapor deposition, etc. without going through a sintering process, and the film thickness can be reduced to a few nanometers with good reproducibility, so although the above-mentioned drawbacks can be overcome, new problems arise. A dot is produced.

すなわち感ガス素子使用時の高温下で触媒金属が凝集、
再結晶し、触媒能力が低下してしまうという問題点であ
る。これは、ガス感応体にガスが接触するように触媒層
は多孔質層となりでいるが。
In other words, the catalytic metal aggregates under high temperatures when the gas-sensitive element is used.
The problem is that it recrystallizes and reduces its catalytic ability. This is because the catalyst layer is a porous layer so that the gas comes into contact with the gas sensitive body.

このように凝集、再結晶してしまうと多孔質の状態が保
てなくなってしまうからである。
This is because if such aggregation and recrystallization occurs, the porous state cannot be maintained.

[発明の目的] 本発明は以上の点を考慮してなされたもので、応答性が
良く耐久性にも優れた感ガス素子を提供することを目的
とする。
[Object of the Invention] The present invention has been made in consideration of the above points, and an object of the present invention is to provide a gas-sensitive element having good responsiveness and excellent durability.

[発明の概要コ 本発明は、基板と基板上に設けられ測定対象ガスに接触
して抵抗値の変化するガス感応体と、このガス感応体に
設けられた一対の電極と、このガス感応体表面に設けら
れた触媒層とを有する感ガス素子において、前記触媒層
が、触媒とこの触媒が担持される多孔質の陽極酸化アル
ミナ層からなる担体とを具備したととを特徴とする感ガ
ス素子である。
[Summary of the Invention] The present invention comprises a substrate, a gas sensitive member provided on the substrate and whose resistance value changes upon contact with a gas to be measured, a pair of electrodes provided on this gas sensitive member, and a gas sensitive member provided on the substrate. A gas-sensitive element having a catalyst layer provided on its surface, wherein the catalyst layer comprises a catalyst and a carrier made of a porous anodized alumina layer on which the catalyst is supported. It is element.

本発明において基板としてはAA’+Oa、8iaN4
.BN。
In the present invention, the substrate is AA'+Oa, 8iaN4
.. B.N.

5R02等のセラミック基板等の耐熱性かつ絶縁性の基
板を用い、電極としてはAu、Pt等を用い、スクリー
ン印刷法、スパッタリング法、蒸着法等にょ)形成する
。この電極はガス感応体上で対向して設けられ、ガス感
応体と基板との間、ガス感応体と触媒層との間どちらに
設けても良い。
A heat-resistant and insulating substrate such as a ceramic substrate such as 5R02 is used, and the electrodes are made of Au, Pt, etc., and formed by a screen printing method, sputtering method, vapor deposition method, etc.). These electrodes are provided facing each other on the gas sensitive member, and may be provided either between the gas sensitive member and the substrate or between the gas sensitive member and the catalyst layer.

また測定対象ガスはCO、メタン等の還元性ガスであシ
ガス感応体としては、一般に用いられる5nOz系、Z
nO系、FezO3系等の測定対象ガスに接触してその
抵抗値の変化する酸化物半導体を用いる。
In addition, the gas to be measured is a reducing gas such as CO or methane, and the commonly used 5nOz series, Z
An oxide semiconductor whose resistance value changes when it comes into contact with a gas to be measured, such as an nO-based or FezO3-based gas, is used.

この5n02系、Z110系、 Fe2Q3第2Q物半
導体は、それぞれSnO2,ZnO,FezOaを主成
分とし、必要に応じNb”、Sb3+、Sb”+、Af
fl”、Cr3+等の副成分が添加されたものである。
These 5n02 series, Z110 series, and Fe2Q3 second Q semiconductors each have SnO2, ZnO, and FezOa as main components, and Nb'', Sb3+, Sb''+, and Af as necessary.
fl'', Cr3+, and other subcomponents are added.

このガス感応体は、スパッタリング法、蒸着法、塗布焼
結、有機化合物の熱分解法等により形成される。
This gas sensitive body is formed by a sputtering method, a vapor deposition method, a coating sintering method, a thermal decomposition method of an organic compound, or the like.

次に本発明における触媒層について述べる。Next, the catalyst layer in the present invention will be described.

