JPS6070329A - Pressure transmitting device - Google Patents

Pressure transmitting device

Info

Publication number
JPS6070329A
JPS6070329A JP17995683A JP17995683A JPS6070329A JP S6070329 A JPS6070329 A JP S6070329A JP 17995683 A JP17995683 A JP 17995683A JP 17995683 A JP17995683 A JP 17995683A JP S6070329 A JPS6070329 A JP S6070329A
Authority
JP
Japan
Prior art keywords
pressure
movable electrode
sides
detection chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17995683A
Other languages
Japanese (ja)
Inventor
Shinjiro Tomioka
富岡 真二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP17995683A priority Critical patent/JPS6070329A/en
Publication of JPS6070329A publication Critical patent/JPS6070329A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms

Abstract

PURPOSE:To avoid the effect of temperature even though constituent members are changed due to the change in ambient temperature, by forming symmetrical right and left pressure detecting chambers at the central part of a body, and forming two pressure actuating chambers having the same shape at both sides. CONSTITUTION:A pressure transmitting device 1 has a structure having symmetrical right and left parts. A movable electrode 3 comprising a thick plate spring is provided at the central part of a body 2. Symmetrical right and left pressure detecting chambers 2a are formed at the central part of the body 2 by a flange 3a of the movable electrode 3. Recesses, whose diameters are the same as those of communicating paths 2b and 2c are formed in both attachments 7 and 8. Thus a pressure acting chamber 7a on the process side and a pressure acting chamber 8a on the atmospheric side are formed. In this constitution, even though the constituent members are changed due to the change in ambient temperature, the deformations are offset at the right and left sides, and the effect of the temperature can be avoided.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、静電容量式の圧力伝送器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a capacitive pressure transmitter.

(ロ)従来技術 従来より圧力伝送器には、第1図に示すように、ボディ
aの片側にフランジbがボルトCによって取付けられ、
このボディaに連通路dが両側に貫通して形成されると
共に、この連通路dより遠心方向に円盤状の圧力検出室
eが形成される一方、ボディaの片側に圧力変換室fが
フランジbとの間に形成され、片側に大気圧作用室gが
形成され、圧力変換室fに厚板スプリングhが、大気圧
作用室gに波形シールダイヤフラムiが設けられ、この
スプリングhとシールダイヤフラム1間にシリコンオイ
ルjが圧力検出室e等に亘り封入されているものがある
。そして更に、スプリングhの両側にはロッドに、ff
が連接され、一方のロッドkが連通路dを通り、圧力検
出室eに位置する可動電極mが取付けられ、他方のロッ
ドβがフランジbに形成された圧力作用室flに臨んで
ダイヤフラム0が取イ」けられ、前記圧力検出室eに固
定電極pが設けられている。
(B) Prior Art Conventionally, as shown in Fig. 1, a pressure transmitter has a flange b attached to one side of a body a by bolts C.
A communication passage d is formed through this body a on both sides, and a disk-shaped pressure detection chamber e is formed in the centrifugal direction from this communication passage d, while a pressure conversion chamber f is formed on one side of the body a. b, an atmospheric pressure working chamber g is formed on one side, a thick plate spring h is provided in the pressure conversion chamber f, a corrugated seal diaphragm i is provided in the atmospheric pressure working chamber g, and this spring h and the seal diaphragm There is one in which silicone oil j is sealed throughout the pressure detection chamber e and the like. Furthermore, on both sides of the spring h, there are rods ff
are connected, one rod k passes through the communication path d, a movable electrode m located in the pressure detection chamber e is attached, and the other rod β faces the pressure action chamber fl formed in the flange b, and the diaphragm 0 A fixed electrode p is provided in the pressure detection chamber e.

従って、圧力作用室nにプロセス圧等が作用してロッド
βが押圧され、厚板スプリングhが撓み、片方のロッド
kが移動する。そして、この移動により可動電極mが変
位し、固定電極pとのギャップが変化し、このギャップ
変化による静電容量変化を検知信号として導出するよう
になっている。
Accordingly, process pressure or the like acts on the pressure chamber n, pressing the rod β, bending the thick plate spring h, and moving one of the rods k. This movement causes the movable electrode m to displace, and the gap between it and the fixed electrode p changes, and the capacitance change due to this gap change is derived as a detection signal.

