JPS6070918A - Overcurrent relay - Google Patents

Overcurrent relay

Info

Publication number
JPS6070918A
JPS6070918A JP17858883A JP17858883A JPS6070918A JP S6070918 A JPS6070918 A JP S6070918A JP 17858883 A JP17858883 A JP 17858883A JP 17858883 A JP17858883 A JP 17858883A JP S6070918 A JPS6070918 A JP S6070918A
Authority
JP
Japan
Prior art keywords
detection circuit
element detection
circuit
transformer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17858883A
Other languages
Japanese (ja)
Inventor
宮津 多佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP17858883A priority Critical patent/JPS6070918A/en
Publication of JPS6070918A publication Critical patent/JPS6070918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (al技術分野 この発明は変圧器に接続された負荷の短絡事故等の際に
、変圧器を電力系統から切り離すための過電流継電器に
関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field This invention relates to an overcurrent relay for disconnecting a transformer from a power system in the event of a short-circuit accident or the like of a load connected to the transformer.

(bl従来技術とその欠点 高圧の電力系統の受電端等では、遮断器を介して変圧器
が接続され、遮断器と変圧器との間には過電流継電器を
設置して過負荷および短絡事故から変圧器を保護してい
る。第1図は、遮断器と変圧器との間に設けられた1相
の変流器CTと、この変流器CTに接続された従来の過
電流継電器OCRを示すブロック図である。過電流継電
器OCRは、過負荷によるところの過電流を検出する限
時要素検出回路1と、突発的な短絡事故による過渡的な
過電流を検出する瞬時要素検出回路2とを有している。
(bl Conventional technology and its disadvantages) At the receiving end of a high-voltage power system, a transformer is connected via a circuit breaker, and an overcurrent relay is installed between the circuit breaker and the transformer to prevent overloads and short circuits. Figure 1 shows a one-phase current transformer CT installed between a circuit breaker and a transformer, and a conventional overcurrent relay OCR connected to this current transformer CT. It is a block diagram showing the overcurrent relay OCR.The overcurrent relay OCR includes a time-limited element detection circuit 1 that detects an overcurrent caused by an overload, and an instantaneous element detection circuit 2 that detects a transient overcurrent caused by a sudden short circuit accident. have.

限時要素検出回路1は、検出した過電流の大きさに応じ
てトリップ時間を設定するための反限時回路3を介して
トリップ用リレーXに接続されている。したがって、過
負荷による過電流を変流器CTを介して限時要素検出回
路1が検出すると、過電流の大きさに応じてトリップ用
リレーXにトリップ信号を供給し、図示してない遮断器
を開放する。また、図示してない変圧器に接続された負
荷に短絡事故が起きると、瞬時要素の動作時間は数10
m秒と非常に短く設定されているので、限時要素検出回
路1が動作するまでに瞬時要素検出回路2が動作して遮
断器を開放する。
The time limit element detection circuit 1 is connected to a trip relay X via an inverse time limit circuit 3 for setting a trip time according to the magnitude of the detected overcurrent. Therefore, when the time-limiting element detection circuit 1 detects an overcurrent due to an overload via the current transformer CT, a trip signal is supplied to the trip relay X according to the magnitude of the overcurrent, and a circuit breaker (not shown) is activated. Open. Additionally, if a short circuit occurs in a load connected to a transformer (not shown), the operating time of the instantaneous element will be several tens of seconds.
Since the time is set to be very short, m seconds, the instantaneous element detection circuit 2 operates to open the circuit breaker before the time-limited element detection circuit 1 operates.

ところが遮断器を投入して変圧器を電力系統に接続する
とき、変圧器の鉄心の磁気飽和のため定格電流の士数倍
にも及ぶ過渡的な励磁突入電流が数ザイクルから数秒に
も亘って流れ、この励磁突入電流を瞬時要素検出回路2
が検出して過電&、継電器OCRが誤動作を起こすこと
がある。特に、近年変圧器が小型化し、定常時の磁気特
性を改善するため高透磁率の鉄心材料が使用されるに従
って励磁突入電流は大きくなり、過電流継電器OCRの
誤動作が増加してきた。
However, when the circuit breaker is turned on and the transformer is connected to the power grid, the magnetic saturation of the transformer's core causes a transient excitation inrush current that is several times the rated current for several cycles to several seconds. This excitation inrush current is detected by the instantaneous element detection circuit 2.
may detect an overcurrent & cause the relay OCR to malfunction. In particular, as transformers have become smaller in recent years and iron core materials with high magnetic permeability have been used to improve magnetic characteristics during steady state, the excitation inrush current has increased, leading to an increase in malfunctions of overcurrent relays (OCR).

