JPS6072207A - Foil-wound transformer - Google Patents

Foil-wound transformer

Info

Publication number
JPS6072207A
JPS6072207A JP17812183A JP17812183A JPS6072207A JP S6072207 A JPS6072207 A JP S6072207A JP 17812183 A JP17812183 A JP 17812183A JP 17812183 A JP17812183 A JP 17812183A JP S6072207 A JPS6072207 A JP S6072207A
Authority
JP
Japan
Prior art keywords
cooling
foil
cooling duct
cooling medium
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17812183A
Other languages
Japanese (ja)
Other versions
JPH0616453B2 (en
Inventor
Toshiaki Oitate
俊朗 追立
Hisashi Hirai
久之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58178121A priority Critical patent/JPH0616453B2/en
Publication of JPS6072207A publication Critical patent/JPS6072207A/en
Publication of JPH0616453B2 publication Critical patent/JPH0616453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To prevent an eddy current loss due to a leakage flux and to obtain the transformer having a high electrical insulation strength by composing the inlet and outlet parts for a cooling medium of a cooling duct out of a ceramic insulator when a metallic sheet and an insulating sheet are laminated and wound around an iron core and a cooling duct is arranged among them for cooling the windings by flowing the cooling medium through it. CONSTITUTION:A metallic sheet 2 and an insulating sheet 3 are laminated and wound around an iron core 1 to compose a low-voltage winding 4 and a high- voltage winding 5. At this time, a cooling duct 6 is arranged amoung the respective layers of the windings 4 and 5 in parallel to the iron core 1 and with being located between a winding end position 16. After that, a cooling medium 15 from a cooling medium tank 14 circulates in that and an insulation pipe 11 to be attached to an end connection part 17 for introducing and exhausting the cooling medium 15 in and out of duct 6 is made of a ceramic insulator. Namely, the pipe 11 is made of Al2O3, SiO2, BeO, SiC, AlN, Si3N4 and etc. to form the high-reliability transformer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は金和シートと絶縁シートを重ねて巻いた箔状の
巻線を備え、巻線内に冷却ダクトを内蔵する方式の箔巻
変圧器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a foil-wound transformer that is equipped with a foil-shaped winding formed by overlapping Kinwa sheets and insulating sheets and has a cooling duct built into the winding. Regarding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

鉄心に箔状の巻線を巻い゛た箔巻変圧器は、占積率がよ
いので小形、軽量化を実現できる特長がある。すでに数
kV数1100kVAi度の比較的電圧の低い小容量の
変圧器では実用化されている。
A foil-wound transformer, in which a foil winding is wound around an iron core, has a good space factor and can be made smaller and lighter. It has already been put to practical use in small capacity transformers with relatively low voltages of several kV and several 1100 kVAi degrees.

最近に至り、その優れた長所に鑑み、より高電圧、大容
量の例えば275kV、 300MVA変圧器に適用拡
大が要望されている。しかしこれを実現するための最大
の技術的問題点は、いかに冷却訃力を向上させ、高い絶
縁能力を巻線にもたらせるかにかかっている。また、こ
のような高常圧大答量変圧器は実用化はされていないが
、すでに公知であり研究されている箔巻変圧器は巻線内
に冷却ダクトを内蔵させ、絶縁特性の優れた冷りI#全
送り込み、巻線損失から発生する熱を直接的に冷やす、
いわばヒートパイプ式のものが考えられている。
Recently, in view of its excellent advantages, there has been a desire to expand its application to higher voltage, larger capacity transformers, such as 275 kV and 300 MVA. However, the biggest technical problem in realizing this is how to improve the cooling capacity and provide high insulation capacity to the windings. In addition, although such high normal voltage, large response capacity transformers have not been put into practical use, foil-wound transformers, which are already known and are being researched, have cooling ducts built into the windings and have excellent insulation properties. Cooling I# Full feed, directly cools the heat generated from winding loss,
A so-called heat pipe type is being considered.

第1図に従来公知の箔巻変圧器の構造を示す。FIG. 1 shows the structure of a conventionally known foil-wound transformer.