しかし、この圧力伝送器においては、汎用性等の関係か
ら左右非対称構造となっている。つまり、測定圧力の導
入部に厚板スプリングhを設けて一旦スプリングhの撓
みに変換している。これでは周囲の温度やプロセスの温
度等が変化すると、構成部材の膨張等による変位が大気
圧側とプロセス側とで異なることになり、温度影響を受
け易いという問題があった。しかも、大気圧はシリコン
オイルで伝達しているため、温度変化の影響が大きく、
測定信頼性が低かった。
However, this pressure transmitter has a left-right asymmetric structure for reasons such as versatility. That is, a thick plate spring h is provided at the introduction part of the measurement pressure, and the deflection of the spring h is temporarily converted. This poses a problem in that when the ambient temperature, process temperature, etc. change, the displacement due to expansion of the constituent members differs between the atmospheric pressure side and the process side, making them susceptible to temperature effects. Moreover, because atmospheric pressure is transmitted through silicone oil, it is greatly affected by temperature changes.
Measurement reliability was low.

また、厚板スプリングhをフランジbで固定しているの
で、構造が複雑であった。
Further, since the thick plate spring h is fixed by the flange b, the structure is complicated.

(ハ)目的 この発明は、斯かる点に鑑みてなされたもので、厚板ス
プリングを可動電極に併用して中央に設け、全体を左右
対称構造にして温度影響による変位を左右で相殺すると
同時に、構造を簡略化した圧力伝送器を提供−すること
を目的とするものである。
(c) Purpose This invention was made in view of the above points, and it uses a thick plate spring in combination with the movable electrode and provides it in the center, making the whole structure bilaterally symmetrical, and at the same time canceling out the displacement caused by temperature effects on the left and right sides. The object of the present invention is to provide a pressure transmitter with a simplified structure.

(ニ)構成 この発明は、上述した目的を達成するために、ボディの
中央部に左右対称形状の圧力検出室が、この圧力検出室
より両側部に向かって同形の2つの連通路がそれぞれ形
成されると共に、両側部に同形の2つの圧力作用室が形
成され、前記圧力検出室の中央に厚板スプリングより成
る左右対称形状の可動電極が、側面に固定電極がぞれぞ
れ設けられ、この可動電極の中心部に同形の2つのロッ
ドが側方に向かって連設され、このロッドが連通路内を
貫通し、先端面が圧力作用室に臨んで受圧面に構成され
ると共に先端部とボディとの間にシールダイヤフラムが
張設される一方、前記圧力検出室が可動電極の両側で同
圧に構成されて成り、前記受圧面に作用した圧力により
可動電極が変位するように構成されている。
(d) Structure In order to achieve the above-mentioned object, this invention has a pressure detection chamber with a bilaterally symmetrical shape in the center of the body, and two communicating passages of the same shape extending from this pressure detection chamber toward both sides. At the same time, two pressure acting chambers of the same shape are formed on both sides, and a symmetrical movable electrode made of a thick plate spring is provided in the center of the pressure detection chamber, and fixed electrodes are provided on the sides, respectively. Two rods of the same shape are arranged sideways in the center of this movable electrode, and these rods pass through the communication path, and their tip faces face the pressure acting chamber and are configured as pressure receiving surfaces. A seal diaphragm is stretched between the body and the pressure detection chamber, and the pressure detection chamber is configured to have the same pressure on both sides of the movable electrode, and the movable electrode is configured to be displaced by the pressure acting on the pressure receiving surface. ing.

(ホ)実施例 以下、この発明の一実施例を図面に基づいて詳細に説明
する。
(E) Embodiment Hereinafter, an embodiment of the present invention will be described in detail based on the drawings.

第2図に示すように、1は圧力伝送器であって、静電容
量変化を利用して各種プロセスの圧力を検出するもので
ある。
As shown in FIG. 2, numeral 1 is a pressure transmitter, which detects pressures in various processes using changes in capacitance.

この圧力伝送器1ば左右対称構造で、ボディ2の中央部
に厚板スプリングより成る可動電極3が設けられ、この
可動電極3のフランジ3aによってボディ2の中央部に
左右対称形状の圧力検出室2aが形成されて構成されて
いる。
This pressure transmitter 1 has a bilaterally symmetrical structure, and a movable electrode 3 made of a thick plate spring is provided in the center of a body 2, and a symmetrical pressure detection chamber is formed in the center of the body 2 by a flange 3a of the movable electrode 3. 2a is formed and configured.

