JPS6072217A - Fabrication of thin film - Google Patents

Fabrication of thin film

Info

Publication number
JPS6072217A
JPS6072217A JP17807783A JP17807783A JPS6072217A JP S6072217 A JPS6072217 A JP S6072217A JP 17807783 A JP17807783 A JP 17807783A JP 17807783 A JP17807783 A JP 17807783A JP S6072217 A JPS6072217 A JP S6072217A
Authority
JP
Japan
Prior art keywords
substrate
cluster
argon
deposited
ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17807783A
Other languages
Japanese (ja)
Inventor
Hitoshi Hasegawa
長谷川 斉
Tsutomu Ogawa
力 小川
Masanori Kobayashi
正典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17807783A priority Critical patent/JPS6072217A/en
Publication of JPS6072217A publication Critical patent/JPS6072217A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To purify a substrate and a vapor-deposited film and to increase the tight combining force due to the knock-on effect by using the cluster ion beam which is formed by ionization of argon gas and acceleration when vapor-deposited film is formed on the substrate with the irradiation with an inert gas ion. CONSTITUTION:Resistance heating, electron-beam heating or the like causes the substance to be deposited to fuse, evaporate and adhere by ejection onto a substrate. At this time, an argon gas cluster ion beam is projected on the substrate. For obtaining this beam, argon gas is firstly ejected into high vacuum of 10<-4>- 10<-7>Torr from a nozzle to be made into a cluster beam of argon which is then ionized by electron shower. This ionized argon cluster is accelerated by use of an acceleration electrode of 3kV or so and it is projected onto the substrate to act on the film which is being deposited. At this time, if it is before the deposition, that is also useful for purification of the substrate surface.

Description

【発明の詳細な説明】 (イ)発明の技術分野 本発明は、薄膜形成方法、よシ詳しく述べるならば、真
空蒸着膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for forming a thin film, and more specifically, to a method for forming a vacuum-deposited film.

(イ)従来技術と問題点 真空蒸着法によって各種の蒸着物質を基板上へ射突させ
て導電体薄膜、磁性体薄膜、誘電体薄膜、半導体薄膜な
どを形成することができる。そして、結晶基板、アモル
ファス基板あるいはガラス基板上に蒸着中の蒸着物質に
不活性ガス・イオン(Ar+)を照射することによって
蒸着膜の特性を改善することが知られている。例えば、
ダルマ三つム(Ge)蒸着膜をガラス基板上に形成する
際に、Ar+ビーム(1,65key)を同時に照射す
ることによって、密着力の向上、均一膜の形成が図れる
(Hirsch+E、H,and Varga、1.に
、 −The Effect of Ion Irra
di−ation on the Adherence
 of Germanium Films、’Th1n
 5olid Films、vol、52.no、3+
pp、445−452+Aug、 1978.参照)。
(a) Prior Art and Problems The vacuum evaporation method allows the formation of conductive thin films, magnetic thin films, dielectric thin films, semiconductor thin films, etc. by injecting various vapor deposition substances onto a substrate. It is known that the characteristics of a deposited film can be improved by irradiating an evaporation material with inert gas ions (Ar+) while it is being deposited on a crystalline substrate, an amorphous substrate, or a glass substrate. for example,
When forming a Ge deposited film on a glass substrate, simultaneous irradiation with Ar+ beam (1,65 key) can improve adhesion and form a uniform film (Hirsch+E, H, and Varga, 1. -The Effect of Ion Irra
di-ation on the Adherence
of Germanium Films,'Th1n
5solid Films, vol, 52. no, 3+
pp, 445-452+Aug, 1978. reference).

