JPS6070419A - Production of electrocoloring display element - Google Patents

Production of electrocoloring display element

Info

Publication number
JPS6070419A
JPS6070419A JP58178113A JP17811383A JPS6070419A JP S6070419 A JPS6070419 A JP S6070419A JP 58178113 A JP58178113 A JP 58178113A JP 17811383 A JP17811383 A JP 17811383A JP S6070419 A JPS6070419 A JP S6070419A
Authority
JP
Japan
Prior art keywords
electrochromic
electrolyte
solution containing
pigment
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178113A
Other languages
Japanese (ja)
Inventor
Sakae Tamura
栄 田村
Toshihiko Oguchi
小口 寿彦
Atsuo Imai
今井 淳夫
Shigeru Matake
茂 真竹
Masaaki Tamaya
正昭 玉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58178113A priority Critical patent/JPS6070419A/en
Publication of JPS6070419A publication Critical patent/JPS6070419A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To perform uniformly coloration and discoloration by improving the adhesion between an EC material layer and a solid ion conductive material layer by using an ion conductive paint obtd. by dispersing a pigment different from the electrifying polarity of an electrochromic material in a high polymer soln. CONSTITUTION:A transparent substrate 5 consisting of glass, etc. is used and a thin film of an electrochromic material layer 2 is provided on a display segment electrode 1 by vapor deposition, sputtering, plating, coating, etc. An ion conductive paint obtd. by dispersing fine particles of a pigment having a positive electrifying polarity in the case of using an electrochromic material having a negative electrifying polarity into an aq. high polymer soln. contg. halide of an alkali metal and electrolyte such as various perchlorates is coated on the electrochromic material layer and is dried to provide an ion conductive material layer 3. An electrode 4 facing the electrode 1 is provided in a thin layer on said layer by vapor deposition, sputtering, etc. The ununiformity in the coloring and decoloring density in the respective display segment electrodes is eliminated by the above- mentioned constitution.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はエレクトロクロミック現象ヲ利用した電気発色
表示素子に係り、特に高分子化合物と顔料を含んだイオ
ン4.電性材料層を有する電気発色表示素子の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an electrochromic display element that utilizes electrochromic phenomena, and particularly relates to an electrochromic display element that utilizes an electrochromic phenomenon, and particularly relates to an electrochromic display element that utilizes an electrochromic phenomenon. This invention relates to improvements in electrochromic display elements having conductive material layers.

〔従来技術とその問題点〕[Prior art and its problems]

電界まだは電流によって、物質の光吸収スペクトルが変
化したり、着色種の生成・消滅が可逆的に行なわれる現
象をエレクトロクロミック現象といい、この現象を利用
した電気発色表示素子(以下エレクトロクロミックディ
スプレイを略し、ECDと略記する)の実用化研究が行
なわれているが、発消色の繰り返し寿命が液晶や発光ダ
イオードなどを利用した他の形成の表示素子と比較して
短かいうえに、発消色が不均一であるという問題点を有
していた。
The phenomenon in which the light absorption spectrum of a substance changes or the generation and disappearance of colored species occurs reversibly due to an electric field or electric current is called an electrochromic phenomenon. (abbreviated as ECD) is being researched into practical use, but its lifespan for repeating color development and fading is short compared to other display elements using liquid crystals or light emitting diodes, and it is difficult to emit light. The problem was that decoloring was uneven.

例えば、還元されると着色するwo3やMoO3、、酸
化されると着色するIr03;/zどの翅移金縞f畷化
物の他に、酸化状態と還元状態で光吸収スペクトルが異
なるビオロゲン系色素、フタロンNアニンとそのum体
、テトラチオフルバレン宿の44機化合物色素がエレク
トロクロミツクイ」刺として(jib用されているが、
上H己したいずれのエレクトロクロミック材料も酸化あ
るいは還元に挾した電荷(i4.に比例して着色するだ
め、エレクトロクロミック現象を利用した表示素子の各
表示セクメント電極を均一な色飽既に着色したり消色し
たりすることが不可能でのった。
For example, WO3 and MoO3, which become colored when reduced, Ir03, which becomes colored when oxidized; Phthalone N-anine, its um form, and tetrathiofulvalene compound dyes are used as ``electrochromic honeyeater'' thorns (jib).
Any of the electrochromic materials that have been developed above must be colored in proportion to the charge (i4. It was impossible to erase the color.

