JPS6071974A - Laser range finder - Google Patents

Laser range finder

Info

Publication number
JPS6071974A
JPS6071974A JP58181083A JP18108383A JPS6071974A JP S6071974 A JPS6071974 A JP S6071974A JP 58181083 A JP58181083 A JP 58181083A JP 18108383 A JP18108383 A JP 18108383A JP S6071974 A JPS6071974 A JP S6071974A
Authority
JP
Japan
Prior art keywords
target object
laser
distance
optical system
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58181083A
Other languages
Japanese (ja)
Inventor
Akiyoshi Mori
森 昭義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58181083A priority Critical patent/JPS6071974A/en
Publication of JPS6071974A publication Critical patent/JPS6071974A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/18Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein range gates are used

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To improve the distance measuring capacity by arranging an optical shutter between a receiving optical system and a photodetector and opening the shutter when a proper time corresponding to the distance to a target to be measured elapses after the generation time of a start pulse. CONSTITUTION:A part of the oscillation light from a laser oscillator 1 is made incident to a photo diode 3, and the start pulse which is its electric signal is led to a delay circuit 14. The delay circuit 14 drives a controller 16 controlling an optical shutter 15 when a proper time corresponding to the distance to the target to be measured elapses after the generation time of the start pulse, and the controller 16 opens the optical shutter 15.

Description

【発明の詳細な説明】 (発明の技術分野〕 。[Detailed description of the invention] (Technical field of invention).

この発明は、レーザ光のパルスが目標物までを往復する
時間を測定し距離を計測するレーザ測距装置の改良に関
するものである。
The present invention relates to an improvement in a laser distance measuring device that measures distance by measuring the time it takes for a pulse of laser light to travel back and forth to a target.

〔従来技術〕[Prior art]

レーザ測距装置の受信電力は目標物の大きさが送信レー
ザビームよりも小さな場合1次式で表わされる。
The received power of the laser ranging device is expressed by a linear equation when the size of the target object is smaller than the transmitted laser beam.

ここで Pr: 受信電力 Prニ レーザ発振器からのレーザ出力尖頭値 Kt: 送信光学系効率 Kr: 受信光学系効率 r: 目標物の反射率 D−受信光学系の上動口径 A: 目標物の面積 0: 送信レーザビーム広が9角 μ: 大気減衰定数 R: 目標物までの距離 上記+11式のように受信電力の大きさは目標物の反射
率1面積及び目標物までの距離に関係している0 第1図は、従来のレーザ測距装置の構成の一例を示した
ものである。レーザ発振器0)で巨大パルスレーザ光を
発振させ、この発振光の大部分を送信元学系(2)Kよ
り所定のビーム広がり角に調整して目標物に向けて発射
する。また発振光の一部はホトダイオード(3)へ入射
し、その電気信号がスタートパルス(送信時刻信号)と
して計数器(4)のカウンタのゲートを開き、カウンタ
はクロックパルス発振器(5)からのクロックパルスの
計数を開始する。また上記スタートパルスはレンジゲー
ト制御回路(6)に加えられる。レンジゲート制御回路
(6)はレンジゲート回路(7)のゲートの開閉を制御
するもので、上記スタートパルス発生時刻から測定対象
の目標物の距離に対応した適当な時間だけ遅延させた後
レンジケート回路(7)のゲートを開とする。
Here, Pr: Received power Prd Laser output peak value from the laser oscillator Kt: Transmitting optical system efficiency Kr: Receiving optical system efficiency r: Reflectance of target object D - Upper moving aperture of receiving optical system A: Target object Area 0: Transmitted laser beam spread at 9 angle μ: Atmospheric attenuation constant R: Distance to the target As shown in equation +11 above, the magnitude of the received power is related to the reflectance 1 area of the target and the distance to the target. 0 FIG. 1 shows an example of the configuration of a conventional laser distance measuring device. A laser oscillator 0) oscillates a gigantic pulsed laser beam, and most of this oscillated light is adjusted to a predetermined beam spread angle from a transmission source system (2)K and emitted toward a target. A part of the oscillated light also enters the photodiode (3), and the electrical signal serves as a start pulse (transmission time signal) to open the gate of the counter (4), which receives the clock from the clock pulse oscillator (5). Start counting pulses. The start pulse is also applied to the range gate control circuit (6). The range gate control circuit (6) controls the opening and closing of the gate of the range gate circuit (7), and after delaying the start pulse by an appropriate time corresponding to the distance of the target to be measured, the range gate is closed. Open the gate of circuit (7).

