JPS6072850A - Preparation of fluorinated benzonitrile - Google Patents

Preparation of fluorinated benzonitrile

Info

Publication number
JPS6072850A
JPS6072850A JP17823483A JP17823483A JPS6072850A JP S6072850 A JPS6072850 A JP S6072850A JP 17823483 A JP17823483 A JP 17823483A JP 17823483 A JP17823483 A JP 17823483A JP S6072850 A JPS6072850 A JP S6072850A
Authority
JP
Japan
Prior art keywords
reaction
temperature
potassium fluoride
benzonitrile
dimethyl sulfoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17823483A
Other languages
Japanese (ja)
Other versions
JPH0258255B2 (en
Inventor
Masakatsu Nishimura
西村 正勝
Yasuhiko Hirai
平井 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP17823483A priority Critical patent/JPS6072850A/en
Publication of JPS6072850A publication Critical patent/JPS6072850A/en
Publication of JPH0258255B2 publication Critical patent/JPH0258255B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound in high yield, by reacting a nucleus- chlorinated benzonitrile with potassium fluoride in dimethyl sulfoxide with controlling the reaction temperature with the progress of the reaction. CONSTITUTION:A nucleus-chlorinated benzonitrile is reacted with potassium fluoride in a solvent of dimethyl sulfoxide, the temperature is kept at <=165 deg.C until the nucleus halogen substitution ratio reaches at least 35%, and the reaction is then completed at high temperature of >=165 deg.C to give a fluorinated benzonitile. The reaction rate of high-boiling by-product is suppressed by controlling the reaction temperature at two stages in the solvent, and since a large amount of potassium fluoride is present in the reaction system at the early stage of the reaction, the reaction is advanced at low temperature (preferably at 130-165 deg.C), so the final yield can be raised. The fluorine substitution ratio is obtainable by using part of the reaction solution by gas chromatography, etc.

Description

【発明の詳細な説明】 本発明は、フッ化ベンゾニトリル類の製造方法に関する
。詳しくは、医薬、農薬等の中間体として有用なフッ素
原子を有するベンゾニトリル化合物を工業的に有利に製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fluorinated benzonitriles. Specifically, the present invention relates to an industrially advantageous method for producing a benzonitrile compound having a fluorine atom, which is useful as an intermediate for pharmaceuticals, agricultural chemicals, and the like.

従来、フッ化ベンゾニトリル類は、非プロトン性極性溶
媒中で、核塩化ベンゾニトリル類(以下、単にクロルベ
ンゾニトリル化合物と記す)とフッ素化剤、特にフッ化
カリウムとを加熱下で反応させることによって製造しう
ろことが知られている。この場合、非プロトン性極性溶
媒としては極性が高く反応速度の点で有利なこと、室温
付近で液体であり取扱いが容易なこと、或いは比較的安
価である等の而から、特にジメチルスルホキシドが優れ
ている。また、反応温度は一般にジメチルスルホキシド
の沸点又は沸点近傍の出来るだけ高い温度で、通常17
5〜190℃で実施されていた。
Conventionally, fluorinated benzonitriles are produced by reacting nuclear chlorinated benzonitriles (hereinafter simply referred to as chlorobenzonitrile compounds) with a fluorinating agent, particularly potassium fluoride, in an aprotic polar solvent under heating. It is known that it is manufactured by Shiro. In this case, dimethyl sulfoxide is particularly preferable as an aprotic polar solvent because it has high polarity and is advantageous in terms of reaction rate, is liquid at around room temperature and is easy to handle, and is relatively inexpensive. ing. In addition, the reaction temperature is generally the boiling point of dimethyl sulfoxide or a temperature as high as possible near the boiling point, usually 17
It was carried out at 5-190°C.

しかしながら、上記した如き従来の方法では、目的とす
るフッ化ベンゾニトリル類のばか副生物が生成するため
、収率の低下を招くばかりでなく、反応後の分離操作が
煩雑となる。
However, in the conventional method as described above, a by-product of the desired fluorinated benzonitrile is produced, which not only causes a decrease in yield but also complicates the separation operation after the reaction.