鉄心1の外側に全域シート2と絶縁シート3を重ねて、
公知の箔巻巻線方式の低圧巻線4と高1七巻線5を巻き
、低圧、高圧各巻線4,5とも夫々それら巻線間に環状
の冷却ダクト6を内蔵させろ。この冷却ダクト6には、
薄い隙間があり、フロン■−113や70リナート75
といった冷媒15が満されており、ポンプ7により外部
冷却系統へ循環させ、箔巻巻線内の発熱を冷媒の蒸発潜
熱で奪う。その蒸気を凝縮器8内において、水冷却9で
冷却して凝縮させるという方式が公知としである。更に
この一液化した冷媒を冷媒タンク14に貯め、ポンプ7
で巻線内に送り込むという冷媒循環冷却回路がとられる
。すなわち、この冷好循環回路と変圧器とは分離されて
いる。
Overlapping the area sheet 2 and the insulation sheet 3 on the outside of the iron core 1,
A low voltage winding 4 and a high 17 winding 5 are wound using a known foil winding method, and an annular cooling duct 6 is built in between each of the low voltage and high voltage windings 4 and 5, respectively. This cooling duct 6 includes
There is a thin gap, and Freon ■-113 or 70 Linato 75
The refrigerant 15 is circulated by the pump 7 to the external cooling system, and the heat generated within the foil winding is absorbed by the latent heat of evaporation of the refrigerant. There is a known method in which the steam is cooled and condensed in a condenser 8 by a water cooler 9. Furthermore, this mono-liquefied refrigerant is stored in the refrigerant tank 14, and the pump 7
A refrigerant circulation cooling circuit is used in which the refrigerant is fed into the windings. That is, the refrigeration circuit and the transformer are separated.

集液管10はステンレスなど金属で作られているが、そ
れと冷却ダクト6を接続するためには絶縁パイプ11が
用いられ、集液管10は夕/り12などのアース電位を
とる。冷却ダクト6の電位は巻線内に巻き込まれている
関係上はぼ巻線と同じ電位に電気的に結合されている。
The liquid collection pipe 10 is made of metal such as stainless steel, and an insulated pipe 11 is used to connect it to the cooling duct 6, and the liquid collection pipe 10 is at a ground potential such as a wire 12. The potential of the cooling duct 6 is electrically coupled to the same potential as the winding because it is wound within the winding.

巻線の絶縁はタンク12内に封入された絶縁油あるいは
SF6ガスといった絶縁媒体13で絶縁されている。
The windings are insulated with an insulating medium 13 such as insulating oil or SF6 gas sealed in a tank 12.

なお、第1図において本発明と、直接関係のない巻線の
リード線や、それをタンクの外側に引き出すブッシング
などは省略しである。
In FIG. 1, winding lead wires that are not directly related to the present invention, bushings that lead the wires to the outside of the tank, and the like are omitted.

以上説明したような方式の箔巻変圧器は冷却のための冷
媒が流れる循環回路と絶縁のための絶縁媒体13とは完
全に分離(セパレート)されているこのことから、この
方式の箔巻変圧器を特にここではセパレート式箔巻変圧
器と呼ぶことにする。
In the foil-wound transformer of the type described above, the circulation circuit through which the refrigerant for cooling flows and the insulating medium 13 for insulation are completely separated. Here, the transformer will be specifically referred to as a separate foil-wound transformer.

セパレート式の箔巻変圧器は冷媒の蒸発潜熱を利用して
いるので、優れた冷却特性を期待できるので、大容量変
圧器には有望である。しかし、第・1図に示すような従
来のセパレート式箔巻変圧器には、次の問題点がある。
Separate foil-wound transformers utilize the latent heat of vaporization of the refrigerant, so they can be expected to have excellent cooling characteristics, making them promising for large-capacity transformers. However, the conventional separate foil-wound transformer as shown in FIG. 1 has the following problems.

大容量のセパレート式箔巻変圧器全冷却するために、フ
ロント113.ソロリナート75等の冷媒を内部に通し
た冷却ダクトが多数取り付けられる。第ト 1図に示されるようなこの冷却ダクチ6は中空に形成さ
れ、冷媒流路は仕切9部で分割され、流体の経路と流量
が均一に変化するように設計されている。
Front 113. A number of cooling ducts through which a refrigerant such as Solorinat 75 is passed are installed. This cooling duct 6 as shown in FIG. 1 is formed hollow, and the coolant flow path is divided by partitions 9, so that the fluid path and flow rate are designed to change uniformly.

この冷却ダクトは熱伝導率の高い金属材料で形成され、
箔巻線の金属シートと絶縁シートの層間に挿入される。
This cooling duct is made of a metal material with high thermal conductivity.
It is inserted between the layers of the metal sheet and the insulation sheet of the foil winding.

これらの冷却ダクトは絶縁バイブとの接続によって前記
発明の技術的背景で記述した冷媒の循環路を形成する。
These cooling ducts form the refrigerant circulation path described in the technical background of the invention by connection with the insulating vibrator.