触媒層は、触媒とこの触媒金属が相持される多孔質の陽
極酸化アルミナ層からなる担体とを備えている。この触
媒は、ガス応答性、ガス選択性等の感ガス特性を向上す
るために用いられるものであシ、相体は感ガス素子使用
時における触媒金属の凝集等による感ガス特性の低下を
防止するために用いられるものである。
The catalyst layer includes a catalyst and a carrier made of a porous anodized alumina layer on which the catalyst metal is supported. This catalyst is used to improve gas-sensitive characteristics such as gas responsiveness and gas selectivity, and the phase substance prevents deterioration of gas-sensitive characteristics due to agglomeration of catalyst metal when using a gas-sensitive element. It is used to

触媒としてはμhを除(PL属元素、すなわちPt、P
d、Rh、Ir、Osの少なくとも一種またはCuO,
NiO等の金属酸化物触媒を用いるとともできる。
As a catalyst, excluding μh (PL group elements, i.e. Pt, P
d, Rh, Ir, at least one of Os or CuO,
It can also be achieved by using a metal oxide catalyst such as NiO.

Ptfi元素を用いた場合は、長寿命であシ、安定性に
優れ、応答速度も向上する。またCnO等を用いた場合
はiso −C4H10等に対する感度を向上すること
が可能である。
When the Ptfi element is used, the life is long, the stability is excellent, and the response speed is also improved. Furthermore, when CnO or the like is used, it is possible to improve the sensitivity to iso-C4H10 or the like.

相体を形成する陽極酸化アルミナ層は、蒸着法、。The anodized alumina layer is vapor-deposited, forming a phase body.

スパッタリング法等によシアルミニウム層を形成した後
通常の陽極酸化処理を施すことKよシ形成される。
The aluminum layer is formed by forming a sialuminum layer by sputtering or the like and then subjecting it to a normal anodic oxidation treatment.

賜極酸化はA6.Ta等をある種の電解質中で陽極とし
て電圧を印加したとき、溶液からの原子状酸5i (H
2O−+H2+0)b5陽41i テ#、Ta )−反
応L、AA’203゜Ta205が形成されることを利
用したもので、密着性の良好な酸化膜を得ることができ
る。
The polar oxidation is A6. When a voltage is applied using Ta or the like as an anode in a certain electrolyte, the atomic acid 5i (H
2O-+H2+0)b5positive41iTe#,Ta)-reaction L,AA'203°Ta205 is formed, and an oxide film with good adhesion can be obtained.

このなかでもアルミニウムは酸化が進行することにより
、A−1203の被膜抵抗によりジ≧−ル熱を生じ、こ
のM2O3の部分的溶解が生じ、孔Cピット)が形成さ
れる。この時、リン酸、シーウ酸、硫酸等を用いると、
M2O3層は多孔質層となることは良く知られており、
例えば染料等を吸着させて着色する技術にへ゛用されて
いる。このようにして形成されて陽極酸化アルミナ層は
、孔径3〜5Qnm、孔密度108〜101o/cI/
18度ノ均−4孔分布ヲ有する多孔質膜となることは良
く知られている。
Among these aluminum, as oxidation progresses, heat is generated due to the film resistance of A-1203, and this M2O3 is partially melted, forming holes C pits. At this time, if phosphoric acid, shiulic acid, sulfuric acid, etc. are used,
It is well known that the M2O3 layer is a porous layer,
For example, it is used for coloring technology by adsorbing dyes, etc. The anodized alumina layer formed in this way has a pore diameter of 3 to 5 Qnm and a pore density of 108 to 101 o/cI/
It is well known that a porous membrane having a uniform 4-pore distribution of 18 degrees can be obtained.

(F 、KelllJer eta7. J 、Bde
ctrochem、Soc、、100411(1953
)参照)。
(F, KellJer eta7. J, Bde
ctrochem, Soc, 100411 (1953
)reference).

この陽極酸化アルミナ層は、均一な膜を形成した後に孔
を形成するため、非常に強固なものである。またガス感
応体とは酸化物どうしの結合となるため密着強度が大き
く、感ガス素子としての強度に優れたものとなる。
This anodized alumina layer is very strong because the pores are formed after forming a uniform film. Furthermore, since the gas-sensitive material is a bond between oxides, the adhesion strength is high, and the material has excellent strength as a gas-sensitive element.