特に原料としてベンゾニトリル化合物に結合した複数個
の塩素原子をジメチルスルホキシドの溶媒中でフッ素置
換して、複数個のフッ素を結合したベンゾニトリル化合
物を目的として得る場合には、収率の低下が著しい。こ
の際の副生物について詳しい分析を行ったところ例えば
1コ又は2コ以上のメチルチオ基に置換されたベンゼン
環を有する構造の化合物管、目約物より高沸点の副生物
が可成り多量に生成していることが分った。このような
副生物の抑制は、反応温度を低く維持することによって
可能であるが、反応速度が遅くなるため反応効率が悪く
なる。 本発明者等は上記問題に鑑み、ジメチルスルホ
キシド溶媒中でベンゾニトリル化合物に結合した塩素原
子をフッ素置換する反応について詳細に研究を行った結
果、反応温度を反応の進行に従ってコントロールするこ
とにより副生物の生成が良好に抑制され、目的とするフ
ッ化ベンゾニトリル類が効率よく得られることを見出し
、本発明を完成するに至った。
In particular, when multiple chlorine atoms bonded to a benzonitrile compound as a raw material are substituted with fluorine in a dimethyl sulfoxide solvent to obtain a benzonitrile compound bonded to multiple fluorines, the yield decreases significantly. . A detailed analysis of the by-products at this time revealed that, for example, a compound pipe with a structure having a benzene ring substituted with one or more methylthio groups, and a by-product with a higher boiling point than the compound, were produced in considerable amounts. I found out that I was doing it. Although such by-products can be suppressed by keeping the reaction temperature low, the reaction rate becomes slow and the reaction efficiency deteriorates. In view of the above problems, the present inventors conducted detailed research on the reaction of replacing chlorine atoms bonded to benzonitrile compounds with fluorine in a dimethyl sulfoxide solvent, and found that by controlling the reaction temperature as the reaction progresses, by-products can be produced. The present inventors have discovered that the production of fluorinated benzonitriles can be effectively suppressed and the desired fluorinated benzonitriles can be obtained efficiently, leading to the completion of the present invention.

即ち、本発明は根基化ベンゾニトリル類をフッ化カリウ
ムにより核ハロゲン置換を行うにあたり溶媒としてジメ
チルスルホキシドを用い、反応開始後からフッ素置換率
が少なくとも35%に達するまでは165℃以下に保持
し、その後165℃より高い温度で反応させることを特
徴とするフッ化ベンゾニ]・ジル類の製造方法である。
That is, the present invention uses dimethyl sulfoxide as a solvent when performing nuclear halogen substitution of radicalized benzonitriles with potassium fluoride, and maintains the temperature below 165 ° C. from the start of the reaction until the fluorine substitution rate reaches at least 35%. This is a method for producing benzoni]zyl fluoride, which is characterized in that the reaction is then carried out at a temperature higher than 165°C.

尚、本明細書で言うフッ素置換率とは、置換すべき全塩
素原子のうち、フッ素で置換されたものの割合(%)で
ある。便宜的には、反応液の一部を抜き出してガスクロ
マトグラフ、液体クロマトグラフ等により分析し、これ
に含まれる原利くクロルベンゾニトリル化合物)、中間
のフッ素化合物、及び目的のフッ素化物のモル比を知れ
ば、大体の値をめることが出来る。
The fluorine substitution rate as used herein is the proportion (%) of all chlorine atoms to be substituted with fluorine. For convenience, a portion of the reaction solution is extracted and analyzed by gas chromatography, liquid chromatography, etc. to determine the molar ratio of the raw chlorobenzonitrile compound, intermediate fluorine compound, and target fluorinated compound contained therein. If you know, you can roughly estimate the value.

例えば、原料がジクロルベンゾニトリルの場合、ある時
点における反応液中のジクロルベンゾニトリル、モノク
ロルモノフルオロベンゾニトリル、ジフルオロベンゾニ
トリルのモル比をA:B:Cとすれば、置換率は次式の
様になる。
For example, when the raw material is dichlorobenzonitrile, if the molar ratio of dichlorobenzonitrile, monochloromonofluorobenzonitrile, and difluorobenzonitrile in the reaction solution at a certain point is A:B:C, the substitution rate is calculated by the following formula: It will look like this.

置換率(%) −(B+ 20/ 2x (A+B十〇
))×100 本発明によれば、上記したような副生物の生成が極めて
小さくなり、目的物の収率が高くなると共に、反応速度
も十分速くなるため工業的に有利に実施することが出来
る。
Substitution rate (%) - (B+ 20/ 2x (A+B 10)) x 100 According to the present invention, the production of by-products as described above is extremely small, the yield of the target product is high, and the reaction rate is Since the speed is also sufficiently high, it can be carried out industrially advantageously.