従って冷却ダクトと絶縁バイブとの接続部(以下冷却ダ
クトの端部接続部分)は設計上、箔巻線端部外に位置す
る事から■巻線間の導体に対する絶縁の問題、■対地間
絶縁の間顆、■漏洩磁束によるうず電流積の問題を解決
する十でこの冷却ダクトの端部接続部を絶縁化する事が
望まれていた。
Therefore, the connection part between the cooling duct and the insulated vibe (hereinafter referred to as the end connection part of the cooling duct) is located outside the end of the foil winding due to the design, so there is a problem of insulation for the conductor between the windings, and ■ insulation to ground. It has been desired to insulate the end connections of this cooling duct in order to solve the problem of eddy current product due to leakage magnetic flux.

従来、この冷却ダクトの端部接続部分は母体を金属とし
、その表面を絶縁物でコーティング、テーピング等を施
こし、絶縁処理を行にっていた。
Conventionally, the base of the end connection portion of this cooling duct is made of metal, and its surface is coated with an insulating material, taped, etc., to perform insulation treatment.

この方法によれば、上記問題のうち、巻線間の導体に対
する紗縁、及び対地間絶縁の問題は解決できるが、巻線
導体に流れる電流によって発生する漏洩磁束分布により
、冷却ダクトの端部接続部分において、接続部分の金属
導体の厚さの2乗に比例する過電流損が発生し、この冷
却ダクトの接続部分では負荷電流による抵抗損と渦電流
が加わって温度上昇が起こっていた。特に大電流で大容
量の箔巻変圧器では大きな問題となっている。%に冷却
効率を高める意味において、セパレート式箔巻変圧器で
は上記問題点は解決しなければならない重要な課題であ
った。
According to this method, among the above-mentioned problems, the problems of gauze edges for the conductor between the windings and insulation between the ground and the ground can be solved, but due to the leakage magnetic flux distribution caused by the current flowing in the winding conductor, the end of the cooling duct An overcurrent loss occurs at the connection portion that is proportional to the square of the thickness of the metal conductor at the connection portion, and at the connection portion of the cooling duct, resistance loss due to load current and eddy current are added, causing a temperature rise. This is a particularly serious problem in foil-wound transformers with large currents and large capacities. %, the above-mentioned problems were important issues that had to be solved in separate foil-wound transformers.

〔発明の目的〕[Purpose of the invention]

本発明の目的は1以上示した従来技術の諸問題を取り除
くものであシ、漏洩磁束による渦電流損の発生を防止し
、電気絶縁強度を向上させた信頼性の高い箔巻変圧器を
提供することを目的とする。
An object of the present invention is to eliminate the problems of the prior art listed above, and to provide a highly reliable foil-wound transformer that prevents the occurrence of eddy current loss due to leakage magnetic flux and improves electrical insulation strength. The purpose is to

〔発明・の概コ要〕[Summary of the invention]

本発明はセパレート式変圧器の冷却ダクトを箔巻線内に
組み込むに先立って、冷却ダクトの端部接続部分を電気
絶縁性、機械的強度特性、作業性の良好なセラミック無
機組成物で構成したことを特徴とする。
In the present invention, prior to incorporating the cooling duct of a separate transformer into the foil winding, the end connecting portion of the cooling duct is made of a ceramic inorganic composition that has good electrical insulation, mechanical strength characteristics, and workability. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

以下この発明の一実施例について説明する。 An embodiment of this invention will be described below.

第2図は冷却ダクトの斜視図である。点線は巻線端部の
位置を示した図である。斜線部Oeの冷却夕。
FIG. 2 is a perspective view of the cooling duct. The dotted line is a diagram showing the position of the winding end. Cooling in the shaded area Oe.

クト端部接続部分(I7)は巻線外の位置で巻回される
巻線構成である。この冷却ダクトの端部接続部は絶縁パ
イプ住υと接合され集液管へ通ずる。本発明においては
この冷却ダクト端部接線部を、絶縁化する上で、セラミ
ック組成物、例えば、アルミナAt203シリカ(Si
02)、BeO,SiC,高強度セラミックスとして知
られている。窒化アルミナAzN 、窒化ケイ素、Si
3N4を使用した。特に高絶縁性、熱伝導性、機械的強
度特性、耐腐食性、加工性等の点から考慮すれば、窒化
アルミナAtNが好ましい。
The cut end connection portion (I7) has a winding configuration that is wound at a position outside the winding. The end connection of this cooling duct is connected to an insulated pipe and leads to a liquid collecting pipe. In the present invention, a ceramic composition such as alumina At203 silica (Si
02), BeO, SiC, known as high-strength ceramics. Alumina nitride AzN, silicon nitride, Si
3N4 was used. In particular, alumina nitride AtN is preferred from the viewpoint of high insulation properties, thermal conductivity, mechanical strength characteristics, corrosion resistance, workability, and the like.