すなわち、第1図で示したように、エレクトロクロミッ
ク現象を利用して、数字を表示するためには面積や形状
が異なる多数の表示セグメント電極11.’12.13
・・・17が必要でめるが、各表示セグメント電極と対
向゛電極3[l]に流れる1・2化還元屯流密度が表示
セグメント成極の面積や形状によって異なる上、隣接す
る表示セグメント電極への漏れ電流等もらって、表示セ
グメント電極と対向電極間の酸化還元電流密度を一定に
して、エレクトロクロミック材料を均一に酸化もしくは
還元することが不可能で8つたものである。
That is, as shown in FIG. 1, in order to display numbers using the electrochromic phenomenon, a large number of display segment electrodes 11 with different areas and shapes are required. '12.13
...17 is required, but the density of the 1/2 reduction current flowing to each display segment electrode and the counter electrode 3 [l] differs depending on the area and shape of the display segment polarization, and It is impossible to uniformly oxidize or reduce the electrochromic material by keeping the redox current density constant between the display segment electrode and the counter electrode due to leakage current to the electrodes.

このために、液体のイオン導電層を使用したFDの場合
には、表示セグメント電極の近傍に複数個の補助電極を
設け、表示用セグメント電極と補助電極間でエレクトロ
クロミック祠料層を酸化もしくは還元するに必要な一定
量の電荷の交換を行なわせる方法や各表示セグメント電
極に印加する発消色信号電流を′tに界効果型トランジ
スタを用いてスイッチングすることにより隣接するセグ
メント′酩極への漏れ電流を防止するなど、 ECD駆
動電気回路の改良がなされてきた。
For this purpose, in the case of an FD using a liquid ion conductive layer, multiple auxiliary electrodes are provided near the display segment electrode, and the electrochromic abrasive layer is oxidized or reduced between the display segment electrode and the auxiliary electrode. By switching the coloring/decoloring signal current applied to each display segment electrode using a field-effect transistor at t, it is possible to exchange a certain amount of charge necessary for Improvements have been made to ECD drive electrical circuits, such as preventing leakage current.

しかしながら、固体のイオン導電材料を用いたECDに
おいては表示セグメント電極上に設けられたエレクトロ
クロミック材料層とこれに接触して設けられるイオン導
電材料層の密着性の改良が十分なされていなかっただめ
に、表示セグメント電極と対向電極間の電気抵抗が各表
示セグメント電極毎に異なり、改良されたECD駆動電
気回路を用いても発消色の不均一性を解決することは1
イIM1であった。
However, in ECDs using solid ion conductive materials, the adhesion between the electrochromic material layer provided on the display segment electrodes and the ion conductive material layer provided in contact therewith has not been sufficiently improved. , the electrical resistance between the display segment electrode and the counter electrode differs for each display segment electrode, and it is difficult to solve the non-uniformity of color development and fading even with an improved ECD drive electric circuit.
It was IM1.

〔本発明の目的〕[Object of the present invention]

本発明の目的はエレクトロクロミック拐料ノυと固体イ
オン導電材料層の密着性を向上6せることにより発消色
が均一に行なわれるECDを提供することにある。
An object of the present invention is to provide an ECD that uniformly develops and fades color by improving the adhesion between the electrochromic particle υ and the solid ion conductive material layer.

また、本発明の第2の目的は発消色を均一に行なわせる
ことにより、1!;CDの実用;4命を伸長させること
である。
Further, the second object of the present invention is to uniformly develop and fade color, thereby achieving 1! ;Practical use of CD; 4It is to extend one's life.

〔発明の概要〕[Summary of the invention]

本発明は可逆的な酸化還元反応が電気化学的に起こり、
且つ酸化状態と蔵元状態で光吸収スペクトルが異なる所
謂エレクトロクロミック拐料を透明な表示セグメント電
極上に薄膜状に設け、電解質を含む高分子溶液中での帯
′醗極避が該高分子溶液中に於けるエレクトロクロミッ
ク材料の帯電極性と異なる顔料を該高分子溶液に分散き
せて得たイオン導電性塗料をエレクトロクロミック材料
薄膜上に塗布・乾燥することによってイオン導電層を形
成し、次に、このイオン導電層上に対向電極を真空蒸着
法等によって設けて構成される。
In the present invention, a reversible redox reaction occurs electrochemically,
In addition, a so-called electrochromic particle whose light absorption spectrum differs depending on the oxidation state and the original state is provided in the form of a thin film on the transparent display segment electrode, so that the band's absorption in the polymer solution containing the electrolyte is reduced. An ion conductive layer is formed by applying and drying an ion conductive paint obtained by dispersing a pigment in the polymer solution, which has a polarity different from that of the electrochromic material, onto a thin film of the electrochromic material, and then, A counter electrode is provided on this ion conductive layer by vacuum evaporation or the like.