3一 本発明の原料であるクロルベニドリル化合物は、例えば
、2−クロルベンゾニトリル、4−クロルベンゾニトリ
ル等、塩素原子がシアン基に対してオルト又はパラ位に
結合したもの、或いは、2.4−ジクロルベンゾニトリ
ル、2.6−ジクロルベンゾニトリル、2,4.6− 
t−リクロルベンゾニトリル等複数個の塩素原子がシア
ノ基に対してオルト又はパラ位に結合したものがある。
31 The chlorbenidryl compound which is the raw material of the present invention is, for example, a compound in which a chlorine atom is bonded to the ortho or para position with respect to a cyan group, such as 2-chlorobenzonitrile or 4-chlorobenzonitrile, or 2. 4-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 2,4.6-
Some chlorine atoms, such as t-lychlorobenzonitrile, have multiple chlorine atoms bonded to the ortho or para position with respect to the cyano group.

シアン基の数は、通常一つであるが、二つでも良い。こ
のような化合物としては、1,3−ジシアノ−4−クロ
ルベンゼン1.2−ジシアノ=3.4,5.6−チトラ
クロルベンゼン、1.4−ジシアノ−2,3,5,6−
チトラクロルベンゼン等が挙げられる。また、これらの
化合物の水素原子がアルキル基等に置換された化合物、
或いはシアノ基に対してメタ位がハロゲン原子で置換さ
れた化合物も用いられる。これらの中で2,4−ジクロ
ルベンゾニトリル又は2,6−ジクロルベンゾニトリル
に対して本発明を適用すると特4− に好ましい結果が得られる。
The number of cyan groups is usually one, but may be two. Such compounds include 1,3-dicyano-4-chlorobenzene, 1,2-dicyano=3.4,5,6-titrachlorobenzene, 1,4-dicyano-2,3,5,6-
Examples include chitrachlorobenzene. In addition, compounds in which the hydrogen atom of these compounds is substituted with an alkyl group, etc.
Alternatively, a compound in which the meta position of the cyano group is substituted with a halogen atom may also be used. Among these, particularly favorable results can be obtained when the present invention is applied to 2,4-dichlorobenzonitrile or 2,6-dichlorobenzonitrile.

本発明のジメチルスルホキシドは、十分脱水したものを
用いることが必要で、水分を有するものを用いた場合に
反応速度が遅いし、また副生物の生成量が増加し生成物
の収率が低下する。
The dimethyl sulfoxide used in the present invention must be sufficiently dehydrated; if it contains water, the reaction rate will be slow, and the amount of by-products will increase, reducing the yield of the product. .

脱水はアルミナ、水素化カルシウム等で処理する方法、
モレキュラーシーブのカラム中を通す方法、ベンゼンな
どを用いた共沸脱水法などが用いられる。上記したジメ
チルスルホキシドは、一般に原料のクロルベンゾニトリ
ルに対して、重量で2〜10倍の割合で用いられる。
Dehydration can be done using alumina, calcium hydride, etc.
Methods such as passing through a molecular sieve column and azeotropic dehydration using benzene etc. are used. The above-mentioned dimethyl sulfoxide is generally used in a weight ratio of 2 to 10 times that of the raw material chlorobenzonitrile.

本発明のフッ素化剤としてはフッ化カリウムが用いられ
る。一般にフッ化カリウムは潮解性を有するが、本発明
においては、十分乾燥させた状態で使用することが必要
で、さもないと上記のジメチルスルホキシドの場合と同
様な問題を生じる。そのためには湿式合成法で得たフッ
化カリウムを使用前に粉砕・焙焼したものを用いること
、或いはスプレー乾燥法によって得たフッ化カリウムを
用いることが行なわれる。特に最近、スプレー乾燥法に
より、従来の湿式合成のフッ化カリウムとは異なる微粒
状無水フッ化カリウムが合成し得ること、又これを用い
て種々の活性塩素を有する化合物の置換反応を行うと、
反応が速くなり収率も大きく向上することが報告されて
いる。本発明においても上記したスプレー乾燥法によっ
て得たフッ化カリウムを用いた場合、好ましい結果が得
られる。
Potassium fluoride is used as the fluorinating agent in the present invention. Generally, potassium fluoride has deliquescent properties, but in the present invention, it is necessary to use it in a sufficiently dry state, otherwise problems similar to those of dimethyl sulfoxide described above will occur. For this purpose, potassium fluoride obtained by a wet synthesis method is crushed and roasted before use, or potassium fluoride obtained by a spray drying method is used. In particular, it has recently been discovered that fine particulate anhydrous potassium fluoride, which is different from conventional wet-synthesized potassium fluoride, can be synthesized by spray drying, and that it can be used to perform substitution reactions of various active chlorine-containing compounds.
It has been reported that the reaction speeds up and the yield greatly improves. In the present invention, preferable results can also be obtained when potassium fluoride obtained by the above-described spray drying method is used.