このスタートパルスからの遅延時間は任意に変化させる
ことができる。
The delay time from this start pulse can be changed arbitrarily.

一万、目標物によって反射された光は受信元学系(8)
によって集められ、背景光雑音を除去するためのフィル
タ(9)ヲ通って元検出器員へ導びかれる。
10,000, the light reflected by the target is the receiving source system (8)
and passed through a filter (9) to remove background optical noise and directed to the former detector member.

この受信信号はビデオ増幅器(Iυで増幅され、レンジ
ゲート回路(7)へ入る。レンジゲート回路(7)のゲ
ートが開の場合にはストップパルス(受信時刻信号)ト
シて計数器(4)のカウンタのゲートに加えられる。上
記スタートパルスとストップパルスによるゲートの開閉
の時間内に計数されたクロックパルスの数が距離に換算
され、距1IllIi値が表示器α擾に表示される。
This received signal is amplified by a video amplifier (Iυ) and enters the range gate circuit (7). When the gate of the range gate circuit (7) is open, a stop pulse (reception time signal) is generated and the counter (4) is activated. The number of clock pulses counted during the opening/closing time of the gate by the start pulse and stop pulse is converted into a distance, and the distance 1IllIi value is displayed on the display α.

照準望遠鏡O1は目標物を照準するために用いられる0 ところで測距する場合には送信レーザパルス光を測定対
象の目標物に向けて照射するのであるが。
The sighting telescope O1 is used to aim at a target object.In the case of distance measurement, the sighting telescope O1 is used to irradiate a transmitted laser pulse light toward the target object to be measured.

送信レーザビームの中に測定対象以外の目標物が同時に
存在する場合がある。このとき複数の受信パルス信号が
発生することになる。この様子を示したのが第2図であ
る。レーザ発振器(1)で発振した巨大レーザパルス光
は送信光学系(2)で所定のビーム広がり角に調整され
測定対象の目標物Aに向かって送信される。送信レーザ
ビームL中には測定対象の目標物Aの他に、測定対象以
外の目標物Bが存在しこれらの目標物からの受信パルス
信号a、bが同時に発生する。また近距離の大気Cがら
の後方散乱による受信パルス信号d、eが発生する場合
もある。このような状況において測定対象の目標物から
の受信パルス信号と他のものからの受信パルス信号を分
離して測距する方法としてレンジゲート法が通常用いら
れている。第3図は第1図で示した装置の第2図の状況
におけるレンジゲートの動作を示したものである。受信
パルス信号a、b、 (1,θは第2図の受信パルス信
号に相当するものである。第3図(a)は光検出器a0
へ入射する目標物(以下大気の後方散乱も含めていう)
からの受信光の時間的な様子をスタートパルス発生時刻
を起点として示したものである。第3図υ)はビデオ増
幅器aυの出力信号である。これらの複数の受信パルス
信号から測定対象の目標物からの信号aを分離するため
に、目視による判断又は他機器からの情報を得て第3図
(C)に示すようなレンジゲートを発生するように、レ
ンジゲート制御回路(6)のスタートパルス発生時刻か
らレンジゲートを開とする時刻までの遅延時間を調整す
る。このことにより第3図(a)のように測定対象の目
標物に対応したストラスパルス信号が得られる。
A target object other than the object to be measured may be present in the transmitted laser beam at the same time. At this time, a plurality of received pulse signals will be generated. Figure 2 shows this situation. The giant laser pulse light oscillated by the laser oscillator (1) is adjusted to a predetermined beam spread angle by the transmission optical system (2), and is transmitted toward the target object A to be measured. In addition to the target object A to be measured, there is a target object B other than the target object to be measured in the transmitted laser beam L, and reception pulse signals a and b from these targets are generated simultaneously. Further, the received pulse signals d and e may be generated by back scattering from the atmosphere C at a short distance. In such a situation, a range gate method is normally used as a method for distance measurement by separating the received pulse signal from the target object to be measured and the received pulse signal from other objects. FIG. 3 shows the operation of the range gate in the situation of FIG. 2 of the apparatus shown in FIG. 1. The received pulse signals a, b, (1, θ correspond to the received pulse signals in Fig. 2. Fig. 3 (a) shows the photodetector a0
(hereinafter referred to as including atmospheric backscatter)
This figure shows the temporal appearance of the received light from the start pulse starting from the start pulse generation time. FIG. 3 υ) is the output signal of the video amplifier aυ. In order to separate the signal a from the target object to be measured from these multiple received pulse signals, a range gate as shown in FIG. 3(C) is generated by visual judgment or by obtaining information from other equipment. Thus, the delay time from the start pulse generation time of the range gate control circuit (6) to the time when the range gate is opened is adjusted. As a result, a strus pulse signal corresponding to the target object to be measured is obtained as shown in FIG. 3(a).