具体的には、第2図で示したように、表示セグメント電
極1をあらかじめ設けたガラス等の透明基板5を用い、
表示セグメント電極1上にエレクトクロミック材料層2
を蒸着やスパッタ、メッキ、塗布などの公知の手法を用
いて薄膜状に設けた後、例えばアルカリ金属のハロゲン
化物や各種過塩素酸塩などの電解質を含んだ高分子水溶
液に、この高分子水溶液中での帯電極性が負極性である
エレクトロクロミック羽料を使用する場合には、該高分
子水溶液中での帯電極性が正である顔料微粒子を高分子
水溶液に分散させて得だイオン導電性塗料ヲエレクトロ
クロミソク材料層上に塗布・乾燥しイオン導電材料層3
を設け、次にイオン導電材料層3上に金属を真空蒸着や
スパッタなど通常用いられる手法によって表示セグメン
ト電極1と対向して薄層状に設は本発明は集流される。
Specifically, as shown in FIG. 2, a transparent substrate 5 made of glass or the like on which display segment electrodes 1 are provided in advance is used.
Electrochromic material layer 2 on display segment electrode 1
is formed into a thin film using known methods such as vapor deposition, sputtering, plating, and coating, and then the polymer aqueous solution is added to a polymer aqueous solution containing an electrolyte such as an alkali metal halide or various perchlorates. When using electrochromic feathers whose charge polarity is negative in the polymer aqueous solution, pigment particles whose charge polarity in the polymer aqueous solution is positive are dispersed in the polymer aqueous solution to obtain an ion conductive paint. Apply and dry the ion conductive material layer 3 on the electrochromic material layer.
In the present invention, a metal is provided on the ion conductive material layer 3 in a thin layer facing the display segment electrode 1 by a commonly used method such as vacuum evaporation or sputtering.

本発明で用いられる顔料としては’]”i0z+5iO
z+MgO,MnO2,A/203.ZnO,ThO等
があげられ、電解質を・含んだ高分子溶液中でのエレク
トロクロミック材料の帯電極性に応じて適宜選択される
The pigment used in the present invention is ']"i0z+5iO
z+MgO, MnO2, A/203. Examples include ZnO, ThO, etc., and are appropriately selected depending on the charging polarity of the electrochromic material in a polymer solution containing an electrolyte.

例えばエレクトロクロミック材料であるw03やAl1
O03は電解質を含んだPH,、7近傍のi化分子水溶
液中で9、極性に41?電しているためにt項料として
は該高分子水溶液中で正極性に帯電するAl2O3微粒
子が用いられる。
For example, electrochromic materials such as w03 and Al1
O03 is 9 in an aqueous solution of i-formed molecules containing an electrolyte with a pH of around 7, and a polarity of 41? Since the particles are electrically charged, Al2O3 fine particles, which are positively charged in the polymer aqueous solution, are used as the t-term material.

才だ、’l”ioz微粒子はPI:(、7近傍の水浴液
中では負に帯電するがTiO2微粒子の表面をAl2O
3で僅々■した粒子は正に帯電することがらnfJ記し
た1i02 。
The 'l''ioz fine particles are negatively charged in the water bath liquid near PI: (, 7, but the surface of the TiO2 fine particles is Al2O
1i02, as noted by nfJ, because the particles with a slight black mark in 3 are positively charged.

Sjo 2 +MnO2+ All 203+ Z n
Oy ThO+N1g0などの顔料は、それぞれ早独で
用いでもよいし、帯電極性を変化6ぜる目的で表面を他
の化合物で俵わりするなと1〜てハ1いてもよい。
Sjo 2 +MnO2+ All 203+ Z n
Pigments such as Oy ThO+N1g0 may be used individually, or the surface may be covered with other compounds for the purpose of changing the charge polarity.

