JPS6070887A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6070887A
JPS6070887A JP58177967A JP17796783A JPS6070887A JP S6070887 A JPS6070887 A JP S6070887A JP 58177967 A JP58177967 A JP 58177967A JP 17796783 A JP17796783 A JP 17796783A JP S6070887 A JPS6070887 A JP S6070887A
Authority
JP
Japan
Prior art keywords
solid
horizontal
state image
photosensitive elements
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58177967A
Other languages
Japanese (ja)
Inventor
Toshiro Kinugasa
敏郎 衣笠
Michio Masuda
増田 美智雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58177967A priority Critical patent/JPS6070887A/en
Publication of JPS6070887A publication Critical patent/JPS6070887A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To double the number of vertical picture elements and to improve the horizontal resolution without losing aperture rate by arranging two solid-state image pickup elements having identical picture element arrangement and identical kind of color filter at a prescribed pitch. CONSTITUTION:The two solid-state image pickup elements 1, 2 having the identical picture element arrangement and identical kind of color filter are provided. The picture element of the other element 2 is arranged so as to be shifted spatially by a half picture element pitch in both vertical and horizontal directions to the picture element of one image pickup element 1. Interlacing is conducted for the read of signals by reading sequentially picture element columns S11, S21 on one line at the 1st H (horizontal period) of the field A and S12, S22 at the 2nd H. Thus, the number of vertical picture elements is doubled and also the horizontal resolution is improved without increasing the horizontal read frequency.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は固体撮像装置に係シ、特に垂直走査線数の増加
に好適な撮像方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a solid-state imaging device, and particularly to an imaging method suitable for increasing the number of vertical scanning lines.

〔発明の背景〕[Background of the invention]

最近の半導体製造技術の向上により、NTSC方式の民
生用カラービデオカメラ用としてMOS形とCCD形、
PAL、SECAM方式ノ民生用カラービデオカメラ用
として、MOS形の固体撮像素子がすでに実用化されて
いる。この固体撮像素子の長所として小形・軽量・高性
頼性などが挙げられるが、一方短所としては製造プロセ
ス技術によシ、受光部の開口率が大きく左右されること
がある。特に最近の動勢として画質向上のだめ垂直走査
線数を増加(525本→1000本)しようとすると開
口率の大幅な低下を招くことになる。
With recent improvements in semiconductor manufacturing technology, MOS and CCD types have been developed for use in NTSC consumer color video cameras.
MOS type solid-state image sensing devices have already been put into practical use for PAL and SECAM type consumer color video cameras. Advantages of this solid-state image sensor include small size, light weight, and high reliability; however, one disadvantage is that the aperture ratio of the light-receiving section is greatly affected by manufacturing process technology. In particular, if the number of vertical scanning lines is increased (from 525 lines to 1,000 lines) due to the recent trend of improving image quality, this will result in a significant decrease in the aperture ratio.

また、水平読み出し周波数が著しく上がることになる。Additionally, the horizontal readout frequency will increase significantly.

次子に例を用いて説明する。I will explain to Tsuko using an example.

第1図はMO8形撮像素子を示す。同図において、1は
絵素、2は垂直ゲート線、3は垂直信号線4は垂直MO
8スイッチである。絵素には4色の色フィルタ、透明(
W)、黄色(Ye)、シアン(CyX緑(G)がそれぞ
れオンチップで形成されている。
FIG. 1 shows an MO8 type image sensor. In the figure, 1 is a picture element, 2 is a vertical gate line, 3 is a vertical signal line 4 is a vertical MO
There are 8 switches. The picture element has four color filters, transparent (
W), yellow (Ye), cyan (CyX, green (G)) are each formed on-chip.

信号の読み出しは、1)水平帰線期間に垂直ゲート線に
より選択された行の絵素の光電変換された信号が垂直M
OSスイッチを通じて垂直信号線に移される。2)水平
走査期間に水平シフトレジ。
Signal reading is performed as follows: 1) During the horizontal retrace period, the photoelectrically converted signal of the pixel in the row selected by the vertical gate line is
It is transferred to the vertical signal line through the OS switch. 2) Horizontal shift register during horizontal scanning period.