フッ化カリウムの使用量は、原料クロルベンゾニトリル
化合物をフッ素置換するのに理論的に必要な当量数の1
〜2倍でよく、通常1〜1.5倍の範囲で用いられる。
The amount of potassium fluoride used is 1 equivalent of the theoretically necessary number to fluorine the raw material chlorobenzonitrile compound.
It may be up to 2 times, and is usually used in the range of 1 to 1.5 times.

特にスプレー乾燥法により得られたフッ化カリウムを用
いる場合、それより少なく、通常1.0〜1.2倍で用
いられる。
In particular, when potassium fluoride obtained by spray drying is used, it is used in a smaller amount, usually 1.0 to 1.2 times.

なお、フッ化カリウムによる置換反応を促進する目的で
、反応系にフッ化セシウム、塩化セシウム、第3アミン
、クラウンエーテル、ポリエチレングリコロール等の触
媒を一部添加することがあるが、この場合も同様に本発
明を実施しうる。
In addition, in order to promote the substitution reaction with potassium fluoride, some catalysts such as cesium fluoride, cesium chloride, tertiary amine, crown ether, polyethylene glycol, etc. may be added to the reaction system, but in this case also. The invention may be implemented in a similar manner.

本発明は、反応温度を反応の進行に従ってコントロール
することが特徴である。即ち、反応開始後から置換率が
少なくとも35%に達するまでの反応温度を165℃以
下に保持し、反応が上記した条件の範囲まで進行したと
ころで、以後165℃より高い温度で反応を完結させる
ことである。特に反応の初期の温度を165℃より低く
することは重要である。
The present invention is characterized in that the reaction temperature is controlled according to the progress of the reaction. That is, the reaction temperature is maintained at 165°C or less from the start of the reaction until the substitution rate reaches at least 35%, and once the reaction has progressed to the range of the above conditions, the reaction is thereafter completed at a temperature higher than 165°C. It is. In particular, it is important to keep the initial temperature of the reaction lower than 165°C.

本発明の方法が著しい効果を示す理由については、現時
点では明確ではないが、本発明者等は次の様に考えてい
る。即ち、■フッ素で置換された目的物より、一部のみ
フッ素で置換された化合物、更には原料の方が反応系中
でかなり不安定で該化合物自体、あるいはジメチルスル
ホキシドと反応して高沸点の副生物を生成し易い。■上
記高沸点の副生物を生成する反応速度は165℃以下で
は小さくなる。■反応の初期では反応系中に多量のフッ
化カリウムが存在するため、反応温度を130〜165
℃ど低くしても反7一 応はかなりの速度で進行する。
The reason why the method of the present invention exhibits remarkable effects is not clear at present, but the inventors of the present invention think as follows. In other words, the compound partially substituted with fluorine and the raw material are much more unstable in the reaction system than the target compound substituted with fluorine, and react with the compound itself or with dimethyl sulfoxide, resulting in a high boiling point. Easily generates by-products. (2) The reaction rate for producing the above-mentioned high-boiling-point by-products decreases below 165°C. ■At the beginning of the reaction, a large amount of potassium fluoride is present in the reaction system, so the reaction temperature is set at 130-165°C.
No matter how low the temperature is, anti-7 still progresses at a considerable speed.

この際、フッ素置換率の上限については特に制限されな
いが余りにも高いと、反応速度が遅くなるため、一般に
は80%以下で実施される。
At this time, the upper limit of the fluorine substitution rate is not particularly limited, but if it is too high, the reaction rate will be slow, so it is generally carried out at 80% or less.

