JPS6070633A - Face discharge type gas discharge panel - Google Patents

Face discharge type gas discharge panel

Info

Publication number
JPS6070633A
JPS6070633A JP58178777A JP17877783A JPS6070633A JP S6070633 A JPS6070633 A JP S6070633A JP 58178777 A JP58178777 A JP 58178777A JP 17877783 A JP17877783 A JP 17877783A JP S6070633 A JPS6070633 A JP S6070633A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
driving
insulating layer
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178777A
Other languages
Japanese (ja)
Inventor
Takeshi Tanioka
毅 谷岡
Akira Otsuka
晃 大塚
Kenji Horio
堀尾 研二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58178777A priority Critical patent/JPS6070633A/en
Publication of JPS6070633A publication Critical patent/JPS6070633A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/30Floating electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PURPOSE:To reduce the number of panel outlet terminals as well as to aim at a reduction in the number of driving circuits and working elements, by forming one side of display electrode groups into a state of floating, while making these electrodes into a state of capacitive coupling to both group selective driving and group inner position selective electrodes for matrix driving. CONSTITUTION:Each of driving electrodes 3 and 4 is formed on the surface of a glass base plate 1, besides a float electrode 2. A float electrode 5 on the other side running in a direction crossed with the electrode 2 is formed on an insulating layer 7 made up of embedding the electrode 2, while its end parts 5a and 5b are designed so as to intersect these driving electrodes 3 and 4 via an insulating layer 6. Therefore, the float electrode 5 is alternatingly coupled with these driving electrodes 3 and 4 with capacity C1 between electrodes at its 5a and 5b sides. A surface of the float electrode 5 is covered with another insulating layer 8, and a discharge stabilizing protective layer 9 consisting of magnesium oxide or the like is formed on the surface, then the circumference of the display surface is covered with a seal 11 and a glass sheet 12 so that discharge gas 10 is filled up in a blockade space.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、面放電型のガス放電パネルに関し、特にフロ
ート電極構造を採用することで駆動回路の簡素化を図ろ
うとするものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a surface discharge type gas discharge panel, and particularly aims to simplify the drive circuit by adopting a float electrode structure.

従来技術と問題点 ガス放電パネル(F D P)は上側基板に配設された
一方の電極(X電極)群と、下側基板に配置された他方
の電極(Y電極)群と、これらの上、下基板間に充填さ
れたガスとを備え、X、Y電極をマトリクス駆動して選
択したX、Y電極の交点のガスを発光させるのが基本形
式である。X、Y電極は露出していてもよく、また絶縁
層等で絶縁されていてもよく、前者は直流型、後者は交
流型と呼ばれる。
Conventional technology and problems A gas discharge panel (FDP) has one group of electrodes (X electrodes) arranged on the upper substrate, the other group of electrodes (Y electrodes) arranged on the lower substrate, and these The basic format is to have a gas filled between the upper and lower substrates, drive the X and Y electrodes in a matrix, and cause the gas at the selected intersection of the X and Y electrodes to emit light. The X and Y electrodes may be exposed or may be insulated with an insulating layer or the like, and the former is called a direct current type, and the latter is called an alternating current type.

また上記の型のガス放電パネルは対向電極型と呼ばれる
が、これに対して面放電型のガス放電パネルも開発され
ている。これは1つの基板に絶縁層を介してX電極とY
電極群を配設し、ガスはか\る基板と別途設ける透明基
板との間に充填し、発光は、選択したX、Y電極の交点
に生じる電界の漏れにより生じさせる。対向電極型のガ
ス放電パネルでは上、下基板を、微小間隙を介して正確
に取付け、該間隙の周囲は密閉して内部にガスが充填で
きるようにする必要があるが、面放電型ではか−る必要
はなく、電極基板と透明電極との間隔の精度は特に問題
にはならない。従って組立が容易である。またガス放電
パネルはカラー化が図られており、これには色を発光す
る螢光体が用いられるが、螢光体はイオン衝撃を受ける
と劣化が著しい。しかし対向電極型ではX電極側基板、
Y電極側基板の両方でイオン化があり、どちらの基板に
螢光体を塗布してもイオン術部による劣化が避けられな
い。この点、面放電型ではイオン化は電極基板側で生じ
、透明電極側では生じないから、この透明電極側に螢光
体を塗布すれば、イオン衝撃による劣化が大幅に改善さ
れる。
Further, although the above type of gas discharge panel is called a counter electrode type, a surface discharge type gas discharge panel has also been developed. This is an X electrode and a Y electrode on one substrate via an insulating layer.
A group of electrodes is provided, gas is filled between the hot substrate and a separately provided transparent substrate, and light emission is caused by the leakage of the electric field generated at the intersection of the selected X and Y electrodes. In a facing electrode type gas discharge panel, it is necessary to accurately attach the upper and lower substrates with a small gap between them, and to seal the area around the gap to allow gas to fill inside. There is no particular need for the precision of the spacing between the electrode substrate and the transparent electrode to be a problem. Therefore, assembly is easy. Further, gas discharge panels are designed to be colored, using phosphors that emit colored light, but phosphors deteriorate significantly when subjected to ion bombardment. However, in the facing electrode type, the X electrode side substrate,
Ionization occurs on both Y-electrode side substrates, and no matter which substrate is coated with the phosphor, deterioration due to the ionized area cannot be avoided. In this regard, in the surface discharge type, ionization occurs on the electrode substrate side and not on the transparent electrode side, so if a phosphor is coated on this transparent electrode side, deterioration due to ion bombardment can be significantly improved.