しかし彦から、イオンビーム照射によって基板表面およ
び蒸着膜表面に吸着したガスおよび不純物(吸着膜)あ
るいは酸化膜を除去するにはl Q eV以上の射突エ
ネルギがあれば良く、またknock−on効果による
形成した蒸着膜の密着性向上を図るには数100 eV
以下の射突エネルギで良い。また、ガラス基板などの絶
縁物上に蒸着膜を形成する際に、イオン化したビームに
よって運ばれてくる電荷量は少ないほうが電荷蓄積によ
るトラプ/l/を回避できるので好ましい。
However, from Hiko, in order to remove the gases, impurities (adsorbed film), or oxide film adsorbed on the substrate surface and the deposited film surface by ion beam irradiation, it is sufficient to have an impact energy of 1 Q eV or more, and the knock-on effect In order to improve the adhesion of the vapor deposited film formed by
The following impact energy is sufficient. Further, when forming a vapor deposited film on an insulating material such as a glass substrate, it is preferable that the amount of charge carried by the ionized beam be small because trap /l/ due to charge accumulation can be avoided.

(ロ)発明の目的 Ar+ビームの射突エネルギが数100 eV以下でか
つ電荷量が少ない不活性ガス・イオン・ビームを照射し
ながら基板上に蒸着膜を形成する方法を提供することが
本発明の目的である。
(b) Purpose of the Invention The present invention provides a method for forming a vapor deposited film on a substrate while irradiating an inert gas ion beam with an Ar+ beam having an impact energy of several 100 eV or less and a small amount of charge. This is the purpose of

に)発明の構成 この目的が、不活性ガス・イオン・ビームに、アルゴン
ガスをクラスタのビームとし、イオン化しかつ加速した
クラスタ・イオン・ビームラ用いることを特徴とする薄
膜形成方法によって達成される。
B) Structure of the Invention This object is achieved by a thin film forming method characterized in that an inert gas ion beam is used as a cluster beam of argon gas, and an ionized and accelerated cluster ion beam beam is used.

クラスタとは500ないし2000個のガス分子からな
る塊状分子集団であって分子相互は緩く結合しているも
のである。このクラスタをイオン化するには分子を1個
だけプラスにすれば良く、エレクトロン・シャワーによ
って容易にアルゴン・クラスタをイオン化することがで
きる。
A cluster is a lumpy molecular group consisting of 500 to 2000 gas molecules, and the molecules are loosely bonded to each other. To ionize this cluster, it is sufficient to make only one molecule positive, and the argon cluster can be easily ionized by an electron shower.

(4)発明の実施態様例 木兄りJに係る薄膜形成方法では、蒸着物質を従来通ジ
に抵抗加熱、電子ビーム加熱などによって溶解し蒸発さ
せることで基板へ飛着させると同時に、アルゴンガス・
クラスタ・イオン・ビームを基板へ射突させるわけであ
る。このクラスタ・イオン・ビームは、まず、アルゴン
ガスをノズルから高真空中(104〜107Torr 
Qf ) ヘ噴射させることによシアルボンのクラスタ
のビームとし、このクラスタビームをエレクトロン・シ
ャワーによってイオン化することで得られる。このイオ
ン化したアルゴン・クラスタを加速電極(例えば、3k
V)を用いて加速して基板へ射突させて蒸着中の蒸着膜
に作用させ、蒸着前であれば基板表面を清浄化すること
になる。
(4) Examples of Embodiments of the Invention In the thin film forming method according to Kimiori J, the vapor deposition material is melted and evaporated by resistance heating, electron beam heating, etc. in the conventional manner, so that it flies onto the substrate, and at the same time, the argon gas is・
The cluster ion beam is fired into the substrate. This cluster ion beam is produced by first pumping argon gas through a nozzle in a high vacuum (104 to 107 Torr).
Qf ) is injected into a sialbone cluster beam, and this cluster beam is ionized by an electron shower. This ionized argon cluster is transferred to an accelerating electrode (for example, 3k
V) is used to accelerate the vapor and make it collide with the substrate to act on the vapor deposited film during vapor deposition, thereby cleaning the substrate surface before vapor deposition.