ところでレーザ測距装置の受信電力の大きさは(1)式
かられかるように目標物の大きさ及び反射率に依存して
いる。第4図は第2図と同様の状況において、測定対象
以外の目標物Bが測定対象の目標物Aに比較して大きさ
及び反射率が非常に大きな値を有し、目標物Aに接近し
て近距離側の位置にある場合の従来のレーザ測距装置の
様子を示したものである。第4図(a)は第3図(a)
と同様に光検出器a・へ入射する受信光の様子を示した
もので目標物Bからの受信光強度は目標物Aに比べて非
常に大きい。このような場合には目標物Bからの強い受
信信号により第4図(b)に示すように元検出器OIあ
るいはビデオ増幅器aυが飽和して比較的近い時間領域
にある測定対象の目標物Aからの受信信号に対応するビ
デオ増幅器収りの出力信号が失なわれてしまうことにな
る。この場合第4図(C)のようにレンジゲートをかけ
ても第4図0)のごとく測定対象の目標物Aに対するス
トップパルス信号が得られないことになる。この強い反
射信号による光検出器員やビデオ増幅器Iの飽和を避け
るために従来から受信光学系(8)に光量絞シ装置を設
置する方法が用いられている。しかし、上述のような状
況においては、目標物Bからの強い反射光を絞9装置で
減光し1元検出器又はビデオ増幅器の飽和をなくした場
合、測定対象の目標物Aからの比較的弱い反射光も同様
に減光され、受信信号の検出可能レベル以下となり受信
できなくなることがある。
Incidentally, the magnitude of the received power of the laser distance measuring device depends on the size and reflectance of the target object, as can be seen from equation (1). Figure 4 shows that in the same situation as Figure 2, target object B, which is not the object of measurement, has a much larger size and reflectance than target object A, which is the object of measurement, and is approaching target object A. This figure shows the state of the conventional laser distance measuring device when it is located at a short distance side. Figure 4(a) is similar to Figure 3(a)
Similarly, this figure shows the state of the received light incident on the photodetector a. The intensity of the received light from the target object B is much larger than that from the target object A. In such a case, the strong reception signal from the target object B causes the original detector OI or the video amplifier aυ to become saturated, as shown in FIG. The output signal of the video amplifier corresponding to the received signal from the video amplifier will be lost. In this case, even if a range gate is applied as shown in FIG. 4(C), a stop pulse signal for the target object A to be measured cannot be obtained as shown in FIG. 4(0). In order to avoid saturation of the photodetector and the video amplifier I due to this strong reflected signal, a method has conventionally been used in which a light amount diaphragm device is installed in the receiving optical system (8). However, in the above situation, if the strong reflected light from the target object B is attenuated by the diaphragm 9 device and the saturation of the one-element detector or video amplifier is eliminated, the relatively strong reflected light from the target object A to be measured will be reduced. Weak reflected light is also attenuated in the same way, and may fall below the detectable level of the received signal, making it impossible to receive it.

〔発明の概要〕[Summary of the invention]

この発明は、これらの欠点を改善するために。 This invention aims to improve these shortcomings.