ところでガス放電パネルのX、Y電極はその各交点が発
光点(ドツト)となるから、解像度の高い大型画面を構
成するには多数の交点従ってX。
By the way, each intersection of the X and Y electrodes of a gas discharge panel becomes a light emitting point (dot), so in order to construct a large screen with high resolution, a large number of intersections and hence X.

Y電極を必要とする。従来のガス放電パネルは、各電極
毎に駆動回路を設けているが、これでは高解像度大型画
面になる程駆動回路数が極めて多くなる難点がある。ま
た、x、Y電極に加える電圧は対向電極型で90〜10
0■、面放電型で130〜150Vであり、高耐圧の回
路素子を必要とするので高価になる欠点がある。電極駆
動については、少なくとも片側の電極を多重化して駆動
回路数を減らすフロート電極方式が考えられているが従
来のフロート電極方式は対向電極型ガス放電パネルにつ
いてのものであり、面放電型についてのものではない。
Requires Y electrode. Conventional gas discharge panels are provided with a drive circuit for each electrode, but this has the disadvantage that the number of drive circuits becomes extremely large as the screen becomes larger and higher in resolution. In addition, the voltage applied to the x and Y electrodes is 90 to 10
0.0, the surface discharge type has a voltage of 130 to 150 V, and requires high-voltage circuit elements, which has the drawback of being expensive. Regarding electrode drive, a float electrode method is being considered that reduces the number of drive circuits by multiplexing the electrodes on at least one side, but the conventional float electrode method is for opposed electrode type gas discharge panels, and is not suitable for surface discharge type panels. It's not a thing.

前述のように対向電極型はカラー化には不利である。As mentioned above, the counter electrode type is disadvantageous for coloring.

発明の目的 本発明は、面放電型のガス放電パネルにフロート電極を
採用して上記の問題点を解決しようとするものである。
OBJECTS OF THE INVENTION The present invention attempts to solve the above problems by employing a float electrode in a surface discharge type gas discharge panel.

発明の構成 本発明は、対向する基板間に放電ガスを封入し、且つ一
方の基板側に一方の表示電極群と他方の表示電極群とを
絶縁層を介して交差配置してなる面放電型のガス放電パ
ネルにおいて、少なくとも一方の表示電極群をフローテ
ィングにしてそれらを群選択駆動電極と群内位置選択駆
動電極に容量結合させてマトリクス駆動するようにして
なることを特徴とするが、以下図示の実施例を参照しな
がらこれを詳細に説明する。
Structure of the Invention The present invention provides a surface discharge type device in which a discharge gas is sealed between opposing substrates, and one display electrode group and the other display electrode group are arranged crosswise on one substrate side with an insulating layer interposed therebetween. This gas discharge panel is characterized in that at least one of the display electrode groups is floating and capacitively coupled to the group selection drive electrode and the intragroup position selection drive electrode for matrix drive. This will be explained in detail with reference to an example.