そこで過電流継電器OCRの誤動作を防止するには、瞬
時要素検出回路2の動作電流の設定値を高めればよいが
、動作電流値を高めることば同一電力系統に接続された
他の機器との保護協調上適当ではない。また、励磁突入
電流の第2高調波成分を検出して過電流継電器OCRに
抑制をかける方法もあるが、短絡電流中にも第2高調波
成分を含んでいるので、励磁突入電流と短絡電流とを完
全に判別できない。このため、従来の過電流継電器OC
Rは、遮断器投入時の誤動作を有効に防ぎ得ないという
欠点を有していた。
Therefore, in order to prevent the overcurrent relay OCR from malfunctioning, it is sufficient to increase the setting value of the operating current of the instantaneous element detection circuit 2. It's not appropriate. Another method is to detect the second harmonic component of the magnetizing inrush current and suppress the overcurrent relay OCR, but since the short circuit current also contains the second harmonic component, the magnetizing inrush current and short circuit current cannot be completely determined. For this reason, the conventional overcurrent relay OC
R had the disadvantage that it could not effectively prevent malfunctions when the circuit breaker was closed.

(C1発明の目的 この発明は上記の実情に鑑みなされたもので、遮断器投
入時の変圧器の励磁突入電流による誤動作を防止できる
過電流継電器の提供を目的とする(di発明の構成 この発明は要約すれば、瞬時要素検出回路の動作値を全
動作領域に亘って遮断器と直列に接続される変圧器の励
磁突入電流により大きな値にする反限時特性を与える反
限時回路を、前記瞬時要素検出回路に接続したことを特
徴とする。
(C1 Purpose of the Invention This invention was made in view of the above-mentioned circumstances, and its purpose is to provide an overcurrent relay that can prevent malfunctions caused by magnetizing inrush current of a transformer when a circuit breaker is closed. In summary, an inverse time-limiting circuit that provides an inverse time-limiting characteristic that makes the operating value of the instantaneous element detection circuit a larger value over the entire operating range due to the magnetizing inrush current of the transformer connected in series with the circuit breaker, It is characterized by being connected to an element detection circuit.

(el実施例 第2図は変流器CTに接続されたこの発明の実施例であ
る過電流継電器のブロック図、第3図は同過電流継電器
の動作時間特性を示す図である。
(El Embodiment FIG. 2 is a block diagram of an overcurrent relay according to an embodiment of the present invention connected to a current transformer CT, and FIG. 3 is a diagram showing operating time characteristics of the same overcurrent relay.