更にジャーナル オプ コロイド インターフェイス 
サイエンス(Journal of Co#aidIn
terface 5cience) Vo122,40
4ページのf17i文で公知のように、例えばTiO2
も溶媒の種類によって帯電の符号が変化するから、エレ
クトロクロミック材料と顔料の帯電が逆極性になるよう
に電解質を含んだ高分子溶液の溶媒を選んでも、本発明
の目的を達成できることはいうまでもない。
Further journal op colloid interface
Science (Journal of Co#aidIn
surface 5science) Vo122,40
As is known from the f17i text on page 4, for example, TiO2
Since the sign of charge changes depending on the type of solvent, it goes without saying that the purpose of the present invention can be achieved even if a solvent for a polymer solution containing an electrolyte is selected so that the charge of the electrochromic material and the pigment are of opposite polarity. Nor.

〔発明の効果〕〔Effect of the invention〕

上記したように、表示セグメント電極上にあらかじめ設
けたエレクトロクロミック材料と、電解質を含んだ高分
子溶液中にあらかじめ分散した顔料粒子とは、該高分子
溶液中での帯電極性が互いに逆極性であることからエレ
クトロクロミック材料層に塗布した上記電解質と顔料を
含んだ高分子溶液はエレクトロクロミック材料表面に均
一に付着シ、乾燥によってエレクトロクロミッタ材料表
面に均一な厚みのイオン導電性被膜を形成することがで
きる。したがって、形成したイオン導電性被膜の表面に
設けられる対向電極と表示電極間の体積抵抗率は、あら
ゆる部分で均一になり、従来技術の問題点で指摘したよ
うな、対向電極と表示電極間の電流密度の不均一性は解
消され、各表示セグメント電極における発消色濃度の不
均一性は生じない。同時に酸化還元1(i流が局部的に
集中しないことによって、エレクトロクロミック材料の
局部的な劣化が起らず、表示デバイスの寿命が向上する
As described above, the electrochromic material provided in advance on the display segment electrodes and the pigment particles dispersed in advance in the polymer solution containing an electrolyte have opposite charge polarities in the polymer solution. Therefore, the polymer solution containing the electrolyte and pigment applied to the electrochromic material layer is uniformly adhered to the surface of the electrochromic material, and when dried, forms an ion-conductive film with a uniform thickness on the surface of the electrochromic material. Can be done. Therefore, the volume resistivity between the counter electrode and the display electrode provided on the surface of the formed ion conductive film becomes uniform in all parts, and the volume resistivity between the counter electrode and the display electrode, as pointed out in the problem of the prior art, Non-uniformity in current density is eliminated, and non-uniformity in developing and fading color density does not occur in each display segment electrode. At the same time, since the redox 1 (i) current is not locally concentrated, local deterioration of the electrochromic material does not occur and the life of the display device is improved.

丑た、エレクトロクロミック月料)〜7j上に、顔料微
粒子が均一に刺着するので各奴示セグメント電極の背景
色もキメが件)かくなるという効果が得られる。
Since the fine pigment particles are evenly stuck on the electrochromic electrodes (7j), the background color of each exposed segment electrode is also uniform.

〔発明の実施例〕[Embodiments of the invention]

実施例1 厚さが1朋のカラス板にシート抵抗が50Ω口のネサ膜
を′、!/)らかじめ設けたtす16電性ガラス板をエ
ツチングして、ワセグメントの数字表示用talkを形
成し、次にエレクトロクロミック材料層としてII/[
003をスパッタ装置を用いて蒸着した。蒸着したMO
O3の厚みは:3000 Xであった。
Example 1 A Nesa membrane with a sheet resistance of 50 Ω was applied to a glass plate with a thickness of 1 mm! /) The previously provided tS16 conductive glass plate is etched to form the numeric display talk of the Wasegment, and then II/[ as an electrochromic material layer is etched.
003 was deposited using a sputtering device. Deposited MO
The thickness of O3 was: 3000X.