本発明に従わずに、反応開始から反応が完結するまで同
温度で反応させた場合には、本発明の効果は得られない
。例えば、全反応を165℃以下の温度で実流した場合
、たとえ長時間反応させても、目的物の収率は極めて低
くなる。又、165℃よりも高い温度で反応させた場合
には、前述の如く副生物が増加するために、目的物の収
率は低下する。
If the reaction is carried out at the same temperature from the start to the completion of the reaction without following the invention, the effects of the invention cannot be obtained. For example, if the entire reaction is carried out at a temperature of 165° C. or lower, the yield of the target product will be extremely low even if the reaction is carried out for a long time. Furthermore, when the reaction is carried out at a temperature higher than 165°C, the yield of the target product decreases due to the increase in by-products as described above.

本発明において、反応温度を2段階にコントロールする
場合の温度条件の選定は、原料の種類や反応装置の11
1t造等で異なるため、あらかじめ実験を行い、前記し
た温度条件を満足する範囲内で決定すればよい。この場
合、反応開始後からフッ素置換率が35%好ましくは3
5〜80%に達するまでの反応温度が165℃より高い
場合には副生物が増加する。下限については特に制限8
− されないが、余り低いと反応が進行しないので一般には
130〜165°Cの範囲で行うことが好ましい。一方
、フッ素置換率が35%以上になった後の反応温度が1
65°Cより低い場合、反応速度が遅く、反応が完結し
ないこともある。上限については特に制限されるもので
はないが、最終的な反応率を上げるために175〜19
0℃が好ましい。
In the present invention, the selection of temperature conditions when controlling the reaction temperature in two stages is determined by the type of raw materials and the
Since the temperature differs depending on the one-t construction, etc., it is sufficient to conduct an experiment in advance and determine the temperature within a range that satisfies the above-mentioned temperature conditions. In this case, the fluorine substitution rate is 35% after the start of the reaction, preferably 35%.
If the reaction temperature to reach 5-80% is higher than 165°C, by-products will increase. Regarding the lower limit, especially limit 8
- However, if the temperature is too low, the reaction will not proceed, so it is generally preferable to carry out the reaction in the range of 130 to 165°C. On the other hand, the reaction temperature after the fluorine substitution rate reached 35% or more was 1
If the temperature is lower than 65°C, the reaction rate is slow and the reaction may not be completed. The upper limit is not particularly limited, but in order to increase the final reaction rate, it is 175 to 19
0°C is preferred.

本発明に従って反応の初期と後期における反応温度を決
めるに際しては、それぞれを一定としても良いし、いず
れか、或いは両方を経時的に上昇させてもよい。原料と
して用いるりOルベンゾニトリルの種類、反応温度等に
より異なるが反応時間は1〜20時間である。
When determining the reaction temperature at the initial stage and the latter stage of the reaction according to the present invention, each temperature may be kept constant, or either or both may be increased over time. The reaction time is 1 to 20 hours, although it varies depending on the type of tribenzonitrile used as a raw material, reaction temperature, etc.

本発明に従えば、目的物を82%以上の高い収率で得る
ことが出来る。
According to the present invention, the target product can be obtained with a high yield of 82% or more.

以上のように、本発明は反応温度を特定することが特徴
である。従って反応温度以外の条件、例えば反応槽の材
質、構造、或いは反応方法等については特に制限される
ものではないが反応に際しては激しく攪拌することが好
ましい。
As described above, the present invention is characterized by specifying the reaction temperature. Therefore, conditions other than the reaction temperature, such as the material and structure of the reaction vessel, or the reaction method, are not particularly limited, but it is preferable to stir vigorously during the reaction.

また、目的の生成物を分離し純度を高めるために反応後
、必要に応じて濾過、遠心分離等を行った後、水蒸気蒸
溜、常圧蒸溜又は減圧蒸溜、抽出等の操作を施す。通常
、溶媒は分離して再使用する。高沸点の副生物の生成が
抑えられることは分離操作の面では非常に有利である。
Further, in order to separate the desired product and increase its purity, after the reaction, filtration, centrifugation, etc. are performed as necessary, and then operations such as steam distillation, atmospheric distillation or vacuum distillation, extraction, etc. are performed. Typically, the solvent is separated and reused. Suppression of the production of high-boiling point by-products is very advantageous in terms of separation operations.