スタにより順次読み出される。という過程をとる。The data are read out sequentially by the star. This process is taken.

第1図かられかるように、1絵素に対応して垂直ゲート
線、水平信号線等光電変換に寄与しない領域(以下非感
光部と呼ぶ)があり、1絵素の面積をSa、1絵素に対
応する非感光部の酊積をSbとすると開口率は8a/C
3ffi+Sb)で与えられる。
As can be seen from Figure 1, there is a region (hereinafter referred to as a non-photosensitive area) that does not contribute to photoelectric conversion, such as vertical gate lines and horizontal signal lines, corresponding to one pixel, and the area of one pixel is Sa, 1 If the volume of the non-photosensitive area corresponding to the picture element is Sb, the aperture ratio is 8a/C
3ffi+Sb).

今、簡単のだめ垂直方向の絵素数を2倍にし、それに見
合って水平方向の絵素数も2倍にする・と仮定すると、
受光面積(Sa+5b)XN(Nは全絵素数)一定の条
件では、Nを4倍とじたため、(Sa−1−8b)をス
にする必要がある。
Now, for the sake of simplicity, let's assume that we double the number of picture elements in the vertical direction, and correspondingly double the number of picture elements in the horizontal direction.
Light-receiving area (Sa+5b)XN (N is the total number of picture elements) Under certain conditions, since N is multiplied by 4, (Sa-1-8b) needs to be set as S.

しかしながら、Sbをン4にするにはレイアウトパター
ンを微細化しなければならず、製造プロセス技術の制約
を受ける。もともとsbはできるだけ小さくなるように
作られており、現在よシ一層のパターン微細化が可能な
技術を適用しかい限!1lSbは小さくならず、結局S
aのみ小さくすることになシ、開口率は低下する。
However, in order to reduce the amount of Sb to 4, the layout pattern must be miniaturized, which is subject to restrictions on manufacturing process technology. Originally, sb was made to be as small as possible, and now only by applying technology that can make the pattern even finer! 1lSb does not become smaller, and in the end S
If only a is made smaller, the aperture ratio will decrease.

まだ、単に受光面積を広げると素子のチップ面積が大き
くなり、歩留りが劣化する。
However, simply increasing the light-receiving area will increase the chip area of the device and degrade yield.

一方、絵素数が金側4倍になったことから、水平読み出
し周波数は4倍になる。第1図に示すMO8形撮像素子
の水平読み出し周波数はZ法肚であシ、これを4倍する
と約30MHzとなるため、水平シフトレジスタ、およ
びこれを駆動する回路の動作限界周波数をこれに見合う
だけ確保しなければならない。
On the other hand, since the number of picture elements has quadrupled on the gold side, the horizontal readout frequency has quadrupled. The horizontal readout frequency of the MO8 type image sensor shown in Fig. 1 is the Z modulus, and when multiplied by 4, it becomes approximately 30MHz, so the operating limit frequency of the horizontal shift register and the circuit that drives it must be adjusted to match this frequency. only have to be secured.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の半導体プロセス技術で開口率を
損なうことなく垂直絵素数を倍増し、水平読み出し周波
数を高めることなく水平解像度を向上させた固体撮像装
置を提供することにある。
An object of the present invention is to provide a solid-state imaging device that doubles the number of vertical picture elements without impairing the aperture ratio and improves the horizontal resolution without increasing the horizontal readout frequency using conventional semiconductor process technology.

〔発明の概要〕[Summary of the invention]