受信光学系と光検出器の間に受信光の通過及び遮へいの
制御ができる光シャッタを配置し、スタートパルス発生
時刻から測定対象の目標物の距離に対応した適当な時間
だけ遅延させた後上記元シャッタを開状態とする手段を
備えたものである。
An optical shutter that can control the passage and blocking of the received light is placed between the receiving optical system and the photodetector, and after delaying the start pulse by an appropriate amount of time corresponding to the distance of the target to be measured, the above It is equipped with means for opening the original shutter.

〔発明の実施例〕[Embodiments of the invention]

第5図はこの発明の一実施例を示すものである。 FIG. 5 shows an embodiment of the present invention.

図において(1)〜(51,f81〜OIは第1図と同
一のものである。レーザ発儂器111からの発振光の一
部がホトダイオード(3)へ入射し、その電気信号であ
るスタートパルスは遅延回路α4に導びかれる。遅延回
路Iは上記スタートパルス発生時刻から測定対象の目標
物の距離に対応した適当な時間だけ遅延させた後光シャ
ッタa!9を制nをする制御器(I[9を駆動させ、光
シャッタa!9′f開状態にする。なお光シャッタt1
!19としては応答が速く、使用レーザ波長に対して効
率の良いことが要求され、電気光学効果による偏光状態
の変化を利用する方式、光検出器a値への入射光の方向
を偏向させる方式等がある。
In the figure, (1) to (51, f81 to OI are the same as in Fig. 1. A part of the oscillation light from the laser oscillator 111 enters the photodiode (3), and the electric signal is the start The pulse is guided to a delay circuit α4.The delay circuit I is a controller that controls the halo shutter a!9, which delays the start pulse from the time when the start pulse is generated by an appropriate time corresponding to the distance of the object to be measured. (I[9 is driven to open the optical shutter a!9'f. Note that the optical shutter t1
! 19 requires a fast response and good efficiency for the laser wavelength used, such as a method that utilizes changes in the polarization state due to electro-optic effects, a method that deflects the direction of the incident light to the photodetector a value, etc. There is.

第6図は上述の第2図に示した状況におけるこの発明に
よる装置の動作の様子を示したもので。
FIG. 6 shows the operation of the apparatus according to the present invention in the situation shown in FIG. 2 above.

従来装置の動作を示す第4図に対応するものである。受
信パルス信号a、b、d、θは第2図の受信パルス信号
に相当するものである。
This corresponds to FIG. 4, which shows the operation of the conventional device. The received pulse signals a, b, d, and θ correspond to the received pulse signals shown in FIG.

測定対象の目標物Aからの反射光、目標物Aに比べて非
常に強い測定対象以外の目標物Bからの反射光及び近距
離の大気からの後方散乱光が受信光学系(8)で受信さ
れフィルタT91 ′fr通過して光シャッタalへ入
射する。この様子を第6図(a)に示す。
The reflected light from the target object A to be measured, the reflected light from the target object B other than the measured object which is very strong compared to the target object A, and the backscattered light from the atmosphere at a short distance are received by the receiving optical system (8). The light passes through the filter T91'fr and enters the optical shutter al. This situation is shown in FIG. 6(a).