また孔密度、孔径等の多孔質状態の再現性が非常に良く
、感ガス素子の特性としても非常に再現性良く製造が可
能となる。また非常に均一な多孔質状態が実現されるた
め、ガス感応体と測定雰囲気ガスとの接触状態が良好と
なシガスに対する感度、応答速度等の曲性が非常に向上
する。さらに一旦、蒸着法、スパッタリング法等により
形成した薄膜を用いるため、触媒層の膜厚を厚膜触媒に
比べかなり薄くすることができるため、測定対象ガスに
対する応答速度等の特性が向上する。
Furthermore, the reproducibility of the porous state such as pore density and pore diameter is very good, and the characteristics of the gas-sensitive element can be manufactured with very good reproducibility. In addition, since a very uniform porous state is achieved, the sensitivity to gas, the response speed, and other curvature are greatly improved when the contact state between the gas sensitive body and the measurement atmosphere gas is good. Furthermore, since a thin film formed by a vapor deposition method, a sputtering method, etc. is used, the thickness of the catalyst layer can be made considerably thinner than that of a thick film catalyst, so characteristics such as response speed to the gas to be measured are improved.

ベースト状の触媒層原料を塗布し焼結する厚膜を用いた
場合は102μm程度のオーダの膜厚しか得ることがで
きないが、本発明においては例えば膜厚1000 nm
以下程度の触媒層を得ることができる。
When using a thick film formed by applying and sintering a catalyst layer material in the form of a base, a film thickness of only about 102 μm can be obtained, but in the present invention, for example, a film thickness of 1000 nm can be obtained.
A catalyst layer of the following degree can be obtained.

また焼結工程を経て形成される厚膜を用いた場合焼結時
の熱歪みが残り、耐久性が悪くなってしまう。またガス
感応体の特性を劣化させないため等で焼結温度に制限が
あり、十分な強度が得られず耐久性が悪くなってしまう
Furthermore, when a thick film formed through a sintering process is used, thermal distortion during sintering remains, resulting in poor durability. In addition, there is a limit to the sintering temperature in order not to deteriorate the characteristics of the gas sensitive material, and sufficient strength cannot be obtained, resulting in poor durability.

このように陽極酸化法を用いた本発明の方が厚膜触媒を
用いた場合に比べ非常に優れている。
As described above, the present invention using the anodic oxidation method is much superior to the case where a thick film catalyst is used.

触媒層中の触媒は、担体中に混入しても良いし担体層上
に触媒からなる層を形成して、触媒層を2層構造として
も良い。
The catalyst in the catalyst layer may be mixed into the carrier, or a layer made of the catalyst may be formed on the carrier layer, so that the catalyst layer has a two-layer structure.

担体中に混入する場合は、あらかじめ触媒が混入された
アルミニウム層を形成した後、陽極酸化処理を施せば良
い。例えば、触媒金属とアルミニウムの混合体又は、所
望の面積比で調整されたものをターゲットとしてスパッ
タリング法でアルミニウムに触媒金属が混入した薄膜を
形成することができる。また2元スパッタリング法、2
元蒸着法等によシこの薄膜を形成することもできる。
When mixed into a carrier, an aluminum layer mixed with a catalyst may be formed in advance and then anodized. For example, a thin film in which the catalyst metal is mixed with aluminum can be formed by sputtering using a mixture of the catalyst metal and aluminum, or a target having a desired area ratio adjusted. Also, two-dimensional sputtering method,
This thin film can also be formed by an original vapor deposition method or the like.

この触媒金属の含有量は、あまり少ないと触媒層の触媒
能力が充分には発揮されず、あまシ多いと触媒層が絶縁
性を保てなくなる。ガス検出は、ガス感応体の抵抗値の
変化を測定して行なうが、ガス感応体上に設けられる触
媒層の絶R性が保たれていないと、ガス感応体自体の抵
抗値のみではなく、ガス感応体と触媒層との抵抗値を測
定することになり、ガス検出の精度が低下する。また触
媒層の抵抗値がガス感応体の抵抗値よシ小となると、ガ
ス感応体の抵抗値の測定が困難となシ実質的忙ガス検出
が不可能となってしまう。従って触媒層中の触媒の重量
比はM2O3に対し1重量%〜80重量饅程度が好まし
い。
If the content of this catalytic metal is too small, the catalytic ability of the catalyst layer will not be fully exhibited, and if it is too large, the catalyst layer will not be able to maintain its insulation properties. Gas detection is performed by measuring changes in the resistance value of the gas sensitive body, but if the absolute R property of the catalyst layer provided on the gas sensitive body is not maintained, not only the resistance value of the gas sensitive body itself but also Since the resistance value between the gas sensitive body and the catalyst layer is measured, the accuracy of gas detection decreases. Furthermore, if the resistance value of the catalyst layer becomes smaller than the resistance value of the gas sensitive body, it becomes difficult to measure the resistance value of the gas sensitive body, and it becomes virtually impossible to detect a busy gas. Therefore, the weight ratio of the catalyst in the catalyst layer is preferably about 1% to 80% by weight relative to M2O3.