同一の絵素配置、同一種類の色フィルタを有する2つの
固体撮像素子(以下センサ1.センサ2と呼ぶ)を、セ
ンサ1の絵素に対し、センサ2の絵素が空間的に垂直、
水平両方向に半絵素ピッチずれるように配し、センサ1
,2のそれぞれの1行の絵素から輝度信号Yと色信号R
(赤)、B(青)を作る。これにより垂直方向の絵素数
は倍増し、更に水平方向の解像度は向上する。このとき
、水平読み出し周波数は従来の2倍となるが、これは水
平解像度を向上するためにセンサ1,2を水平方向に半
絵素ピッチずらしたことによるものではなく、垂直方向
に絵素数を倍増しだことによるものである。
Two solid-state image sensors (hereinafter referred to as sensor 1 and sensor 2) having the same pixel arrangement and the same type of color filter are arranged such that the pixel of sensor 2 is spatially perpendicular to the pixel of sensor 1, and
Sensor 1 is arranged so as to be shifted by half a pixel pitch in both horizontal directions.
, 2, a luminance signal Y and a color signal R are obtained from each row of picture elements.
(red) and B (blue). This doubles the number of picture elements in the vertical direction and further improves the resolution in the horizontal direction. At this time, the horizontal readout frequency is twice that of the conventional one, but this is not due to shifting the sensor 1 and 2 by half a pixel pitch in the horizontal direction to improve the horizontal resolution, but by increasing the number of pixels in the vertical direction. This is due to the fact that it has doubled.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図、第6図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 6.

第2図は第1図と同じMO8形撮像素子を示すが、垂直
ゲート線等は省略している。同図において四角はセンサ
1の絵素、丸はセンサ2の絵素配置を示し、3種類の色
フィルタw、ye、cyに対応する信号W、ye、Cy
を別々の信号線で読み出すようにしている。
FIG. 2 shows the same MO8 type image sensor as in FIG. 1, but the vertical gate lines and the like are omitted. In the figure, squares indicate pixel arrangement of sensor 1, circles indicate pixel arrangement of sensor 2, and signals W, ye, and Cy corresponding to three types of color filters w, ye, and cy are shown.
are read out using separate signal lines.

図中W+ Yer Cyに添字をつけているが、これは
センサ1,2に対応する。
In the figure, a subscript is added to W+ Yer Cy, which corresponds to sensors 1 and 2.

また、Smnで示すのはセyすm (m=1 Or 2
 )の第1行の信号である。信号の読み出しけAフィー
ルドの第1H(水平期間)に811と821を、第2H
に812と822を、第3Hに813と823をという
ように順次読み出し、Bフィールドの第1Hに812と
SK+を、第2HにStSと822を、第31−fに8
14と823をというように順次読み出してインクレー
スを行なう。輝度信号Yと色信号R,Bは Y=W+ye+Cy= 2r+5g+2bR= w −
cy = r B=w−ye==b によシ毎H得られる。ここで、19g、bはそれぞれ赤
、緑、青信号である。
Also, Smn is expressed as m (m=1 Or 2
) is the signal in the first row. To read the signal, set 811 and 821 in the 1st H (horizontal period) of the A field, and in the 2nd H
Read out 812 and 822 in the 3rd H, 813 and 823 in the 3rd H, and so on, 812 and SK+ in the 1st H of the B field, StS and 822 in the 2nd H, and 8 in the 31st-f.
14 and 823 are sequentially read and incremented. The luminance signal Y and the color signals R and B are Y=W+ye+Cy=2r+5g+2bR=w −
cy = r B = w - ye = = b. Here, 19g and b are red, green, and green signals, respectively.

第3図にカメラブロック図を示す。図中7゜8はそれぞ
れ第2図のセンサ1,2であり、駆動回路9によシ同一
の駆動パルス10を供給する。
FIG. 3 shows a camera block diagram. 7.8 in the figure are the sensors 1 and 2 of FIG. 2, respectively, which supply the same drive pulse 10 to the drive circuit 9.