発明の実施例 第1図は本発明の一実施例を示す平面図で、第2図はそ
のx−x’での断面図である。これらの図において、工
はガラス基板、2はその表面に形成された一方の表示電
極(Y電極)である。ガラス基板1の表面にはこの他に
駆動電極3,4が形成されている。5は電極2を埋めて
形成された絶縁層7上を電極2と交差する方向に走る他
方の表示電極(X電極またはフロート電極)で、その端
部5a、5bは絶縁層6を介して駆動電極3,4と交差
している。従って、フロート電極5は端部5a、5b側
の電極間容量CI、C2で駆動電極3゜4と交流的に結
合する。電極4は複数本、本例では隣接する4本のフロ
ート電極5に対向しており、複数本、本例では同様に4
本ある電極3はその個々のフロート電極5に対向する。
Embodiment of the Invention FIG. 1 is a plan view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line xx'. In these figures, numeral 2 indicates a glass substrate, and 2 indicates one display electrode (Y electrode) formed on the surface thereof. In addition to this, drive electrodes 3 and 4 are formed on the surface of the glass substrate 1. Reference numeral 5 denotes the other display electrode (X electrode or float electrode) running on the insulating layer 7 formed by filling the electrode 2 in a direction crossing the electrode 2, and its ends 5a and 5b are driven through the insulating layer 6. It intersects with electrodes 3 and 4. Therefore, the float electrode 5 is AC-coupled with the drive electrode 3.4 through the inter-electrode capacitances CI and C2 on the ends 5a and 5b. A plurality of electrodes 4, in this example four adjacent float electrodes 5, are opposed to each other;
The book electrode 3 faces its individual float electrode 5 .

なお電極3の外側のものに対向する電極5は内側の電極
3上を横断するので、この部分では容量結合がないよう
にする。容量値は面積、間隔、誘電率で決るから、これ
らを選定することにより電極対向部で容量結合があり又
はないようにする。例えば、図示のように電極4は広幅
にし、電極端9IS5bがこの広幅部に長く延びるよう
にすると、対向面積が大になって容量結合するようにな
る。電極3側では、電極端部5aが電極3の1つに沿っ
て幅を広げる(図面では紙面垂直方向に延びる)と、該
電極3の1つに対して電極5が容量結合し、他の電極3
とは容量結合しないようになる。8はフロート電極5の
表面を覆う絶縁層、9はその表面に形成された酸化マグ
ネシウム等の放電安定用保護層、11および12は表示
面(電極2と5が交差している全領域)の周囲を覆うシ
ールおよびガラス板(透明基@)で、その閉塞空間には
放電ガス10が充填される。即ちこのガス放電パネルは
面放電型である。
Note that since the electrode 5 facing the outer electrode 3 crosses over the inner electrode 3, capacitive coupling should not occur in this portion. Since the capacitance value is determined by the area, spacing, and dielectric constant, by selecting these, it is possible to prevent capacitive coupling from occurring at the electrode facing portion. For example, if the electrode 4 is made wide as shown in the figure and the electrode end 9IS5b extends long into this wide part, the opposing area becomes large and capacitive coupling occurs. On the electrode 3 side, when the electrode end 5a widens along one of the electrodes 3 (extending in the direction perpendicular to the paper plane in the drawing), the electrode 5 is capacitively coupled to one of the electrodes 3, and the other Electrode 3
There will be no capacitive coupling with. 8 is an insulating layer covering the surface of the float electrode 5; 9 is a discharge stabilizing protective layer made of magnesium oxide or the like formed on the surface; 11 and 12 are the display surface (the entire area where electrodes 2 and 5 intersect); The closed space is filled with discharge gas 10 by a surrounding seal and a glass plate (transparent base). That is, this gas discharge panel is of a surface discharge type.

第3図(alは電極2と5の交点(1画素)に発生する
電界の説明図である。電極2,5間に電圧を印加すると
大部分の電界Aは電極2と5の間を最短距離で結ぶ向き
(絶縁層中)に発生ずる。しかし、一部の電界Bは空間
に漏れて一方の電極から他方の電極の対向しない面に向
けて発生する。電界Aをガス封入空間に生じさせて利用
するのが対向電極型であるが、面放電型では電界Bを利
用する。対向電極型のように電界が絞られていないので
スポットが多少拡がるが大差はない。即ち対向電極型で
も電極5が不透明であるとスポットは第3図(blのD
のようになり、2つに割れて見える。
Fig. 3 (al is an explanatory diagram of the electric field generated at the intersection (one pixel) of electrodes 2 and 5. When a voltage is applied between electrodes 2 and 5, most of the electric field A is transmitted between electrodes 2 and 5 at the shortest distance. The electric field B is generated in the direction connected by the distance (in the insulating layer). However, a part of the electric field B leaks into the space and is generated from one electrode to the surface that does not face the other electrode. An electric field A is generated in the gas-filled space. The counter-electrode type uses electric field B, but the surface discharge type uses electric field B. Unlike the counter-electrode type, the electric field is not condensed, so the spot spreads out a little, but there is no big difference.In other words, even the counter-electrode type If the electrode 5 is opaque, the spot will be
It looks like it is split into two parts.