まだこの触媒層の膜厚は、あまり薄いと触媒能力が十分
には発揮されず、またあまり厚いと測定対象ガスに対す
る応答性に劣るため、5nm〜11000n程度の範囲
が好ましい。
The thickness of this catalyst layer is preferably in the range of about 5 nm to 11,000 nm, because if it is too thin, the catalytic ability will not be fully exhibited, and if it is too thick, the responsiveness to the gas to be measured will be poor.

また2層構造を探る場合は、あらかじめアルミニウム層
を形成し陽極酸化アルミナ層とした後にスパッタリング
法、蒸着法等によシ例えばPt等の触媒金属層を形成す
れば良い。
If a two-layer structure is desired, an aluminum layer may be formed in advance to form an anodized alumina layer, and then a catalytic metal layer such as Pt may be formed by sputtering, vapor deposition, or the like.

陽極酸化によシ形成された孔は、孔径が最大恥nm程度
であるため、この孔をふさがないように触媒金属層の膜
厚は5nm以下程度が好ましい。また@極酸化アルミナ
層は、あまシ薄いと触媒金属層が孔の壁にもまわりこん
でしまい、触媒層とガス感応体との絶縁性が保てなくな
シ、測定の際にガス感応体の抵抗値の変化を読み取るこ
とが困難になる。またあまυ早すぎるとガス応答性が劣
るため、5nm〜11000n程度の膜厚が好ましい。
Since the pores formed by anodic oxidation have a maximum diameter of about 5 nm, the thickness of the catalytic metal layer is preferably about 5 nm or less so as not to block the pores. In addition, if the polar oxidized alumina layer is too thin, the catalytic metal layer will wrap around the walls of the pores, making it impossible to maintain insulation between the catalytic layer and the gas sensitive material. It becomes difficult to read the change in resistance value. Moreover, if it is too fast, the gas response will be poor, so a film thickness of about 5 nm to 11,000 nm is preferable.

[発明の効果] 以上説明したように、本発明のごとく陽極酸化アルミナ
層を担体とした触媒層を用いたことによシ、測定対象ガ
スに対する応答性が向上し、さらに触媒層が強固である
ため、耐久性も向上する。
[Effects of the Invention] As explained above, by using a catalyst layer using an anodized alumina layer as a carrier as in the present invention, the response to the gas to be measured is improved, and the catalyst layer is also strong. Therefore, durability is also improved.

〔発明の実施例] 本発明の実施例を以下説明する。[Embodiments of the invention] Examples of the present invention will be described below.

第1図は本発明の実施例を示すための図であシ感ガス素
子の断面図である。
FIG. 1 is a diagram showing an embodiment of the present invention, and is a sectional view of a sensitive gas element.

7間×4蒲×0.3闘1のM2O3基板(1)の表面を
鏡面研摩し、スクリーン印刷法を用い電極(2)として
Auからなる一対のくし形電極を設ける。M2O3基板
(1)の裏面にはスクリーン印刷法により RuO2か
らなるヒータ(3)を設ける。電極(2)及びヒータ(
3)にはそれぞれリード(2γ、(3γを設ける。また
電極を蒸着法等による薄膜とした場合は、リード接続部
を厚膜としリード接続部における基板との接着強度を増
すこともできる。次に、5n02にSb5+をドーピン
グしたターゲットを用い、スパッタリング法により膜厚
25 n mのガス感応体(4)を電極(2)間に形成
する。スパッタリングは、例えば0.01 mHg以上
のAr−02混合雰囲気中で行ない、薄膜形成後、大気
中で500℃に昇温し、酸化物半導体の安定化を図るこ
とが好ましい〇 この後、Mからなるターゲットを用いてガス感応体(4
)上に例えば0.01 m、Hg以上のAr雰囲気中で
のスパッタリングによシM薄膜(膜厚IQnm)を形成
する。この、υ薄膜を、例えば0.2m01/lのシェ
ラ酸溶液中、室温3Vの条件で陽極酸化し、多孔質な陽
極酸化アルミナ層(5)を形成する。
The surface of an M2O3 substrate (1) measuring 7cm x 4cm x 0.3cm is mirror-polished, and a pair of comb-shaped electrodes made of Au are provided as electrodes (2) using a screen printing method. A heater (3) made of RuO2 is provided on the back surface of the M2O3 substrate (1) by screen printing. Electrode (2) and heater (
3) are provided with leads (2γ and (3γ), respectively. If the electrode is made into a thin film by vapor deposition, etc., the lead connection part can be made into a thick film to increase the adhesive strength with the substrate at the lead connection part.Next Next, a gas sensitive material (4) with a film thickness of 25 nm is formed between the electrodes (2) by a sputtering method using a target in which 5n02 is doped with Sb5+. It is preferable to perform this in a mixed atmosphere, and after forming a thin film, raise the temperature to 500°C in the air to stabilize the oxide semiconductor. After this, using a target made of M, a gas sensitive material (4
), a thin M thin film (thickness IQ nm) of 0.01 m, for example, is formed by sputtering in an Ar atmosphere of Hg or more. This υ thin film is anodized, for example, in a 0.2 m01/l Scheler's acid solution at a room temperature of 3 V to form a porous anodic oxidized alumina layer (5).