一方、ポリビニルアルコール(”pIj合度24(10
゜帷化度90係)の10重量パーセント水浴液100g
とLiClO40,2mo7 、ポリエチレングリコー
ル(取合度400 )6gをあらかじめ混合溶解した液
体にTiO2の表面を5iOzで被覆し、更にTiO2
の2重量パーセントに相当するM2O3で被覆した白色
顔料(帝国化学工業製、製品名JR602) 30 g
をメノウ製乳鉢を用いて混合分散させ、白色のイオン導
電性塗料を得た。
On the other hand, polyvinyl alcohol ("pIj degree 24 (10
100 g of 10% by weight water bath solution with a degree of 90%
The surface of TiO2 was coated with 5 iOz in a liquid prepared by mixing and dissolving 6 g of polyethylene glycol (intensity 400), LiClO40,2mo7, and TiO2
30 g of white pigment coated with M2O3 equivalent to 2% by weight of (Teikoku Kagaku Kogyo, product name JR602)
were mixed and dispersed using an agate mortar to obtain a white ion conductive paint.

得られたイオン導電性塗料を前記MoO3をスパッタし
たガラス板上に流動塗布した後、70”Cの乾燥器中で
3時間乾燥した。
The obtained ion conductive coating material was flow-coated onto a glass plate onto which the MoO3 was sputtered, and then dried in a dryer at 70''C for 3 hours.

この後、イオン導電性塗布面上に金を、真空蒸着するこ
とによって対向電極を設け、イオン導電層が固体の所謂
全固体にDを製作した。7個のセグメント′電極に−0
,7ボルトを印加したところ、0.5秒以内で全セグメ
ント電極上のJvToOaが酸化され青色に着色し、白
色の背景色の中に数字の8を示すパターンが鮮明に現わ
れだ。現われた青色の文字は、電圧の印加を中止しても
そのまま残シ、メモリ性のあることが確認されたが、次
に、対向電極に対し7個のセグメント電極に同時に+0
.5ボルトの電圧を印加したところ、青色の文字は消え
、ECDの表示面全面に亘り、均一な白色の初期状態に
戻った。各表示セグメント電極に印加する電圧を対向電
極の電圧を基準として、+0.7ボルト0,5秒−0,
5ボルト0.5秒繰り返し周波数0.5 HzでECD
の実用寿命を測定したところ104回以上の発消色を繰
り返した後でも、7個の表示セグメント電極間での色ム
ラは生じなかった。
Thereafter, a counter electrode was provided by vacuum-depositing gold on the ion-conductive coating surface, and the ion-conductive layer was made into a solid, so-called all-solid D. -0 to 7 segment' electrodes
, 7 volts was applied, within 0.5 seconds JvToOa on all segment electrodes was oxidized and colored blue, and a pattern showing the number 8 clearly appeared on the white background. It was confirmed that the blue characters that appeared remained as they were even if the voltage application was stopped, and that they had memory properties.
.. When a voltage of 5 volts was applied, the blue characters disappeared and the entire display surface of the ECD returned to its initial state of uniform white color. The voltage applied to each display segment electrode is +0.7 volts 0.5 seconds -0, with the voltage of the counter electrode as a reference.
ECD at 5 volts 0.5 seconds repetition frequency 0.5 Hz
When the practical life of the display was measured, no color unevenness occurred between the seven display segment electrodes even after repeating color development and fading more than 104 times.

これに対し、 ’ri02の表面をAl2O3で被覆し
ていない白色顔料(石原産業株式会社製、製品番号A−
100)を用いた以外は、本実施例と同一の組成のイオ
ン導電性塗料を塗布して製作したECDではガラス基板
上に蒸着した1003N、膜と顔料微粒子とのあいだで
静電的な反発力がイ・すJらき、均一な厚みのイオン導
′東層を得ることが困難な上、各表示セグメン) ’t
JL極と対向電極間に一07ボルトの電圧を0.5秒間
印加しただけで、表示セグメント屯柘に蒸着したMoO
3が過度に還元され、単一セグメント電極内でも発色む
らが生じ表示素子としての機能を果たさなくなった。
On the other hand, 'ri02 is a white pigment whose surface is not coated with Al2O3 (manufactured by Ishihara Sangyo Co., Ltd., product number A-
In the ECD manufactured by coating an ion conductive paint with the same composition as in this example, except that 100) was used, the electrostatic repulsive force between the 1003N film and the pigment fine particles was evaporated on the glass substrate. However, it is difficult to obtain an ion-conducting layer with a uniform thickness, and each display segment)
MoO deposited on the display segment by applying a voltage of 107 volts for 0.5 seconds between the JL pole and the counter electrode
3 was excessively reduced, uneven color development occurred even within the single segment electrode, and the display element no longer functioned.