第2図において、この過電流継電器OCRは、第1図に
示す従来の過電流継電器OCRに瞬時要素の反限時回路
4を設けたものである。反限時回路4は、公知の限時要
素の反限時回路3と殆ど同じ構成を持つが、応答性を高
めるため時定数は小さく設定されている。瞬時要素検出
回路2の後段に反限時回路4が接続されたことにより、
瞬時要素検出回路2からトリップ用リレーXに供給され
るトリップ信号は、第3図に実線で示すように反限時時
性を有するようになる。このため、瞬時要素検出回路2
の動作値が全動作領域に亘って変圧器の励磁突入電流よ
り大きな値となる。すなわち、過電流の値が大きい範囲
において、一点鎖線で示す従来の過電流継電器と同じ数
10m秒でトリップ信号を供給する定限時特性であるが
、瞬時要素検出回路2の保護範囲であっても過電流値が
小さい範囲では反限時時性を有する。この反限時時性の
ため、瞬時要素動作特性曲線が一点鎖線で示す従来の瞬
時要素動作特性曲線のように、二点鎖線で示す変圧器の
励磁突入電流特性曲線と交叉することはない。変圧器の
励磁突入電流は、第3図に示すように時間とともに減衰
する。遮断器が投入されて電源に接続されると、変圧器
には最初の1〜2112は定格電流の十数倍に及ぶピー
ク値Aの電流が流れ、それから徐々に減衰して電流は2
〜3秒後に定常値Bに落ち着く。したがって、瞬時要素
動作特性曲線が従来の過電流継電器のように減衰する励
磁突入電流特性曲線と交叉すると誤動作を起こすが、こ
の発明の過電流継電器OCRでは瞬時要素動作特性曲線
が反限時特性を有して励磁突入電流特性曲線と交叉しな
いため、励磁突入電流によって誤動作を起こすことはな
い。使用上において、瞬時要素動作特性が数10m秒の
定限時動作となる設定値は、遮断器と直列に接続した変
圧器の%インピーダンスで規定される2次側短絡時の電
流値より小さくする。概略値で示すと、変圧器の%イン
ピーダンスを4%として変圧器の定格電流の20〜25
倍である。したがって、変圧器のインピーダンスで規定
される短絡電流から変圧器のインピーダンスと、接続し
た負荷との共振によるところの異常な短絡電流に対して
は、数10m秒の定限時特性となって遮断器を開放する
。変圧器の%インピーダンスで規定される2次側短絡時
の電流より小さい故障電流に対しては、第3図に示すよ
うに反限時特性となって遮断器を開放する。なお、瞬時
要素動作特性曲線の反限時特性部分の傾きは、適当な反
限時特性をもたせるため、第3図に示すように励磁突入
電流特性曲線と略平行になるように反限時回路4の時定
数等を設定することが望ましい。
In FIG. 2, this overcurrent relay OCR is the conventional overcurrent relay OCR shown in FIG. 1 provided with an instantaneous element inverse time limit circuit 4. The inverse time limit circuit 4 has almost the same configuration as the inverse time limit circuit 3, which is a known time limit element, but the time constant is set small in order to improve responsiveness. By connecting the inverse time limit circuit 4 to the subsequent stage of the instantaneous element detection circuit 2,
The trip signal supplied from the instantaneous element detection circuit 2 to the trip relay X has an inverse timing characteristic as shown by the solid line in FIG. Therefore, the instantaneous element detection circuit 2
The operating value of is larger than the magnetizing inrush current of the transformer over the entire operating range. In other words, in a range where the overcurrent value is large, it has a limited time characteristic that supplies a trip signal in several tens of milliseconds, which is the same as the conventional overcurrent relay shown by the dashed line, but even within the protection range of the instantaneous element detection circuit 2. In the range where the overcurrent value is small, it has an inverse time limit property. Due to this inverse timing property, the instantaneous element operating characteristic curve does not intersect with the transformer's magnetizing inrush current characteristic curve shown by the two-dot chain line, unlike the conventional instantaneous element operating characteristic curve shown by the one-dot chain line. The magnetizing inrush current of the transformer attenuates over time as shown in FIG. When the circuit breaker is turned on and connected to the power supply, a current of peak value A, which is more than ten times the rated current, flows through the transformer for the first 1 to 2112, and then gradually decreases to 2.
It settles down to steady value B after ~3 seconds. Therefore, if the instantaneous element operating characteristic curve intersects the attenuating magnetizing inrush current characteristic curve as in conventional overcurrent relays, a malfunction will occur, but in the overcurrent relay OCR of this invention, the instantaneous element operating characteristic curve has an inverse time limit characteristic. Since the excitation inrush current does not intersect with the excitation inrush current characteristic curve, the excitation inrush current will not cause malfunction. In use, the setting value at which the instantaneous element operating characteristic is a limited time operation of several tens of milliseconds is set smaller than the current value at the time of a short circuit on the secondary side, which is defined by the % impedance of the transformer connected in series with the circuit breaker. Approximate values are 20 to 25 of the transformer's rated current, assuming the transformer's % impedance is 4%.
It's double. Therefore, from the short circuit current defined by the transformer impedance to the abnormal short circuit current caused by the resonance between the transformer impedance and the connected load, the circuit breaker has a limited time characteristic of several tens of milliseconds. Open. For a fault current smaller than the current at the time of a short circuit on the secondary side defined by the % impedance of the transformer, as shown in FIG. 3, an inverse time-limiting characteristic occurs and the circuit breaker is opened. In addition, in order to have an appropriate inverse time characteristic, the slope of the inverse time characteristic part of the instantaneous element operation characteristic curve is adjusted so that the slope of the inverse time limit characteristic part is approximately parallel to the excitation inrush current characteristic curve as shown in FIG. It is desirable to set constants, etc.

ffl考案の効果 以上のようにこの発明によれば、瞬時要素検出回路の動
作値を全動作領域に亘って遮断器と直列に接続される変
圧器の励磁突入電流より大きな値にする反限時特性を与
える反限時回路を瞬時要素検出回路に接続したので、遮
断器投入時の変圧器の励磁突入電流による誤動作を完全
に防止できる利点を有する。
Effects of ffl Design As described above, according to the present invention, the inverse time characteristic makes the operating value of the instantaneous element detection circuit larger than the magnetizing inrush current of the transformer connected in series with the circuit breaker over the entire operating range. Since the inverse time-limiting circuit that gives the following is connected to the instantaneous element detection circuit, there is an advantage that malfunctions caused by the excitation inrush current of the transformer when the circuit breaker is closed can be completely prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の過電流継電器のブロック図、第2図はこ
の発明の実施例である過電流継電器のブロック図、第3
図は同過電流継電器の動作特性を示す図である。 CT→流器、0CR−過電流検電器、 X−トリップ用リレー。 出願人 立石電機株式会社 代理人 弁理士 小森久夫
Fig. 1 is a block diagram of a conventional overcurrent relay, Fig. 2 is a block diagram of an overcurrent relay according to an embodiment of the present invention, and Fig. 3 is a block diagram of a conventional overcurrent relay.
The figure shows the operating characteristics of the same overcurrent relay. CT → Current detector, 0CR-Overcurrent voltage detector, X-Trip relay. Applicant Tateishi Electric Co., Ltd. Agent Patent Attorney Hisao Komori