次いで2Pd−PL合金をターゲットとして例えば0.
01 mmHfZOA「雰囲気中でスパッタリングを行
ない陽極酸化アルミナ層(5)上にlnm厚のPd−P
tからなる触媒金属層(6)を形成する。その後、ヒー
タ加熱によシ、例えば約440℃で開発保持し、陽極酸
化アルミナ層(5)と触媒金属層(6)からなる触媒層
(力の安定化を図ると逅が好ましい。
Next, using a 2Pd-PL alloy as a target, for example, 0.
01 mmHfZOA "1 nm thick Pd-P is deposited on the anodized alumina layer (5) by sputtering in an atmosphere.
A catalyst metal layer (6) consisting of t is formed. Thereafter, it is heated by a heater, for example, developed and maintained at about 440° C., and a catalyst layer consisting of an anodized alumina layer (5) and a catalyst metal layer (6) is preferably used to stabilize the force.

以上のようにして形成した感ガス素子の特性を第2図及
び第3図に示す。
The characteristics of the gas-sensitive element formed as described above are shown in FIGS. 2 and 3.

第2図は、H2ガス3000pl)m雰囲気中における
ガス応答特性を示した図である0感ガス素子の温度は2
00℃とし、l=Qからt二2 (min)までの間に
H2ガスを導入し、導入後3分間だった時点(1=5 
(min) )で排気し、ガス感応体の抵抗値の変化を
みた。抵抗値(R)は大気中の抵抗値を1000として
その相対値で表わした(曲線a)。比較例−1として相
体を用いず前記実施例と同様の触媒金属のみを11mの
膜厚でスパッタリングしたものも併せて示した(曲線b
)。
Figure 2 is a diagram showing the gas response characteristics in an atmosphere of 3000 pl)m of H2 gas.The temperature of the 0-sensitive gas element is 2
00°C, H2 gas was introduced from l=Q to t22 (min), and at the time of 3 minutes after introduction (1=5
(min) ), and the change in resistance value of the gas sensitive body was observed. The resistance value (R) was expressed as a relative value, with the resistance value in the atmosphere being 1000 (curve a). Comparative Example 1 is also shown in which only the same catalyst metal as in the above example was sputtered to a film thickness of 11 m without using a phase material (curve b
).

第2図から明らかなように、本発明の方がガス導入時の
立ち上がり、排気時の復帰ともに速やかに行なわれ、応
答物性に優れでいることがわかる。
As is clear from FIG. 2, it can be seen that in the present invention, both the start-up at the time of gas introduction and the return at the time of exhaust are performed more quickly, and the response properties are superior.

また感度も例えばt = 3 (min)でのRair
 (大気中抵抗値)/Rgas(ガス中抵抗値)を比較
すると、本発明の実施例の方が比較例−1に比べ200
倍以上も大きいことがわかる。
Also, the sensitivity is, for example, Rair at t = 3 (min).
(Resistance value in the atmosphere)/Rgas (Resistance value in gas) is compared, the example of the present invention is 200% higher than the comparative example-1.
It turns out that it is more than twice as large.

このように本発明においては、感度、応答特性ともにす
ぐれていることがわかる。
Thus, it can be seen that the present invention has excellent sensitivity and response characteristics.

また第3図にH2ガス200ppm雰囲気中におけるガ
ス感応体の抵抗値の飽和値に対する抵抗値の時間による
変化を示した。比較例−2として塗布・焼結によりP 
t −P d l5−11203 (P j/j疑20
3 = 1/100 (重量比)、Pt/Pd==1/
2 (原子比)の組成で数百μm程度の膜厚の触媒層を
、5n02系のガス感応体表面に設けたものを容易し、
同様の測定を行なった。実施例、比較例−2とも素子温
度は100’O程度とした。
Further, FIG. 3 shows the change in resistance value over time with respect to the saturation value of the resistance value of the gas sensitive member in an atmosphere of 200 ppm H2 gas. Comparative Example-2: P by coating and sintering
t -P d l5-11203 (P j/j doubt 20
3 = 1/100 (weight ratio), Pt/Pd==1/
A catalyst layer having a composition of 2 (atomic ratio) and a thickness of several hundred μm is easily provided on the surface of a 5n02-based gas sensitive body.
Similar measurements were made. In both Example and Comparative Example-2, the element temperature was about 100'O.