以下、本発明の詳細な説明するため実施例を示すが、本
発明は以下の実施例に限定されるものではない。
EXAMPLES Hereinafter, examples will be shown to explain the present invention in detail, but the present invention is not limited to the following examples.

実施例 1 2.6−ジフルオロベンゾニトリルを得る目的で、2.
6−シクロルベンゾニトリル40g、スプレー乾燥法に
より得られた無水フッ化カリウム31(]及びジメチル
スルホキシド141gをフラスコに入れ攪拌下で145
℃で1時間、155℃で1時間、更に185℃で1時間
30分加熱して反応を行った。155℃における反応を
行った後での反応液に含まれる2、6−ジクロルベンゾ
ニトリル。
Example 1 For the purpose of obtaining 2.6-difluorobenzonitrile, 2.
40 g of 6-cyclobenzonitrile, 31 g of anhydrous potassium fluoride obtained by spray drying, and 141 g of dimethyl sulfoxide were placed in a flask and heated to 145 g with stirring.
The reaction was carried out by heating at 155°C for 1 hour, then at 185°C for 1 hour and 30 minutes. 2,6-dichlorobenzonitrile contained in the reaction solution after performing the reaction at 155°C.

2−クロル−6−フルオロベンゾニトリル、 2.6−
シフルオロベンゾニ1〜リルはモル比で9=41:50
であった。これはフッ素置換率70.5%に相当する。
2-chloro-6-fluorobenzonitrile, 2.6-
Cyfluorobenzoni 1-lyl has a molar ratio of 9=41:50
Met. This corresponds to a fluorine substitution rate of 70.5%.

反応終了後、水を加え水蒸気蒸溜を行い溜出する油状物
を乾燥した後、減圧蒸溜を行い沸点98〜102°C(
30mmHg)の2.6=ジフルオロベンゾニトリル2
9.4(1(収率91%)。
After the reaction is complete, water is added and steam distillation is performed to dry the distilled oil, followed by vacuum distillation to reduce the boiling point to 98-102°C (
2.6=difluorobenzonitrile 2 at 30 mmHg)
9.4 (1 (yield 91%).

沸点103〜105℃(11aonHO)の2−クロル
−6−フルオロベンゾニトリル0.8gを得た。
0.8 g of 2-chloro-6-fluorobenzonitrile with a boiling point of 103-105°C (11aonHO) was obtained.

これら以外に白〜黄色のより沸点の高い副生物が固体と
して得られた。分析の結果、2−り11− ロルー6−(メチルチオ)ベンゾニトリル、2−フルオ
ロ−6−(メチルチオ)ベンゾニトリル等が含まれてい
ることが分った。なお、原料の2.6−ジクロルベンゾ
ニトリルは残っていなかった。
In addition to these, a white to yellow by-product with a higher boiling point was obtained as a solid. As a result of analysis, it was found that 2-di-11-lo-6-(methylthio)benzonitrile, 2-fluoro-6-(methylthio)benzonitrile, etc. were contained. Note that the raw material 2,6-dichlorobenzonitrile did not remain.

12− 比較例 1 反応温度を185℃、反応時間を2時間20分とした以
外は実施例1の場合と全く同様に反応と分離操作を行っ
た。これにより、2.6−シフルオロベンゾニトリル2
4.6(1(収率76%)と2−クロル−6−フルオロ
ベンゾニトリル0.7(1を得た。
12- Comparative Example 1 The reaction and separation operations were carried out in exactly the same manner as in Example 1, except that the reaction temperature was 185° C. and the reaction time was 2 hours and 20 minutes. This allows 2,6-cyfluorobenzonitrile 2
4.6 (1 (76% yield)) and 0.7 (1) of 2-chloro-6-fluorobenzonitrile were obtained.

高沸点の副生物は実施例1の場合と比較してはるかに多
く生成していることが分った。原料の2.6−ジクロル
ベンゾニトリルは残っていなかった。
It was found that much more high-boiling point by-products were produced than in Example 1. There was no remaining raw material 2,6-dichlorobenzonitrile.

なお、反応時間を2時間20分より短かくするとフッ素
反応が不十分となり、2−クロル−6−フルオロベンゾ
ニトリルの残存量が多くなった。
Note that when the reaction time was shorter than 2 hours and 20 minutes, the fluorine reaction became insufficient and the amount of 2-chloro-6-fluorobenzonitrile remaining increased.