また、5は光学レンズ、6はハーフミラ−等で構成した
光学系であり、5,6によりセンサ1.2に同一な像を
結像する。なお、11は遅延回路、12〜15は加算器
、16 、17は減算器である。センサ1,2は第2図
に示すように絵素が水平方向に半絵素ピッチずれて配置
されているのに対し、センサ1,2に同一の駆動パルス
10を供給している。このために、センサ2から読み出
された信号W21 Yez r CYtを遅延回路11
で半絵素ピッチ遅延させてw2.y” とし、センサt
tCy2 1から読み出された信号w、 、 ye、 、cy、と
の空間配置と対応させてから加算器12〜14でセンサ
12の信号を加算したw、 ye、 Cyを作る。この
W。
Further, 5 is an optical lens, 6 is an optical system composed of a half mirror, etc., and 5 and 6 form the same image on the sensor 1.2. Note that 11 is a delay circuit, 12 to 15 are adders, and 16 and 17 are subtracters. As shown in FIG. 2, the pixels of the sensors 1 and 2 are arranged with a half pixel pitch shifted in the horizontal direction, but the same drive pulse 10 is supplied to the sensors 1 and 2. For this purpose, the signal W21 Yez r CYt read from the sensor 2 is transmitted to the delay circuit 11.
Delay by half a pixel pitch with w2. y” and sensor t
The signals w, ye, cy, read from tCy2 1 are made to correspond to the spatial arrangement, and then the signals from the sensor 12 are added in adders 12 to 14 to create w, ye, and Cy. This W.

ye、 cyを加算器15.減算器16.17で上式に
従って加シ、減算して輝度信号Yと色信号R,Bを作る
。この後は通常のプロセス信号処理回路、エンコーダ回
路によりビデオ信号を得る。
Adder 15.ye, cy. The subtracters 16 and 17 perform addition and subtraction according to the above formula to produce a luminance signal Y and color signals R and B. After this, a video signal is obtained by a normal process signal processing circuit and an encoder circuit.

なお、あらかじめセンサ2の読み出しなセンサ1の読み
出しよυ半絵素ピッチずらして行なえば遅延回路11は
不要になる。この際、センサ1.2への駆動パルスのう
ち、水平シフトレジスタを駆動するパルスのみ異なる。
Incidentally, if the readout of sensor 2 and the readout of sensor 1 are performed in advance with a shift of υ half a pixel pitch, the delay circuit 11 becomes unnecessary. At this time, among the drive pulses to the sensor 1.2, only the pulse for driving the horizontal shift register is different.

また、第2図の色フィルタはW 、 Ye、 Cyに限
らず、例えばWをGに変えfcG、 Ye、 Cyでも
良い。
Further, the color filters shown in FIG. 2 are not limited to W, Ye, and Cy, but may be fcG, Ye, and Cy by replacing W with G, for example.

この場合、輝度信号Yと色信号R,Bは次の様な演算で
第6図のブロックと同様にして得られる。
In this case, the luminance signal Y and color signals R and B are obtained by the following calculations in the same manner as in the block of FIG.

Y = g+ye十cy = r+3 g+bR二ye
 −g = r B = cy−g = b 〔発明の効果〕 本発明によれば、従来の固体撮像素子に用いた半導体プ
ロセス技術で開口率を損なうことなく垂直絵素数を倍増
し、合わせて水平解像度を向上させることができる。
Y = g+ye cy = r+3 g+bR2ye
-g = r B = cy-g = b [Effects of the Invention] According to the present invention, the number of vertical picture elements is doubled without impairing the aperture ratio using the semiconductor process technology used in conventional solid-state image sensors, and the number of vertical pixels is Resolution can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体撮像素子を示す構成図、第2図は本
発明の一実施例の固体撮像素子の配置図、第3図は同じ
〈実施例の固体撮像装置ブロック図である。 7・・・・・・第1のセンサ、 8・・・・・・第2のセンサ、 12〜15・・・・・・加算器、 16.17・・・・・・減算器。 ”+ () 代理人弁理士 高 橋 明 夫 才1図 ;f2 図
FIG. 1 is a configuration diagram showing a conventional solid-state imaging device, FIG. 2 is a layout diagram of a solid-state imaging device according to an embodiment of the present invention, and FIG. 3 is a block diagram of a solid-state imaging device according to the same embodiment. 7...First sensor, 8...Second sensor, 12-15...Adder, 16.17...Subtractor. ”+ () Representative Patent Attorney Akira Takahashi Figure 1; Figure f2

Claims (1)