本発明の実施例(曲線a)の場合が1分権度で抵抗値が
飽和し安定した値となるのに比べ、比較例−2(曲線b
)の場合は3分経過後においても抵抗値が飽和せず、徐
々に飽和値に近づいていることがわかる。従って本発明
の感ガス素子の方がガス応答性に優れている。
In the case of the embodiment of the present invention (curve a), the resistance value saturates at one degree of decentralization and becomes a stable value, whereas in the case of comparative example-2 (curve b
), it can be seen that the resistance value does not saturate even after 3 minutes and gradually approaches the saturation value. Therefore, the gas-sensitive element of the present invention has better gas responsiveness.

また第4図に感度の経時変化を示す。Furthermore, Fig. 4 shows the change in sensitivity over time.

感ガス素子はガス検出時の素子温度を100’Oとし、
大気雰囲気中3分後の抵抗値Rgasを測定し、Ra1
r/Rgasをガス感度として算出した。この測定は2
時間ごとに行ない、Rgas測定後400℃1分間のヒ
ートクリーニングを行なった。
The gas-sensitive element has an element temperature of 100'O when detecting gas,
The resistance value Rgas was measured after 3 minutes in the air atmosphere, and Ra1
r/Rgas was calculated as gas sensitivity. This measurement is 2
Heat cleaning was performed at 400° C. for 1 minute after measuring Rgas.

比較のため前述の比較例−1と、比較例−2とでも同様
の測定を行なった。
For comparison, the same measurements were carried out in the aforementioned Comparative Example-1 and Comparative Example-2.

第4図から明らかなように、本発明の実施例(曲線a)
から1ooo時間を越えても安定なのに比べ、比較例−
1(曲線b)及び比較例−2(曲線C)においては数百
時間程度で感度が低下してしまうことがわかる。
As is clear from FIG. 4, the embodiment of the present invention (curve a)
Compared to the comparative example-
1 (curve b) and Comparative Example-2 (curve C), it can be seen that the sensitivity decreases after about several hundred hours.

このように本発明の感ガス素子は耐久性に非常に優れて
いることがわかる。
Thus, it can be seen that the gas-sensitive element of the present invention has extremely excellent durability.

次に各種触媒金属を用いた場合のH2ガス(3000p
pm )に対する感度を第1表に示す。ガス感応体は2
5nm厚の5n02 (Nb ドープ)を用い、陽極酸
化アルミナ層はlQnm厚、触媒金属層は1nm厚とし
た。
Next, H2 gas (3000 p
Table 1 shows the sensitivity to pm). Gas sensitive body is 2
5n02 (Nb doped) with a thickness of 5 nm was used, the anodized alumina layer was 1Q nm thick, and the catalyst metal layer was 1 nm thick.

比較例としては陽極酸化アルミナ層を用いず直接触媒金
属層を形成したものを用いた。
As a comparative example, a catalyst metal layer was directly formed without using an anodized alumina layer.

第 1 表 第1表から明らかなように、本発明の実施例は比較例に
比べ感度が大きいことがわかる。
Table 1 As is clear from Table 1, the Examples of the present invention have higher sensitivity than the Comparative Examples.

次に触媒を和体に混入した実施例を示す。構造は触媒層
を一層とした以外は第1図に示したものと同様とする。
Next, an example in which a catalyst was mixed into the compound will be shown. The structure is the same as that shown in FIG. 1 except that the catalyst layer is one layer.

ガス感応体は抵抗値制御のだめ五酸化ニオブ0.8 w
 t%を含んだ酸化スズのターゲットを用い、スパッタ
リング法により膜厚3Qnmとしだ。
The gas sensitive body is made of niobium pentoxide 0.8 w to control the resistance value.
Using a tin oxide target containing t%, a film thickness of 3 Q nm was formed by sputtering.