実施例2゜ 厚さが1朋のガラス板にシート抵抗が50Ω口のネサ膜
をあらかじめ設けた透明導電性ガラス板をエツチングし
て7セグメントの数字表示用電極を形成し、次にエレク
トロクロミック材料層としてWO2をスパック法により
蒸着してvJO3薄膜を形成した。蒸着した凹3層の厚
みはaoooXであった。
Example 2 A transparent conductive glass plate with a thickness of 1 mm on which a NESA film with a sheet resistance of 50 Ω was previously provided was etched to form a 7-segment numeric display electrode, and then an electrochromic material was etched. A vJO3 thin film was formed by depositing WO2 as a layer using the sppack method. The thickness of the deposited three concave layers was aoooX.

一方、ポリメチルメタアクリレ−)2.5gとLiCI
O45g sポリエチレングリコール−1,5gを50
gのメチルイソブチルケトンに溶解した液体にTiO2
の表面を重量ノく−セントに相当する5iOzで被覆し
、更にTiO2の2重量ノく一セントに相当するA/2
03で被覆した白色顔料(帝国化工株式会社製製品名J
R602)5gを添加し、メノウ製乳鉢を用いて混合分
散することによって白色のイオン導電性塗料な得た。
On the other hand, 2.5 g of polymethyl methacrylate and LiCI
O45g s polyethylene glycol - 1.5g 50
TiO2 in a liquid dissolved in g of methyl isobutyl ketone
The surface of is coated with 5iOz, which corresponds to 10 cents by weight, and A/2, which corresponds to 2 cents by weight of TiO2.
White pigment coated with 03 (manufactured by Teikoku Kako Co., Ltd., product name: J
A white ion conductive paint was obtained by adding 5 g of R602) and mixing and dispersing using an agate mortar.

得られたイオン導電性塗料を、前記W03を蒸着したガ
ラス板上に流動塗布した後100℃の乾燥器中で約3時
間乾燥した。
The obtained ion conductive coating material was flow-coated onto the glass plate on which the W03 was deposited, and then dried in a dryer at 100° C. for about 3 hours.

この後イオン導電性塗布面に金を真空蒸着することによ
って対向′電極を設け、イオン入電層が固体の所謂、全
固体ECDを製作した。
Thereafter, gold was vacuum-deposited on the ion conductive coated surface to provide a counter electrode, thereby producing a so-called all-solid ECD in which the ion conductive layer was solid.

得られた全面体ECDの表示面は、表示信号電圧を印加
しない時乳白色をしており、表示セグメント′藏極に−
1,3ボルト印加すると0.5秒以内で淡青色に発色し
、+1.3ボルト印加すると乳白色に戻る。
The display surface of the obtained full-screen ECD is milky white when no display signal voltage is applied, and the display segment's -
When 1.3 volts are applied, the color develops into pale blue within 0.5 seconds, and when +1.3 volts is applied, the color returns to milky white.

表示セグメント電極と、対向′g電極間+1.3ボルト
の電圧と一13ボルトの電圧をそれぞれ0.5秒間ずつ
交互に印加して実用寿命を測足したところ、105回以
上の発消色を11榮り返した後でも7個の表示セグメン
ト電極間での着消色l農度に差が生じなかった。
When we measured the practical life by applying a voltage of +1.3 volts and a voltage of -113 volts alternately for 0.5 seconds each between the display segment electrode and the opposing 'g electrode, we found that coloring and fading occurred more than 105 times. Even after repeating the display for 11 times, there was no difference in the degree of coloring/decoloring among the seven display segment electrodes.

これに対して、TiO2の表面を被覆してない白色顔料
(石原産業株式会社製 3j’j品企号A100)を用
いた以外は本実施例と同一の組成の白色イオン導電性塗
料を用いて得た全固体ECDは、表示面の乳白色にムラ
があるうえ単一セグメント電極内でも発消色のムラが生
じた。
On the other hand, a white ion conductive paint having the same composition as in this example was used, except that a white pigment (manufactured by Ishihara Sangyo Co., Ltd., product number A100) was used that did not coat the surface of TiO2. The obtained all-solid-state ECD had uneven milky white color on the display surface, and uneven color development and fading occurred even within the single segment electrode.