比較例 2 145℃で45分、続いて185℃で2時間10分加熱
して反応を行った以外は実施例1の場合と全く同様に反
応と分離操作を行った。145℃における反応を行った
後でのフッ素置換率は13%であった。これにより、2
.6−シクロルベンゾニトリル25.5a (収率79
%)と2−クロル−6−フルオロベンゾニトリル1.8
gを得た。原料の2.6−ジクロルベンゾニトリルは残
っていなかった。比較例1の場合と同様に多量の高沸点
の副生物が得られた。反応時間を2時間10分より短か
くするどフッ素化反応が不十分となり、2−クロル−6
−フルオロベンゾニトリルの残存量が多くなった。
Comparative Example 2 The reaction and separation operations were carried out in exactly the same manner as in Example 1, except that the reaction was carried out by heating at 145° C. for 45 minutes and then at 185° C. for 2 hours and 10 minutes. The fluorine substitution rate after the reaction at 145°C was 13%. This results in 2
.. 6-Cyclolbenzonitrile 25.5a (yield 79
%) and 2-chloro-6-fluorobenzonitrile 1.8
I got g. There was no remaining raw material 2,6-dichlorobenzonitrile. As in Comparative Example 1, a large amount of high boiling point by-products were obtained. If the reaction time is shorter than 2 hours and 10 minutes, the fluorination reaction becomes insufficient and 2-chloro-6
-The amount of fluorobenzonitrile remaining increased.

実施例 2 2−クロルベンゾニトリル40q、スプレー乾燥法によ
り得られた無水フッ化カリウム20(l及びジメヂルス
ルホキシド140gをフラスコに入れ攪拌下で160℃
で2時間、180〜190℃で1時間30分加熱して反
応を行った。155℃における反応を行った後でのフッ
素置換率は68%であった。反応終了後、実施例1の場
合と同様の操作を行い、2−フルオロベンゾニトリル2
9.9(1を得た(収率85%)。
Example 2 40q of 2-chlorobenzonitrile, 20(l) of anhydrous potassium fluoride obtained by a spray drying method, and 140g of dimedyl sulfoxide were placed in a flask and heated at 160°C under stirring.
The reaction was carried out by heating at 180 to 190° C. for 1 hour and 30 minutes. The fluorine substitution rate after the reaction at 155°C was 68%. After the reaction was completed, the same operation as in Example 1 was performed to obtain 2-fluorobenzonitrile 2
9.9 (1 was obtained (yield 85%).

15− 比較例 3 反応温度を155°C1反応時間を7時間とした以外は
実施例1の場合と全く同様に反応を行った。反応液の一
部をサンプリングし、これに含まれる2、6−ジクロル
ベンゾニトリル、2−クロル−6−フルオロベンゾニト
リル、2.6−ジフルオロペンジニトリルのモル比をめ
たところ2 : 27 : 71であった。
15- Comparative Example 3 The reaction was carried out in exactly the same manner as in Example 1 except that the reaction temperature was 155° C. and the reaction time was 7 hours. A portion of the reaction solution was sampled, and the molar ratio of 2,6-dichlorobenzonitrile, 2-chloro-6-fluorobenzonitrile, and 2,6-difluoropendinitrile contained therein was determined to be 2:27: It was 71.

特許出願人 徳山曹達株式会社 16−patent applicant Tokuyama Soda Co., Ltd. 16-

Claims (1)

【特許請求の範囲】[Claims] 1)核塩化ベンゾニトリル類をフッ化カリウムにより核
ハロゲン置換を行うにあたり、溶媒としてジメチルスル
ホキシドを用い、置換率が少なくとも35%に達するま
では165℃以下に保持し、その後165℃よりも高温
で反応を完結せしめることを特徴とするフッ化ベンゾニ
トリル類の1!!造方法。
1) When performing nuclear halogen substitution on nuclear benzonitrile chlorides with potassium fluoride, dimethyl sulfoxide is used as a solvent, and the temperature is maintained at 165°C or lower until the substitution rate reaches at least 35%, and then at a temperature higher than 165°C. 1 of the fluorinated benzonitriles that are characterized by their ability to complete the reaction! ! Construction method.
JP17823483A 1983-09-28 1983-09-28 Preparation of fluorinated benzonitrile Granted JPS6072850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17823483A JPS6072850A (en) 1983-09-28 1983-09-28 Preparation of fluorinated benzonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17823483A JPS6072850A (en) 1983-09-28 1983-09-28 Preparation of fluorinated benzonitrile