以上のように本発明によれば、冷却ダクトの端部接続部
分が絶縁されることにより、電気絶縁に関連する諸問題
をクリアーでき、特に従来技術に比べ、漏洩磁束による
渦電流損をなくす事が可能である。従って冷却効率を著
しく高められ、高品質で高信頼性のセパレート型箔巻線
を提供することができる。
As described above, according to the present invention, by insulating the end connection portion of the cooling duct, various problems related to electrical insulation can be overcome, and in particular, compared to the conventional technology, eddy current loss due to leakage magnetic flux can be eliminated. is possible. Therefore, cooling efficiency can be significantly increased, and a high quality and highly reliable separate foil winding can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は箔巻変圧器の構造を示す断面図、第2図は本発
明の一実施例による箔巻変圧器に用いる冷却ダクトの斜
視図である。
FIG. 1 is a sectional view showing the structure of a foil-wound transformer, and FIG. 2 is a perspective view of a cooling duct used in a foil-wound transformer according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 鉄心の周囲に金属シートとf(t、縁シートを重ねて巻
回してなる箔巻線内部に冷却ダクトを配置しその冷却ダ
クトに冷媒を通す事によって、巻線を冷却する箔巻変圧
器において、前記冷却ダクトの冷媒送入口部分および送
出口部分をセラミック絶縁体で構成にした事を特徴とす
る箔巻変圧器。
In foil-wound transformers, the windings are cooled by placing a cooling duct inside the foil winding, which is made by overlapping metal sheets and edge sheets wound around the iron core, and passing a refrigerant through the cooling duct. A foil-wound transformer, characterized in that a refrigerant inlet portion and an outlet portion of the cooling duct are made of a ceramic insulator.
JP58178121A 1983-09-28 1983-09-28 Foil winding transformer Expired - Lifetime JPH0616453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178121A JPH0616453B2 (en) 1983-09-28 1983-09-28 Foil winding transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178121A JPH0616453B2 (en) 1983-09-28 1983-09-28 Foil winding transformer

Publications (2)

Publication Number Publication Date
JPS6072207A true JPS6072207A (en) 1985-04-24
JPH0616453B2 JPH0616453B2 (en) 1994-03-02

Family

ID=16043016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178121A Expired - Lifetime JPH0616453B2 (en) 1983-09-28 1983-09-28 Foil winding transformer

Country Status (1)

Country Link
JP (1) JPH0616453B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180292B2 (en) 2004-02-16 2007-02-20 Tesla Engineering Ltd Cooling of coils in magnetic resonance imaging
JP2010099869A (en) * 2008-10-21 2010-05-06 Hitachi Constr Mach Co Ltd Firewood splitting machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204510A (en) * 1982-05-24 1983-11-29 Toshiba Corp Transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204510A (en) * 1982-05-24 1983-11-29 Toshiba Corp Transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180292B2 (en) 2004-02-16 2007-02-20 Tesla Engineering Ltd Cooling of coils in magnetic resonance imaging
JP2010099869A (en) * 2008-10-21 2010-05-06 Hitachi Constr Mach Co Ltd Firewood splitting machine

Also Published As

Publication number Publication date
JPH0616453B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
JPS6072207A (en) Foil-wound transformer
JPH06119827A (en) Litz wire
JPS5943702Y2 (en) evaporative cooling induction appliance
JPS6072206A (en) Foil-wound transformer
JP3274241B2 (en) Cooling structure for static induction equipment windings
JPS59168618A (en) Winding for transformer
JPS6072205A (en) Foil-wound transformer
JPS62244113A (en) Separate type foil-wound transformer core
JPS58218845A (en) Armature coil for rotary electric machine
JPS61179511A (en) Foil-wound transformer
JPH04323812A (en) Foil-wound transformer
JPS5933810A (en) Foil-wound transformer
JPS60241204A (en) Foil-wound transformer
JPS61160916A (en) Foil wound transformer
JP2003257752A (en) Secondary-side bus duct of three-phase transformer
JPS6115310A (en) Foil wound transformer
JPS59150411A (en) Foil winding transformer
JPS59121810A (en) Foil-wound transformer
JPS61188910A (en) Foil wound transformer
JPH06338422A (en) Gas-cooled stationary electric apparatus
JPS60150608A (en) Cooling duct for foil wound transformer
JPS6353909A (en) Duct spacer for foil winding transformer
JPS61188912A (en) Foil wound transformer
JPS59186315A (en) Foil winding transformer