このガス感応体上にMとPtの面積比が97:3に調合
されたターゲットを用い、]QmTOrr Ar 10
0チ雰囲気でスパッタリングを行って50nm厚のM−
Pt混合膜を形成した。次いで0.2m01l/lのシ
ーウ酸溶液中で印加電圧10Vで加分加酸し、陽極酸化
を行った。この触媒層中のPt層は約10wt%程度で
あった0 このように形成された感ガス素子の抵抗値は、±20%
以内、H2ガスに対する感度(Ra1r/Rgas )
も±1010チのバラツキと非常にすぐれた再現性をも
って製造することができた。また200”0での連続試
験でも、1年を経た後、抵抗値変化率は±10%以内と
耐久性にも優れていた。さらに400”0(2分) :
 100℃(2分)のヒートサイクル試験においても素
子の劣化はほとんどみられなかった0また素子温度20
0°CでH2ガス10001)I)mに対し感度が約関
と高く、応答特性も、飽和値の90チに達するまでの時
間が加秒以内と非常に敏感であった。
Using a target prepared with an area ratio of M and Pt of 97:3 on this gas sensitive body, ]QmTOrr Ar 10
A 50 nm thick M-
A Pt mixed film was formed. Then, it was partially acidified in a 0.2 mOl/l shiulic acid solution at an applied voltage of 10 V to perform anodic oxidation. The Pt layer in this catalyst layer was about 10 wt%. The resistance value of the gas-sensitive element thus formed was ±20%.
Sensitivity to H2 gas (Ra1r/Rgas)
It was also possible to manufacture the film with a variation of ±1010 degrees and extremely high reproducibility. In addition, in continuous tests at 200"0, the resistance change rate was within ±10% after one year, indicating excellent durability.Furthermore, at 400"0 (2 minutes):
Almost no deterioration of the element was observed even in a heat cycle test at 100°C (2 minutes).
The sensitivity to H2 gas 10,001)I)m at 0°C was as high as approximately 10,000m, and the response characteristics were very sensitive, taking less than a second to reach the saturation value of 90ch.

第5図に触媒層の膜厚と感度(H2ioooppm )
の関係を示す。5nm〜11000n程度の膜厚が好適
であることがわかる。
Figure 5 shows the thickness and sensitivity of the catalyst layer (H2ioooppm).
shows the relationship between It can be seen that a film thickness of about 5 nm to 11000 nm is suitable.

さらに第6図に触媒金属(pt)量(wt係)と感度(
H2101000pp及び空気中抵抗値Ra1r(素子
温度200°C)を示した。1wt%〜80■・t%の
範囲、特に20wt%以下の範囲で感度が優れているこ
とがわかる。また80wt%を越えてしまうと触媒層の
抵抗値が減少し、素子の抵抗が減少してしまうため感度
も低下の一因をなしていると考えられる0
Furthermore, Figure 6 shows the amount of catalyst metal (pt) (wt) and sensitivity (
H210 showed 1000pp and an air resistance value Ra1r (device temperature 200°C). It can be seen that the sensitivity is excellent in the range of 1 wt% to 80 t%, especially in the range of 20 wt% or less. Moreover, if it exceeds 80 wt%, the resistance value of the catalyst layer decreases, and the resistance of the element decreases, which is thought to be one of the reasons for the decrease in sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す感ガス素子の断面図、第
2図及び第3図は応答特性図、第4図は経時特性図、第
5図は膜厚−感度特性図、第6図はPt量−感度及び抵
抗値特性図。 1・・・基板、 2・・・電極、 4・・・ガス感応体、 5・・・担体層、6・・・触媒
金属層、7・・・触媒層。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第 1 図 イQrJD 第 2 図 1t (rn;n) 填 4 図 1 特fM (/lr、)
FIG. 1 is a cross-sectional view of a gas-sensitive element showing an embodiment of the present invention, FIGS. 2 and 3 are response characteristic diagrams, FIG. 4 is a time-lapse characteristic diagram, and FIG. 5 is a film thickness-sensitivity characteristic diagram. Figure 6 is a Pt amount-sensitivity and resistance characteristic diagram. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Electrode, 4... Gas sensitive body, 5... Carrier layer, 6... Catalyst metal layer, 7... Catalyst layer. Agent Patent attorney Kensuke Chika (and 1 other person) Figure 1 IQrJD Figure 2 1t (rn;n) Filler 4 Figure 1 Special fM (/lr,)

Claims (4)