可動電極3は溝(=Jの平板スプリングで構成されて左
右対称形状になっており、圧力検出室2aの側面にはこ
の可動電極3と対面する固定電極4が絶縁体5を介して
取付けられ、両電極3.4にはそれぞれリード線6が接
続されている。
The movable electrode 3 is composed of a flat plate spring with a groove (=J) and has a symmetrical shape, and a fixed electrode 4 facing the movable electrode 3 is attached to the side surface of the pressure detection chamber 2a via an insulator 5. , lead wires 6 are connected to both electrodes 3.4, respectively.

前記ボディ2には、圧力検出室2aより両側方に向かっ
て2本の連通路2b、2Cが穿設されており、両速通路
2b、2cは同形に形成されている。更に、ボディ2の
両側凹部にはアタッチメント7.8が嵌合固着されてい
る。この両アクソチメント7.8には前記連通路2b、
2Cに連続し且つこの連通路2b、2cと同径の凹所が
形成されて、プロセス側圧力作用室7aと大気側圧力作
用室8aとを構成している。このプロセス側のアタッチ
メント7はボディ2よりやや突出し、圧力作用室7aよ
り通路7bを介して圧力導入路7Cが形成される一方、
大気側のアタッチメント8はボディ2と面一に形成され
、圧力作用室8aが通路8bを介して大気に開放されて
いる。この両アクソチメント7.8はボディ2の埋設部
が同形に形成されて、測圧力作用室7a、8a及び通路
7b、8bが同形となっている。
Two communication passages 2b and 2C are bored in the body 2 from the pressure detection chamber 2a toward both sides, and the double-speed passages 2b and 2c are formed in the same shape. Furthermore, attachments 7.8 are fitted and fixed in the recesses on both sides of the body 2. Both axotiments 7.8 include the communication path 2b,
2C and a recess having the same diameter as the communication passages 2b and 2c is formed to constitute a process-side pressure action chamber 7a and an atmosphere-side pressure action chamber 8a. This attachment 7 on the process side slightly protrudes from the body 2, and a pressure introduction passage 7C is formed from the pressure action chamber 7a via a passage 7b.
The attachment 8 on the atmosphere side is formed flush with the body 2, and the pressure chamber 8a is open to the atmosphere via a passage 8b. The buried portions of the body 2 of both axotiments 7.8 are formed to have the same shape, and the pressure measuring chambers 7a, 8a and the passages 7b, 8b have the same shape.

前記可動電極3の両側中心部には2本のロッド9.10
が側方に向かって連設されている。両ロッド9.10は
同形に形成され、各連通路2b、2cを貫通し、先端面
が圧力作用室7a、8aに臨んで受圧面9a、loaと
なっており、プロセス圧と大気圧が作用するようになっ
ている。
Two rods 9 and 10 are provided at the center of both sides of the movable electrode 3.
are arranged side by side. Both rods 9 and 10 are formed in the same shape, pass through each of the communication passages 2b and 2c, and have pressure receiving surfaces 9a and loa with their tip faces facing the pressure acting chambers 7a and 8a, so that process pressure and atmospheric pressure act on them. It is supposed to be done.

また、ロッド9.10の先端部には、ボディ2との間に
グイヤフラム11が張設されて、圧力作用37.8が区
画されると共に、連通路7.8及び圧力検出室2aがシ
ールされて不活性ガス12(例えば、チッソガス)が封
入されている。更に、両ロッド9.10間には可動電極
3を貫通してバイパス路13が形成され、可動電極3の
両側が連通して同圧力になるように構成されている。
Further, a guyafram 11 is stretched between the tip of the rod 9.10 and the body 2, and a pressure action 37.8 is partitioned, and a communication passage 7.8 and a pressure detection chamber 2a are sealed. An inert gas 12 (for example, nitrogen gas) is sealed therein. Further, a bypass passage 13 is formed between both rods 9 and 10 passing through the movable electrode 3, so that both sides of the movable electrode 3 communicate with each other and are configured to have the same pressure.

次に、圧力検出動作について説明する。Next, the pressure detection operation will be explained.

まず、プロセスの圧力はアクソチメント7の導入路7c
より通路7bを介して圧力作用室7aに作用し、一方、
大気圧はアクソチメント8の通路8bを介して圧力作用
室8aに作用している。そして、それぞれ各圧力ばロッ
ド9.10の端面受圧面9a、10aに作用し、ロッド
9.10を内側に押圧している。
First, the process pressure is
It acts on the pressure action chamber 7a through the passage 7b, and on the other hand,
Atmospheric pressure acts on the pressure chamber 8a via the passage 8b of the axotiment 8. Each pressure acts on the end pressure receiving surfaces 9a, 10a of the rod 9.10, pressing the rod 9.10 inward.