尚、本実施例では無機質のエレクトロクロミック材料を
用いて説明したが、有機質のエレクトロクロミック材料
についても同様の結果が得られている。
Although the present example has been explained using an inorganic electrochromic material, similar results have been obtained with an organic electrochromic material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、全固体ECDの概略を示す斜視図、第2図は
、全固体ECDの断面略図である。 t、11.t2;ta・・・17・・・表示用セグメン
ト狛へ、2・・・エレクトロクロミック材料ttV I
iW、3・・・固体電解質(イオン4 t+4材料層)
、4・・・対向蹴極、 5・・・透明基板(ガラス)。 代理人 弁理士 則 近 7i 仔j (e−よか1名) 第 1 図 第 2 図 第1頁の続き
FIG. 1 is a perspective view schematically showing an all-solid-state ECD, and FIG. 2 is a schematic cross-sectional view of the all-solid-state ECD. t, 11. t2; ta...17...To display segment cage, 2...Electrochromic material ttV I
iW, 3...Solid electrolyte (ion 4 t+4 material layer)
, 4... Opposing kick pole, 5... Transparent substrate (glass). Agent Patent Attorney Rule Chika 7i Takaj (e-Yoka 1 person) Figure 1 Figure 2 Continuation of Figure 1 page 1

Claims (5)

【特許請求の範囲】[Claims] (1)表示用透明電極にエレクトロクロミック材料の薄
膜を密接して設ける第1の工程と、電解質を含む高分子
溶液中での帯電極性がエレクトロクロミック材料の帯′
−極性と逆極性の顔料を電解質を含む高分子溶液中に分
散させ、イオン導電性塗料を得る第2の工程と、得られ
たイオン導電性塗料を、エレクトロクロミック材料薄膜
上に塗布・乾燥する第3の工程と塗布乾燥したイオン4
電性材料層上に導電性電極を設ける第4の工程をイボす
ることを特徴とする電気発色表示素子の製造方法。
(1) A first step in which a thin film of an electrochromic material is closely attached to a transparent electrode for display, and the charge polarity in a polymer solution containing an electrolyte is determined by the band of the electrochromic material.
- A second step of obtaining an ion-conductive paint by dispersing pigments of polarity and opposite polarity in a polymer solution containing an electrolyte, and applying and drying the obtained ion-conductivity paint onto a thin film of electrochromic material. Third step and applied and dried ion 4
A method for manufacturing an electrochromic display element, characterized in that a fourth step of providing a conductive electrode on the conductive material layer is performed.
(2)溶媒として水を用い顔料および電解質の担体とし
て水溶性高分子化合物を用いたことを特徴とする特許請
求の範囲第1項記載の電気発色表示素子の製造方法。
(2) A method for producing an electrochromic display element according to claim 1, characterized in that water is used as a solvent and a water-soluble polymer compound is used as a carrier for the pigment and electrolyte.
(3)電解質を含んだ高分子水溶液中での帯電極性が負
の極性を有するエレクトロクロミック材料を用いる際に
、等電点が用いる電解質を含んだ高分子水溶液のP、H
よりも高い顔料を′電解質を含んだ高分子水溶液中に分
散させた塗料を用いてイオン導電月料層を形成すること
を特徴とする特許請求の範囲第2項記載の電気発色表示
素子の製造方法。
(3) When using an electrochromic material whose charge polarity in an aqueous polymer solution containing an electrolyte is negative, the isoelectric point of the aqueous polymer solution containing an electrolyte is P, H
2. Production of an electrochromic display element according to claim 2, characterized in that the ionically conductive layer is formed using a paint in which a pigment having a higher concentration than Method.
(4)電解質を含んだ高分子水溶液中での帯電極性が、
正の極性を有するエレクトロクロミック利用を用いる靜
に、等電点が用いる。し解質を含んだ高分子水溶液のp
Hよりも低い顔料を、咄)官l+1を含んだ高分子水溶
液中に分散させた伝相を用いてイオンξを電利料層を形
成することを特徴とする特許請求の範囲第2項に記載の
電気発色表示素子の製造方法。
(4) Charge polarity in a polymer aqueous solution containing an electrolyte is
In addition to using electrochromic applications with positive polarity, isoelectric points are used. p of a polymer aqueous solution containing solutes
Claim 2, characterized in that the ion ξ is formed into a charge layer by using a phase conductor in which a pigment lower than H is dispersed in a polymer aqueous solution containing 1+1. A method of manufacturing the electrochromic display element described above.
(5)核となる金総叡化物粒子の表Eniを異種の金稙
醒化物で+M +=することにより粒子の等′4点を核
としだ金属rI<化物粒子の等1に点と異なる値にした
顔料を分散したイオン嗜、電性塗外」をハ(いたことを
特徴とする特許請求の範囲”i’y 3項又07i!:
B 4相に記載の電気発色表示素子の製造方法。 (61TiO2微粒子の表面を5iOzで抜法し、等電
点を5以下にした顔料もしくはTi0z微粒子の4面を
少なくとも一種以上の金属酸化物で被覆し、等電点を7
以上にした顔料を電解質を含んだ高分子溶液に分散させ
て、イオン専電性塗料を得、この塗料を用いてイオン樽
電材料ルとを形成したことを特徴とする特許請求の範囲
第5項記載の電気発色表示素子の製造方法。
(5) By adding +M += to the surface Eni of the gold fluoride particles that serve as the nucleus, the equal '4 point of the particle is set as the nucleus, and the point differs from the point where the metal rI<the compound particle equal 1. Claims ``i'y Item 3 and 07i!:
B. A method for manufacturing an electrochromic display element according to 4-phase. (The surface of the 61TiO2 fine particles is coated with 5iOz, and the isoelectric point is set to 5 or less by coating the four sides of the Ti0z fine particles with a pigment or at least one kind of metal oxide to make the isoelectric point 7 or less.
Claim 5, characterized in that the above-mentioned pigment is dispersed in a polymer solution containing an electrolyte to obtain an ion-exclusive paint, and this paint is used to form an ion barrel electric material. A method for producing an electrochromic display element as described in 2.
JP58178113A 1983-09-28 1983-09-28 Production of electrocoloring display element Pending JPS6070419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178113A JPS6070419A (en) 1983-09-28 1983-09-28 Production of electrocoloring display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178113A JPS6070419A (en) 1983-09-28 1983-09-28 Production of electrocoloring display element