光シャッタ(l!9は、従来装置のレンジゲートと同様
にして目視や他機器からの情報等によって、第6図(b
)に示すように測定対象の目標物Aからの受信パルス元
が受信される時刻の直前で開となるよう遅延回路Iを調
整する・これにより複数の受信パルス信号から測定対象
の目標物Aからの受信パルス信号aを分離することがで
き、しかも光検出器Ql及びビデオ増幅器ai+へ目標
物Bからの強い受信9号が入ることがないため、これら
の飽和現象により測定対象の目標物Aの受信パルス信号
を失う現象をなくすことができ、第6図(C)のように
測定対象物に対するストツ7”パルスを得ることができ
る。なお、上記実施例では光シャッタα場の開閉を(9
) 階段的に変化させる場合について説明したが適当な時間
帯だけを開状態とするように制御してもよいO 〔発明の効果〕 以上のようにこの発明にかかわるレーザ測距装置では、
受信元学系と光検出器の間に受信元の通過及び遮へいの
制御ができる元シャッタを配置しスタートパルス発生時
刻から測定対象の目標物の距離に対応した適当な時間だ
け遅延させた後上記シャッタを開状態とする手段を備え
ることによって1強い反射光を発生する目標物に近接す
る測定対象の目標物の測距ができ、測距性能の改善が図
れる効果がある。
The optical shutter (l!9) can be used as shown in Fig. 6 (b
), the delay circuit I is adjusted so that it opens just before the time when the received pulse source from the target object A to be measured is received. ・This allows the delay circuit I to open from the multiple received pulse signals from the target object A to be measured. The received pulse signal a of the target object A to be measured can be separated, and the strong received signal 9 from the target object B does not enter the photodetector Ql and the video amplifier ai+. It is possible to eliminate the phenomenon of losing the received pulse signal, and it is possible to obtain a 7" pulse for the object to be measured as shown in FIG.
) Although the explanation has been made regarding the case where the change is made in a stepwise manner, it may also be controlled so that the open state is maintained only during appropriate time periods.
A shutter that can control passage and shielding of the receiving source is placed between the receiving source system and the photodetector, and after delaying the start pulse generation time by an appropriate time corresponding to the distance of the target to be measured, the above By providing a means for opening the shutter, it is possible to measure a distance to a target to be measured that is close to a target that generates strong reflected light, and has the effect of improving distance measurement performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザ測距装置の構成図、第2図は送信
レーザビーム中に複数の目標物が同時に存在する場合の
受信信号の様子を説明する図、第3図及び第4図は光検
出器への入射光強度、ビデオ増幅器出力、レンジケート
信号及び計数器人力信号の時間関係を示し従来の装置の
動作を説明す(10) る図、第5図はこの発明の一実施例を示す図、第6図は
光シャッタへの入力光強度、光シャッタの透過率及びビ
デオ増幅器出力の時間関係を示し。 この発明の詳細な説明する図でおる。 図においてfl)はレーザ発振器、(2)は送信光学系
。 (4)は計数器、(8)は受信光学系、 Qlは光検出
器、aoはビデオ増幅器、1日は表示器、(1涌は照準
望遠鏡。 (I4は遅延回路、Qeは光シャッタ、aoは制御器で
おるO なお1図中同一あるいは相当部分には同一符号を付して
示しである。 代理人大岩増雄 (11) 第3図 (0−) 時間 14 図 (0−) (tb 時間 晴間
Figure 1 is a block diagram of a conventional laser ranging device, Figure 2 is a diagram explaining the state of the received signal when multiple targets are simultaneously present in the transmitted laser beam, and Figures 3 and 4 are FIG. 5 is a diagram showing the time relationship between the intensity of light incident on the photodetector, the output of the video amplifier, the ranging signal, and the manual input signal of the counter, and explaining the operation of the conventional device (10). FIG. FIG. 6 shows the time relationship between the input light intensity to the optical shutter, the transmittance of the optical shutter, and the video amplifier output. FIG. 2 is a diagram illustrating the invention in detail. In the figure, fl) is a laser oscillator, and (2) is a transmission optical system. (4) is a counter, (8) is a receiving optical system, Ql is a photodetector, ao is a video amplifier, 1st is a display, (1waku is a sighting telescope. (I4 is a delay circuit, Qe is an optical shutter, ao is a controller O. Note that the same or corresponding parts in Figure 1 are indicated with the same reference numerals. Agent Masuo Oiwa (11) Figure 3 (0-) Time 14 Figure (0-) (tb clear time

Claims (1)