Q)発明の効果 本発明に係る薄膜形成方法のアルゴンガス・クラスタ・
イオン・ビームを用いることによって、従来のアルゴン
・イオン・ビームと同様に基板および蒸着膜の清浄化お
よびknock−on効果による密着力の向上が図られ
、さらに、低電荷の特色から従来の電荷蓄積を回避する
ことができる。そして、本発明をICなどの半導体装置
の製造、例えば、A、5等め金属薄膜、5tO2等の絶
縁膜等の薄膜形成に適用するは特に好ましい。
Q) Effects of the invention The argon gas cluster of the thin film forming method according to the invention
By using an ion beam, it is possible to clean the substrate and the deposited film in the same way as the conventional argon ion beam, and to improve the adhesion due to the knock-on effect. can be avoided. It is particularly preferable to apply the present invention to the manufacture of semiconductor devices such as ICs, for example, to the formation of thin films such as A, 5 grade metal thin films, and insulating films such as 5tO2.

Claims (1)

【特許請求の範囲】[Claims] 1、不活生ガス・イオンを照射しながら基板上に蒸着膜
を形成する薄膜形成方法において、前記不活性ガス・イ
オンに、アルゴンガスをクラスタのビームとし、イオン
化しかつ加速したクラスタ・イオン・ビームを使用する
ことを特徴とする薄膜形成方法。
1. In a thin film forming method in which a deposited film is formed on a substrate while irradiating inert gas ions, argon gas is used as a cluster beam for the inert gas ions, and ionized and accelerated cluster ions are added to the inert gas ions. A thin film forming method characterized by using a beam.
JP17807783A 1983-09-28 1983-09-28 Fabrication of thin film Pending JPS6072217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17807783A JPS6072217A (en) 1983-09-28 1983-09-28 Fabrication of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17807783A JPS6072217A (en) 1983-09-28 1983-09-28 Fabrication of thin film

Publications (1)

Publication Number Publication Date
JPS6072217A true JPS6072217A (en) 1985-04-24

Family

ID=16042216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17807783A Pending JPS6072217A (en) 1983-09-28 1983-09-28 Fabrication of thin film

Country Status (1)

Country Link
JP (1) JPS6072217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824741B2 (en) 2007-08-31 2010-11-02 Micron Technology, Inc. Method of forming a carbon-containing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824741B2 (en) 2007-08-31 2010-11-02 Micron Technology, Inc. Method of forming a carbon-containing material
US7964242B2 (en) 2007-08-31 2011-06-21 Micron Technology, Inc. Formation of carbon-containing material
US8163355B2 (en) 2007-08-31 2012-04-24 Micron Technology, Inc. Formation of carbon-containing material

Similar Documents

Publication Publication Date Title
JPS63210099A (en) Preparation of diamond film
JP2003524704A (en) Method for depositing thin film of indium oxide or indium tin oxide on polymer substrate
JPS6072217A (en) Fabrication of thin film
JPH0286824A (en) Vacuum deposition device
Morris Effects of charge on the structure of discontinuous thin gold films
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface
CN113718219B (en) Thin film deposition method and thin film deposition apparatus
Franks et al. Ion enhanced film bonding
Sakai et al. Crystal structure of aluminum films prepared by ion beam assisted technology
JPH0517309B2 (en)
JP2696987B2 (en) Thin film manufacturing method
JPS6321572Y2 (en)
JPS584920Y2 (en) Zinc oxide thin film production equipment
JPH048506B2 (en)
JPH05166726A (en) Manufacture of compound thin film
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
JPS62232180A (en) Superconducting material
JP2812517B2 (en) Ion plating method and apparatus
JPH051974B2 (en)
JPH0390567A (en) Thin film forming device
JPS6091625A (en) Manufacture of thin film
JPS628409A (en) Formation of transparent conducting metal oxide film
JPS62277718A (en) Formation of polycrystalline silicon thin-film
JPS584920A (en) Manufacture of semiconductor
JPH01219163A (en) Manufacture of flexible mirror