電極5がネサ電極であれば、該電極5に隠れる部分も見
えて丸い光点になるが、面放電型ではこの光点を多少大
きくした程度である。
If the electrode 5 is a Nesa electrode, the part hidden by the electrode 5 will also be visible, resulting in a round light spot, but in the case of a surface discharge type, this light spot is only slightly larger.

動作を説明すると、電極5の選択は電極3と4による。To explain the operation, the selection of electrode 5 depends on electrodes 3 and 4.

電極4は群選択、3は群内電極の選択であり、第1図に
示すように右端の電極4と上端の電極3を選択すると、
斜線部5a、5bを両端とするフロート電極5が選択さ
れ(電位を与えられ)、本例では直接駆動型の電極2の
選択された1つとの間の交点が発光する。Y電極2も電
極5と同様なフロート電極とし、これをマトリクス駆動
するようにしてもよい。唯、マトリクス駆動すると半選
択(電位が中間電位)の状態があり、X、 Y電極を共
にフロート電極、マトリクス駆動とすると、非選択、半
選択、選択の種々の組合せが発生し、半選択のあるもの
は選択と大差なくなり、発光が見られるという問題があ
るので、電位の選択に注意が必要である。
Electrode 4 is for group selection, and 3 is for selection of electrodes within the group. As shown in FIG. 1, when electrode 4 on the right end and electrode 3 on the top end are selected,
The float electrode 5 having the hatched portions 5a and 5b at both ends is selected (applied with a potential), and in this example, the intersection between it and the selected one of the directly driven electrodes 2 emits light. The Y electrode 2 may also be a float electrode similar to the electrode 5, and may be driven in a matrix. However, when matrix drive is used, there is a state of half selection (the potential is intermediate potential), and when both the X and Y electrodes are float electrodes and matrix drive is used, various combinations of non-selection, half selection, and selection occur, and half selection. In some cases, there is a problem that there is no significant difference from the selection and luminescence can be seen, so care must be taken in selecting the potential.

フロート電極方式の利点は、n本(本例では4本)の駆
動電極3とm本(これも4本)の駆動電極4でnxm本
のフロート電極5を駆動できる点である。この場合、ド
ライバは各駆動電極毎に設ければよいので、(n+m)
個で済む。本例では電極5の一方の端部5b側は4群に
分割されて4個の群選択駆動電極4があるのでこれらを
駆動する4個のドライバと、他方の端部5a側には4本
の群内位置選択駆動電極3があるのでこれらを駆動する
4個のドライバの、計8個のドライバがあればよく、こ
れで16本のフロート電極5を選択駆動できる。
The advantage of the float electrode method is that n×m float electrodes 5 can be driven by n (four in this example) drive electrodes 3 and m (also four) drive electrodes 4. In this case, since it is sufficient to provide a driver for each drive electrode, (n+m)
Only one piece is enough. In this example, one end 5b side of the electrode 5 is divided into four groups, and there are four group selection drive electrodes 4, so there are four drivers to drive these, and four drivers are installed on the other end 5a side. Since there are intra-group position selection driving electrodes 3, it is only necessary to have four drivers to drive these, a total of eight drivers, and with this, 16 float electrodes 5 can be selectively driven.

尚、駆動電極3.4とフロート電極5の関係は、実施例
のような上下関係でなくてもよく、適宜変形できる。下
側の表示電極2をフローティングにする場合の駆動電極
は、第2図の20のように基板1中に埋設して電極2に
沿わせてもよく、この方式は結合容量C′を大きくする
ことができる。
Note that the relationship between the drive electrode 3.4 and the float electrode 5 does not have to be the vertical relationship as in the embodiment, and can be modified as appropriate. When the lower display electrode 2 is made floating, the drive electrode may be buried in the substrate 1 and placed along the electrode 2 as shown in 20 in FIG. 2. This method increases the coupling capacitance C'. be able to.