このプロセス圧力が受圧面9aよりロッド9の移動に変
換されて可動電極3に伝達される。この可動電極は厚板
スプリングで構成されているので、プロセス圧力によっ
て撓むことになり、この変位によって固定電極4とのギ
ャップが変化し、このギャップ変化による静電容量変化
をリード線6を介して導出し、検知信号として伝送する
This process pressure is converted into movement of the rod 9 from the pressure receiving surface 9a and transmitted to the movable electrode 3. Since this movable electrode is composed of a thick plate spring, it will be bent by the process pressure, and this displacement will change the gap with the fixed electrode 4, and the capacitance change due to this gap change will be reflected via the lead wire 6. and transmit it as a detection signal.

この圧力伝送器1において、周囲の温度が変化 。In this pressure transmitter 1, the ambient temperature changes.

しても左右対称構造であるので、各構成部材の変位等は
左右同一で相殺されることになり、温度影響がほぼ皆無
となる。
However, since the structure is bilaterally symmetrical, the displacement of each component is the same on the left and right sides and cancels out, resulting in almost no temperature influence.

また、不活性ガス12は両電極3.4を保護しており、
しかも、温度変化が生してもバイパス路13を介して移
動するので、可動電極3に何ら影響を及ぼすことはない
In addition, the inert gas 12 protects both electrodes 3.4,
Moreover, even if a temperature change occurs, the movable electrode 3 is not affected at all because it moves via the bypass path 13.

尚、この実施例において、片方の圧力作用室8aを大気
圧に開放したが、他のプロセス圧を導入して差圧を検出
するようにしてもよい。つまり、第2図に示す大気側の
アクソチメント8をプロセス側のアクソチメント7と同
一のアクソチメント14に交換してプロセス圧を導入す
るようにしてもよい。
In this embodiment, one of the pressure chambers 8a is opened to atmospheric pressure, but another process pressure may be introduced to detect the differential pressure. That is, the process pressure may be introduced by replacing the atmospheric side axotiment 8 shown in FIG. 2 with the same axotiment 14 as the process side axotiment 7.

また、不活性ガス12は可動電極3等の動作上必ずしも
封入する必要ばないが、電極3.4の保護のため封入す
ることが好ましい。
Furthermore, although it is not necessarily necessary to enclose the inert gas 12 in view of the operation of the movable electrode 3 and the like, it is preferable to enclose the inert gas 12 in order to protect the electrodes 3.4.

また、バイパス路13も可動電極3の両側を同氏にでき
るものであれば実施例に限定されものではない。
Further, the bypass path 13 is not limited to the embodiment as long as both sides of the movable electrode 3 can be connected to each other.

(へ)効果 以上のようにこの発明圧力伝送器によれば、全体を左右
対称に構成したので、周囲の温度が変化して各構成部材
が変化しても左右で相殺されることになり、温度影響を
なくすることができる。
(f) Effects As described above, according to the pressure transmitter of this invention, the entire structure is symmetrical, so even if the surrounding temperature changes and each component changes, it will be canceled out on the left and right sides. Temperature effects can be eliminated.

また、厚板スプリングと可動電極とを併用して中央に設
Ljたので、従来のようにフランジを設ける必要がなく
、構造を極めて簡素化することができる。
Further, since a thick plate spring and a movable electrode are used in combination and installed at the center, there is no need to provide a flange as in the conventional case, and the structure can be extremely simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力伝送器を示す中央縦断面図、第2図
はこの発明の一実施例を示す圧力伝送器の中央断面図で
ある。 1:圧力伝送器、 2:ボディ、 2a:圧力検出室、 ”1b−2c:連通路、3:可動
電極、 4:固定電極、 7・8・14:アクソチメント、 7a・8a:圧力作用室、9・10:ロッド、9a・1
0a:受圧面、 11:ダイートフラム、12:不活性
ガス、 13:バイパス路特許出願人 株式会社島津製
作所 代理人 弁理士 中 村 茂 信
FIG. 1 is a central longitudinal cross-sectional view showing a conventional pressure transmitter, and FIG. 2 is a central cross-sectional view of a pressure transmitter according to an embodiment of the present invention. 1: Pressure transmitter, 2: Body, 2a: Pressure detection chamber, 1b-2c: Communication path, 3: Movable electrode, 4: Fixed electrode, 7, 8, 14: Axotiment, 7a, 8a: Pressure action chamber, 9/10: Rod, 9a/1
0a: Pressure-receiving surface, 11: Daitoflam, 12: Inert gas, 13: Bypass path Patent applicant Shimadzu Corporation Representative Patent attorney Shigeru Nakamura