【特許請求の範囲】[Claims] (1)基板と、この基板上に設けられ測定対象ガスに接
触して抵抗値の変化するガス感応体と、このガス感応体
に設けられ炎一対の電極と、このガス感応体表面に設け
られた触媒層とを有する感ガス素子において、前記触媒
層が触媒と、この触媒が担持される多孔質の陽極酸化ア
ルミナ層からなる担体とからなることを特徴とする感ガ
ス素子。
(1) A substrate, a gas sensitive element provided on the substrate and whose resistance value changes upon contact with the gas to be measured, a flame pair of electrodes provided on the gas sensitive element, and a pair of electrodes provided on the surface of the gas sensitive element. 1. A gas-sensitive element having a catalyst layer comprising a catalyst layer and a carrier comprising a porous anodized alumina layer on which the catalyst is supported.
(2)前記触媒層が、前記ガス感応体上に形成された担
体層とこの担体層上に形成された触媒からなる層との2
層構造をとることを特徴とする特許請求の範囲第1項記
載の感ガス素子。
(2) The catalyst layer includes a carrier layer formed on the gas sensitive member and a layer made of a catalyst formed on the carrier layer.
The gas-sensitive element according to claim 1, which has a layered structure.
(3)前記触媒層が、触媒が混入された担体層からなる
ことを特徴とする特許請求の範囲第1項記載の感ガス素
子。
(3) The gas-sensitive element according to claim 1, wherein the catalyst layer is comprised of a carrier layer mixed with a catalyst.
(4)前記触媒がPt、Pd、Rh、Ir、Osのうち
少なくとも一種からなることを特徴とする特許請求の範
囲第1項記載の感ガス素子。
(4) The gas-sensitive element according to claim 1, wherein the catalyst is made of at least one of Pt, Pd, Rh, Ir, and Os.
JP11423383A 1983-06-27 1983-06-27 Gas sensitive element Granted JPS607353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11423383A JPS607353A (en) 1983-06-27 1983-06-27 Gas sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11423383A JPS607353A (en) 1983-06-27 1983-06-27 Gas sensitive element

Publications (2)

Publication Number Publication Date
JPS607353A true JPS607353A (en) 1985-01-16
JPH0315976B2 JPH0315976B2 (en) 1991-03-04

Family

ID=14632579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11423383A Granted JPS607353A (en) 1983-06-27 1983-06-27 Gas sensitive element

Country Status (1)

Country Link
JP (1) JPS607353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189553A (en) * 1988-01-25 1989-07-28 Riken Corp Tin oxide semiconductor for gas sensor and manufacture thereof
JP2008145148A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Thin-film gas sensor and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7526942B2 (en) * 2003-06-12 2009-05-05 Riken Keiki Co., Ltd. Contact combustion gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104392A (en) * 1978-02-02 1979-08-16 Toshiba Corp Gas sensitive element
JPS56168544A (en) * 1980-05-30 1981-12-24 Toyota Motor Corp Resistor type gas sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104392A (en) * 1978-02-02 1979-08-16 Toshiba Corp Gas sensitive element
JPS56168544A (en) * 1980-05-30 1981-12-24 Toyota Motor Corp Resistor type gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189553A (en) * 1988-01-25 1989-07-28 Riken Corp Tin oxide semiconductor for gas sensor and manufacture thereof
JPH0532697B2 (en) * 1988-01-25 1993-05-17 Riken Kk
JP2008145148A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Thin-film gas sensor and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0315976B2 (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US6012327A (en) Gas sensor and method for manufacturing the same
JPS58124943A (en) Threshold electric current type oxygen sensor attached microheater and threshold electric current type detecting device of oxygen concentration using said oxygen sensor
JP3287096B2 (en) Gas sensor using ionic conductor and method of manufacturing the same
JPS61155751A (en) Air/fuel ratio sensor and apparatus thereof
JPH0418261B2 (en)
JPH0769285B2 (en) Semiconductor for resistive gas sensor with high response speed
JPS607353A (en) Gas sensitive element
KR20040062625A (en) Thin film ethanol sensor and a process for the preparation
JPS6152420B2 (en)
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
US4198850A (en) Gas sensors
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JPS63158451A (en) Combustion control sensor
JPS60211347A (en) Gaseous hydrogen sensor
JPH0862168A (en) Nitrogen oxide detecting device
JPS5824850A (en) Film type oxygen sensor with heater and oxygen detector employing said sensor
JPH0692957B2 (en) Combustion control sensor
JPH02154139A (en) Oxygen sensor
JPS63311161A (en) Sensor for burning control
JP2679811B2 (en) Gas detector
JP2005226992A (en) Thin film gas sensor manufacturing method
JPS6176948A (en) Thin film gas detecting element
JPS5811846A (en) Preparation of gaseous no2 detector and its detecting method
JP2001235442A (en) Gas sensor
JP2002090329A (en) Humidity sensor and its manufacturing method