発明の効果 以上述べたように本発明によれば、カラー化に有利な゛
面一放置型ガス放電パネルの引き出し端子数を大幅に減
少させ、駆動回路数を低減でき、使用素子を少なくする
ことができる利点がある。
Effects of the Invention As described above, according to the present invention, it is possible to significantly reduce the number of lead-out terminals of a flat panel type gas discharge panel, which is advantageous for colorization, reduce the number of drive circuits, and reduce the number of elements used. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2図はその
x−x’での断面図、第3図は面放電の説明図である。 図中、1.12はガラス基板、2は一方の表示電極、3
は群内位置選択駆動電極、4は群選択駆動電極、5は他
方の表示電極(フロート電極)、6〜8は絶縁層、10
は放電ガス、C,l、C2は結合容量である。 出願人 富士通株式会社 代理人弁理士 青 柳 稔 第1図 第2図 2 第3図
FIG. 1 is a plan view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line xx', and FIG. 3 is an explanatory diagram of a surface discharge. In the figure, 1.12 is a glass substrate, 2 is one display electrode, 3
is an intra-group position selection drive electrode, 4 is a group selection drive electrode, 5 is the other display electrode (float electrode), 6 to 8 are insulating layers, 10
is the discharge gas, and C, l, and C2 are the coupling capacitances. Applicant Fujitsu Ltd. Representative Patent Attorney Minoru Aoyagi Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 対向する基板間に放電ガスを封入し、且つ一方の基板側
に一方の表示電極群と他方の表示電極群とを絶縁層を介
して交差配置してなる面放電型のガス放電パネルにおい
て、少なくとも一方の表示電極群をフローティングにし
てそれらを群選択駆動電極と群内位置選択駆動電極に容
量結合させてマトリクス駆動するようにしてなることを
特徴とする面放電型のガス放電パネル。
In a surface discharge type gas discharge panel in which a discharge gas is sealed between opposing substrates, and one display electrode group and the other display electrode group are disposed crosswise on one substrate side with an insulating layer interposed therebetween, at least A surface discharge type gas discharge panel characterized in that one display electrode group is floated and capacitively coupled to a group selection drive electrode and an intragroup position selection drive electrode for matrix drive.
JP58178777A 1983-09-27 1983-09-27 Face discharge type gas discharge panel Pending JPS6070633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178777A JPS6070633A (en) 1983-09-27 1983-09-27 Face discharge type gas discharge panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178777A JPS6070633A (en) 1983-09-27 1983-09-27 Face discharge type gas discharge panel

Publications (1)

Publication Number Publication Date
JPS6070633A true JPS6070633A (en) 1985-04-22

Family

ID=16054444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178777A Pending JPS6070633A (en) 1983-09-27 1983-09-27 Face discharge type gas discharge panel

Country Status (1)

Country Link
JP (1) JPS6070633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680771B2 (en) * 2001-02-14 2004-01-20 Au Optronics Corp. Thin film transistor liquid crystal display wherein the lower electrode includes a first electrode and a pixel electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680771B2 (en) * 2001-02-14 2004-01-20 Au Optronics Corp. Thin film transistor liquid crystal display wherein the lower electrode includes a first electrode and a pixel electrode

Similar Documents

Publication Publication Date Title
US4853590A (en) Suspended-electrode plasma display devices
EP0135382B1 (en) Gas discharge panel and method of operating such a panel
JP2917279B2 (en) Gas discharge panel
KR940006301B1 (en) Lcd of plasma addressing form and manufactruing method thereof
KR100303907B1 (en) A surface discharge type plasma display panel
JPH08102261A (en) Gas discharge panel
JPH1167100A (en) Ac type plasma display panel
US6621231B1 (en) Structure of a barrier in a plasma display panel
JPS6070633A (en) Face discharge type gas discharge panel
JPH11238462A (en) Plasma display panel
JP2621165B2 (en) Gas discharge panel
JPS5816290B2 (en) Heimenhouden Hiyoujisouchi
JP3423742B2 (en) Surface discharge type plasma display panel
JPH10283936A (en) Gas discharge display device
KR100402742B1 (en) Plasma display device
JPH01311540A (en) Plasma display panel having three electrodes for one picture element
JPS62219438A (en) Gas discharge panel
JP3090865B2 (en) DC driven gas discharge display panel
KR100884532B1 (en) Plasma display panel
KR940004296B1 (en) Liquid crystal display method of plasma address
KR100442231B1 (en) Pdp
JPH04277443A (en) Plasma display panel
JPS5914855B2 (en) Panel type display device
JPH08273561A (en) Fluorescent display device
KR20000051011A (en) Face-discharge type plasma display panel and method for driving the same