Claims (2)

【特許請求の範囲】[Claims] (1)ボディの中央部に左右対称形状の圧力検出室が、
この圧力検出室より両側部に向かって同形の2つの連通
路がそれぞれ形成されると共に、両側部に同形の2つの
圧力作用室が形成され、前記圧力検出室の中央に厚板ス
プリングより成る左右対称形状の可動電極が、側面に固
定電極がそれぞれ設けられ、この可動電極の中心部に同
形の2つのロッドが側方に向かって連設され、このロッ
ドが連通路内を貫通し、先端面が圧力作用室に臨んで受
圧面に構成されると共に先端部とボディとの間にシール
ダイヤフラムが張設される一方、前記圧力検出室が可動
電極の両側で同圧に構成されて成り、前記受圧面に作用
した圧力により可動電極が変位することを特徴とする圧
力伝送器。
(1) A symmetrical pressure detection chamber is located in the center of the body.
Two communication passages of the same shape are formed from this pressure detection chamber toward both sides, and two pressure acting chambers of the same shape are formed on both sides, and left and right pressure chambers made of thick plate springs are formed in the center of the pressure detection chamber. A movable electrode with a symmetrical shape is provided with a fixed electrode on each side, and two rods of the same shape are connected laterally at the center of the movable electrode. is configured as a pressure receiving surface facing the pressure action chamber, and a seal diaphragm is provided between the tip and the body, while the pressure detection chamber is configured to have the same pressure on both sides of the movable electrode, and the pressure detection chamber is configured to have the same pressure on both sides of the movable electrode. A pressure transmitter characterized in that a movable electrode is displaced by pressure acting on a pressure receiving surface.
(2)前記圧力作用室の一方には高圧の検出圧力が、他
方には大気圧が作用することを特徴とする特許請求の範
囲第1項記載の圧力伝送器。
(2) The pressure transmitter according to claim 1, wherein a high detected pressure acts on one of the pressure acting chambers, and atmospheric pressure acts on the other.
JP17995683A 1983-09-27 1983-09-27 Pressure transmitting device Pending JPS6070329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17995683A JPS6070329A (en) 1983-09-27 1983-09-27 Pressure transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17995683A JPS6070329A (en) 1983-09-27 1983-09-27 Pressure transmitting device

Publications (1)

Publication Number Publication Date
JPS6070329A true JPS6070329A (en) 1985-04-22

Family

ID=16074898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17995683A Pending JPS6070329A (en) 1983-09-27 1983-09-27 Pressure transmitting device

Country Status (1)

Country Link
JP (1) JPS6070329A (en)

Similar Documents

Publication Publication Date Title
EP0061488B1 (en) Capacitive pressure transducer with isolated sensing diaphragm
CA1264419A (en) Temperature compensated pressure transducer
CA2455694C (en) Pressure sensor
US4825685A (en) Pressure transducer
US6640640B2 (en) Differential pressure sensor
JPS59125032A (en) Differential pressure measuring device
JPS6070329A (en) Pressure transmitting device
US6370960B1 (en) Capacitive sensor
JPS62214329A (en) Differential pressure transmitter
EP0775303A1 (en) Pressure gauge
JPS62204137A (en) Pressure detector
JP2001159573A (en) Pressure detecting device
JPH0429971B2 (en)
JPS601402Y2 (en) Capacitive differential pressure transmitter
JP3105087B2 (en) Differential pressure detector
JPS5842943A (en) Differential capacity type pressure and differential pressure gauge
JPS60178331A (en) Electrostatic capacity type absolute pressure transmitting device
JPS61175538A (en) Pressure detector
JPS5850300Y2 (en) pressure transmitter
JPS6346833Y2 (en)
JPS6298228A (en) Differential pressure transmitter
JPH02262032A (en) Absolute pressure type semiconductor pressure sensor
JPS601401Y2 (en) pressure gauge
JP2595756B2 (en) Capacitive differential pressure detector
JPS6136610B2 (en)