Publications (1)

Publication Number Publication Date
JPS6070419A true JPS6070419A (en) 1985-04-22

Family

ID=16042880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178113A Pending JPS6070419A (en) 1983-09-28 1983-09-28 Production of electrocoloring display element

Country Status (1)

Country Link
JP (1) JPS6070419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671337B1 (en) * 2018-12-17 2024-03-27 Furcifer Inc. Display device with electrochromic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671337B1 (en) * 2018-12-17 2024-03-27 Furcifer Inc. Display device with electrochromic material

Similar Documents

Publication Publication Date Title
US4193670A (en) Electrochromic devices having protective interlayers
US7525716B2 (en) Display device and display apparatus
JP2002258327A (en) Electrochromic display element and electrodeposition type display element
KR930006185A (en) Electrochemical coloring solution, preparation and use thereof, and apparatus prepared therefrom
JPS636857B2 (en)
JP2014052510A (en) Electrochromic display apparatus and driving method of the same
WO2003001289A1 (en) Display device and method of manufacturing the display device
JP5010135B2 (en) Multicolor display element
KR850000135B1 (en) Electrochromic display device with improved erasing characteristic
JPS6070419A (en) Production of electrocoloring display element
US4837592A (en) Method of making an electrochromic layer and new electrochromic device made therefrom
JPS59113422A (en) Total solid-state electrochromic display
JPS6244719A (en) Electrochromic display element
JP4675641B2 (en) Display element, display method and display device
JPH0145895B2 (en)
JPH04130313A (en) Electrochromic element
JPS62295031A (en) Electrochromic display device
JP3000640B2 (en) Electrochromic device
JPS58139129A (en) Electrochromic display element
JPS63286826A (en) Electrochromic display element
JP2000338527A (en) Display element
JPH0269722A (en) Electrochromic display device
JPH0635006A (en) Electrochromic element
JPS58221883A (en) Electrochromic display element
JPH0139565B2 (en)