【特許請求の範囲】[Claims] 1、 異なる分光特性を有する感光素子が周期的に配列
された固体撮像素子から成る撮像部と、該固体撮像素子
の感光素子に蓄積した電荷を順次読み出した信号からカ
ラー映像信号を作成する信号処理部とを有する固体撮像
装置において、上記撮像部は3種類の分光特性を有する
感光素子がそれぞれ周期的に配列された2つの同等な固
体撮像素子から成シ、第1の固体撮像素子の感光素子と
第2の固体撮像素子の感光素子が互いに垂直・水平方向
に半ピツチずれるように配置されており、第1の固体撮
像素子の水平方向1行の感光素子と、該・感光素子と垂
直方向に相隣接する第2の固体撮像素子の水平1行の感
光素子に蓄積した電荷を同時に1水平走査期間に順次読
み出すことを特徴とする固体撮像装置。
1. An imaging unit consisting of a solid-state image sensor in which photosensitive elements having different spectral characteristics are periodically arranged, and signal processing that creates a color video signal from signals obtained by sequentially reading out the charges accumulated in the photosensitive elements of the solid-state image sensor. In the solid-state imaging device having a section, the imaging section is composed of two equivalent solid-state imaging devices in which photosensitive elements having three types of spectral characteristics are arranged periodically, and the photosensitive element of the first solid-state imaging device and the photosensitive elements of the second solid-state image sensor are arranged so as to be shifted by half a pitch from each other in the vertical and horizontal directions, and the photosensitive elements in one row in the horizontal direction of the first solid-state image sensor and the photosensitive elements in the vertical direction A solid-state imaging device characterized in that charges accumulated in one horizontal row of photosensitive elements of a second solid-state imaging device adjacent to the second solid-state imaging device are read simultaneously and sequentially during one horizontal scanning period.
JP58177967A 1983-09-28 1983-09-28 Solid-state image pickup device Pending JPS6070887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58177967A JPS6070887A (en) 1983-09-28 1983-09-28 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58177967A JPS6070887A (en) 1983-09-28 1983-09-28 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6070887A true JPS6070887A (en) 1985-04-22

Family

ID=16040204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58177967A Pending JPS6070887A (en) 1983-09-28 1983-09-28 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6070887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323233A (en) * 1990-07-31 1994-06-21 Canon Kabushiki Kaisha Image signal processing apparatus having a color filter with offset luminance filter elements
US7652701B2 (en) 2000-03-14 2010-01-26 Fujifilm Corporation Solid-state honeycomb type image pickup apparatus using a complementary color filter and signal processing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323233A (en) * 1990-07-31 1994-06-21 Canon Kabushiki Kaisha Image signal processing apparatus having a color filter with offset luminance filter elements
US7652701B2 (en) 2000-03-14 2010-01-26 Fujifilm Corporation Solid-state honeycomb type image pickup apparatus using a complementary color filter and signal processing method therefor

Similar Documents

Publication Publication Date Title
JPS6359587B2 (en)
JPH0946715A (en) Image pickup device
US7259788B1 (en) Image sensor and method for implementing optical summing using selectively transmissive filters
US20220139981A1 (en) Image sensor, camera assembly, and mobile terminal
JPH03114388A (en) Color image pickup device
JPS6348235B2 (en)
WO2013100093A1 (en) Imaging device, method for controlling imaging device, and control program
JP2003052048A (en) Imaging element, imaging apparatus and imaging method
JP4758160B2 (en) Solid-state imaging device and driving method thereof
JP7298020B2 (en) Image capture method, camera assembly and mobile terminal
JPS6070887A (en) Solid-state image pickup device
JP2002084548A (en) Color image pickup element and image pickup device
JP6687276B1 (en) Two-plate type image pickup device, image processing method of two-plate type image pickup device, and positioning method of solid-state image pickup device thereof
JPS62190993A (en) Solid-state image pickup device
JP2001156281A (en) Solid-state image pickup device, method of driving the same, and camera system
JPS6351437B2 (en)
JP3475084B2 (en) Imaging device
JPH06343144A (en) Solid-state image pickup device
JP2006303407A (en) Solid-state imaging element and its driving method
JPS6089187A (en) Color solid-state image pickup device
JP2635545B2 (en) Solid-state imaging device
JPH0528037B2 (en)
JPS6149564A (en) Solid-state image pickup device
JP3180191B2 (en) Imaging device
JPS60263592A (en) Solid-state image pickup device