【特許請求の範囲】[Claims] 巨大パルスを発振するレーザ発振器と、レーザ光を所定
のビーム広が9角にして目標物へ送信する送信光学系と
、目標物からの反射光を集光する受信光学系と、上記受
信光学系で集光された光信号を電気信号に変換する光検
出器と、上記光検出器からの電気信号を増幅するビデオ
増幅器と、レーザ光の送信時刻信号を目標物からの反射
光の受信時刻信号から測距値をめる計数器と、測距値を
表示する表示器と、目標物を照準する照準望遠鏡とで構
成されたレーザ測距装置において、上記受信光学系と上
記光検出器の間に受信光の通過及び遮へいの制御ができ
る光シャッタを配置し、レーザ光の送信時刻から目標物
の距離に対応した適当な時間だけ遅延させた後上記光シ
ャッタを開状態とする手段を備えたこと′fr特徴とす
るレーザ測距装置。
A laser oscillator that oscillates a huge pulse, a transmission optical system that transmits laser light to a target object with a predetermined beam spread of 9 angles, a reception optical system that collects reflected light from the target object, and the reception optical system described above. a photodetector that converts the optical signal focused by the laser beam into an electrical signal; a video amplifier that amplifies the electrical signal from the photodetector; and a video amplifier that converts the transmission time signal of the laser beam into a reception time signal of the reflected light from the target object. In a laser range finder comprised of a counter that calculates the measured distance value, a display that displays the measured distance value, and a sighting telescope that aims at the target, there is a distance between the receiving optical system and the photodetector. An optical shutter capable of controlling passage and shielding of the received light is disposed in the area, and means is provided for opening the optical shutter after delaying the transmission time of the laser beam by an appropriate time corresponding to the distance of the target object. A laser distance measuring device characterized by 'fr.
JP58181083A 1983-09-29 1983-09-29 Laser range finder Pending JPS6071974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58181083A JPS6071974A (en) 1983-09-29 1983-09-29 Laser range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58181083A JPS6071974A (en) 1983-09-29 1983-09-29 Laser range finder

Publications (1)

Publication Number Publication Date
JPS6071974A true JPS6071974A (en) 1985-04-23

Family

ID=16094513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181083A Pending JPS6071974A (en) 1983-09-29 1983-09-29 Laser range finder

Country Status (1)

Country Link
JP (1) JPS6071974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309283A (en) * 1989-05-24 1990-12-25 Nec Corp Position finder by laser
EP0415405A2 (en) * 1989-08-31 1991-03-06 Nec Corporation Device for obtaining distance information from an object by instantaneously illuminating the object by a light beam
JPH03216580A (en) * 1990-01-12 1991-09-24 Wan Ton Chyon Laser radar for detecting dynamic relative speed and relative distance
JP2012107984A (en) * 2010-11-17 2012-06-07 Denso Corp Distance measuring device and distance measuring program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309283A (en) * 1989-05-24 1990-12-25 Nec Corp Position finder by laser
EP0415405A2 (en) * 1989-08-31 1991-03-06 Nec Corporation Device for obtaining distance information from an object by instantaneously illuminating the object by a light beam
JPH03216580A (en) * 1990-01-12 1991-09-24 Wan Ton Chyon Laser radar for detecting dynamic relative speed and relative distance
JP2012107984A (en) * 2010-11-17 2012-06-07 Denso Corp Distance measuring device and distance measuring program

Similar Documents

Publication Publication Date Title
CA1103790A (en) Ceilometric method and apparatus
CN103148744B (en) Method for resisting backward dispersion for laser semi-active seeker
CN106093958A (en) Laser distance measurement methods based on double APD and device
EP0432887A2 (en) Pulsed coherent Doppler laser radar
US3712985A (en) Optical spatial filter for modification of received energy vs range
US5206697A (en) Tunable laser rangefinder and method
US3446555A (en) Optical ranging and detection system for submerged objects
JP3225682B2 (en) Distance measuring device
JPS60140170A (en) Method and device for measuring distance between two point
JPS6071974A (en) Laser range finder
JPH083530B2 (en) Water depth measuring device
GB1082069A (en) Velocity determination
US3220003A (en) Detector for varying carrier frequency signals
RU106759U1 (en) REVERSE SCATTERING SUPPRESSION DEVICE IN THE NEAR ZONE OF POLARIZATION LIDAR
US20230028596A1 (en) Lidar system calibration
JP2795263B2 (en) Distance measurement simulator
JPH11304909A (en) Laser radar with electro-optical correction device for signal light
JPH0619479B2 (en) Rain, snow and fog identification method and device
JPS58113831A (en) Measuring device for loss distribution
JP3096795B2 (en) Tracking ranging system
CA1087285A (en) Laser rangefinders
JPH06102086A (en) Laser measuring device
SU1430926A1 (en) Contact-free method of determining water attenuation index
RU606442C (en) Device for determining opt char of atm
GB2108348A (en) Doppler lidar