Claims (1)

【特許請求の範囲】 +11 電路の電流が限時要素検出回路の設定値または
瞬時要素検出回路の設定値を越えたことを変流器を介し
て前記限時要素検出回路または前記瞬時要素検出回路が
検出すると、トリ・7プ用リレーが動作して遮断器をト
リップする過電流継電器において、前記瞬時要素検出回
路の動作値を全動作領域に亘って前記遮断器と直列に接
続される変圧器の励磁突入電流により大きな値にする反
限時特性を与える反限時回路を、前記瞬時要素検出回路
に接続したことを特徴とする過電流継電器。 (2)前記反限時回路を、反限時特性が励磁突入電流特
性曲線と略平行になる時定数に設定した特許請求の範囲
第1項記載の過電流継電器。
[Claims] +11 The time-limited element detection circuit or the instantaneous element detection circuit detects, via a current transformer, that the current in the electric path exceeds the set value of the time-limited element detection circuit or the set value of the instantaneous element detection circuit. Then, in the overcurrent relay that trips the circuit breaker by tripping the trip relay, the operating value of the instantaneous element detection circuit is used to excite the transformer connected in series with the circuit breaker over the entire operating range. An overcurrent relay characterized in that an inverse time limit circuit that provides an inverse time limit characteristic that increases the inrush current to a larger value is connected to the instantaneous element detection circuit. (2) The overcurrent relay according to claim 1, wherein the inverse time limit circuit is set to a time constant whose inverse time characteristic is substantially parallel to the excitation inrush current characteristic curve.
JP17858883A 1983-09-27 1983-09-27 Overcurrent relay Pending JPS6070918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17858883A JPS6070918A (en) 1983-09-27 1983-09-27 Overcurrent relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17858883A JPS6070918A (en) 1983-09-27 1983-09-27 Overcurrent relay

Publications (1)

Publication Number Publication Date
JPS6070918A true JPS6070918A (en) 1985-04-22

Family

ID=16051092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17858883A Pending JPS6070918A (en) 1983-09-27 1983-09-27 Overcurrent relay

Country Status (1)

Country Link
JP (1) JPS6070918A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108248A (en) * 1978-02-13 1979-08-24 Toshiba Corp Static type trip device
JPS58151816A (en) * 1982-03-03 1983-09-09 三菱電機株式会社 Static overcurrent tripping device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108248A (en) * 1978-02-13 1979-08-24 Toshiba Corp Static type trip device
JPS58151816A (en) * 1982-03-03 1983-09-09 三菱電機株式会社 Static overcurrent tripping device

Similar Documents

Publication Publication Date Title
CA2411238C (en) Circuit breaker for detecting an excessive voltage and tripping responsive thereto
JP2000102158A (en) Earth leakage circuit breaker
JPS6070918A (en) Overcurrent relay
JPS6070919A (en) Overcurrent relay
JP3305084B2 (en) Ratio actuation protection relay
Kang et al. Compensated-current differential relay for protection of transformers
CN100470984C (en) Residual current circuit breaker
GB2251741A (en) Rapid response ground fault circuit interrupter
JPS6233484Y2 (en)
JPS6331418A (en) Circuit breaker
JPH03243118A (en) Overcurrent limiter
JPH08168165A (en) Protective relay for transformer
JPS607883B2 (en) Control power circuit protection device
SU743105A1 (en) Device for differential protection of transformer
JPS5957524A (en) Ac current limiting type semiconductor circuit breaker
JPH0522840A (en) Earth leakage breaker
JP2514548B2 (en) Electronic earth leakage breaker
JPH0526902Y2 (en)
JPH04372519A (en) Breaker
JPS62188117A (en) Controller
JPS631557Y2 (en)
JPS6010609A (en) Potential transformer
JPS58209029A (en) Leakage breaker
JPH06245370A (en) Power distribution line protector
JPS61269609A (en) Protective relay