Publications (2)

Publication Number Publication Date
JPS6072850A true JPS6072850A (en) 1985-04-24
JPH0258255B2 JPH0258255B2 (en) 1990-12-07

Family

ID=16044935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17823483A Granted JPS6072850A (en) 1983-09-28 1983-09-28 Preparation of fluorinated benzonitrile

Country Status (1)

Country Link
JP (1) JPS6072850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978769A (en) * 1988-08-12 1990-12-18 Bayer Aktiengesellschaft Process for introducing fluorine atoms into aromatic rings by nucleophilic exchange
US5466859A (en) * 1993-07-21 1995-11-14 Hoechst Aktiengesellschaft Process for preparing fluorobenzonitriles
WO1998008795A1 (en) * 1996-08-29 1998-03-05 Showa Denko K. K. Benzonitrile and process for preparing benzyl alcohol
CN103073418A (en) * 2011-11-23 2013-05-01 宁波九胜创新医药科技有限公司 Preparation method of 2-fluoro-3-chlorobenzoic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978769A (en) * 1988-08-12 1990-12-18 Bayer Aktiengesellschaft Process for introducing fluorine atoms into aromatic rings by nucleophilic exchange
US5466859A (en) * 1993-07-21 1995-11-14 Hoechst Aktiengesellschaft Process for preparing fluorobenzonitriles
WO1998008795A1 (en) * 1996-08-29 1998-03-05 Showa Denko K. K. Benzonitrile and process for preparing benzyl alcohol
US6020517A (en) * 1996-08-29 2000-02-01 Showa Denko K.K. Process for production of benzonitrile and benzyl alcohol
CN103073418A (en) * 2011-11-23 2013-05-01 宁波九胜创新医药科技有限公司 Preparation method of 2-fluoro-3-chlorobenzoic acid

Also Published As

Publication number Publication date
JPH0258255B2 (en) 1990-12-07

Similar Documents

Publication Publication Date Title
KR101249315B1 (en) Method for the preparation of sevoflurane
JPH0449257A (en) Production of 1-chloro-2,2,2-trifluoroethane
CA1246622A (en) Process for the preparation of diphenyl ethers
RU2368597C2 (en) Two-stage method of obtaining 2-(fluoromethoxy)-1,1,1,3,3,3-hexafluoroisopropane (sevoflurane)
JPS6072850A (en) Preparation of fluorinated benzonitrile
JPH01301636A (en) Production of 1,2,2,2-tetrafluoroethyl difluoromethyl ether
JPH024580B2 (en)
US20070191652A1 (en) Process for production of 1,1,1,2- tetrafluoroethane and/or pentafluorethane and applications of the same
JPH069535A (en) Production of 2,4,5-trifluorobenzonitrile
US9809514B2 (en) Method for producing (bromomethyl)cyclopropane and (bromomethyl)cyclobutane
US20190300460A1 (en) Process for improving the production of a chlorinated alkene by caustic deydrochlorination of a chlorinated alkane by recycling
JPH0616613A (en) 2-chloro-4,5-difluorobenzonitrile and its preparation
JPH0390057A (en) Chlorofluorobenzonitrile and production thereof
JPS6072851A (en) Preparation of fluorinated benzonitrile
EP0361282B1 (en) Branched perfluoroalkyl halides and process for the preparation thereof
CN107531640B (en) Method for producing 5-fluoro-1H-pyrazole-4-carbonyl fluoride
JPS5943933B2 (en) Liquid phase chlorination fluorination method
KR19990029811A (en) Method for preparing 2,3,4,5-tetrafluorobenzene derivative
US5432290A (en) Process for the preparation of 2,2-difluoro-1,3-benzodioxole
JP4051641B2 (en) Method for producing monofluorohalogenoalkane
JPH04224527A (en) Production of pentafluorodichloropropane
JPH0525066A (en) Production of 1,1,1,2,2-pentafluoro-3,3-dichloropropane and 1,1,2,2,3-pentafluoro-1,3-dichloropropane
US2827485A (en) Manufacture of fluorinated acetates
CA2089150C (en) Process for the preparation of substantially fluorinated alkyl bromides
JPS60184057A (en) Preparation of pentafluorobenzonitrile