JPS6069611A - Holding method of large aperture optical parts - Google Patents

Holding method of large aperture optical parts

Info

Publication number
JPS6069611A
JPS6069611A JP17863883A JP17863883A JPS6069611A JP S6069611 A JPS6069611 A JP S6069611A JP 17863883 A JP17863883 A JP 17863883A JP 17863883 A JP17863883 A JP 17863883A JP S6069611 A JPS6069611 A JP S6069611A
Authority
JP
Japan
Prior art keywords
mirror
botting
potting
optical component
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17863883A
Other languages
Japanese (ja)
Inventor
Minoru Monma
門馬 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17863883A priority Critical patent/JPS6069611A/en
Publication of JPS6069611A publication Critical patent/JPS6069611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To enable holding of large aperture optical parts having a large weight with ultra-low distortion by potting the optical parts while supporting said parts in such a way that the force except the reaction against the weight of said parts is not exerted to the parts. CONSTITUTION:A mirror 2 is placed horizontally. A spacer consisting of silicone rubber is placed between the mirror 2 and a mirror 1 in a way as to create a specified space, thereby supporting the mirror 1. The potting points J-R in the part where the weight of the mirror 1 acts in the actual installation state are potted by a potting material 4. The assembly is rested for 24hr is said position to cure the potting material and thereafter the mirror cell 1 is vertically erected and supported and the potting material is stabilized for the weight of the mirror by spending 6hr. All the remaining potting points are potted by the material 4 in the vertical state and the material 4 is cured for 24hr.

Description

【発明の詳細な説明】 本発明は大口径レーザ装置、大口径望遠鏡等に用いるレ
ンズ、反射鏡、偏光素子、非線型光学素子、レーザ素子
等の光学部品の保持方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for holding optical components such as lenses, reflecting mirrors, polarizing elements, nonlinear optical elements, and laser elements used in large-diameter laser devices, large-diameter telescopes, and the like.

従来、口径が300顛位までのレンズ、反射鏡などの光
学部品の保持方法としては次のような方法が用いられて
いた。
Conventionally, the following method has been used to hold optical components such as lenses and reflectors with diameters up to about 300 mm.

(1)光学部品を押えつけて固定する方法、具体的には
、金属の醗具により3点固定方式で押える方法、光学部
品との接触効率を良くするように鉛等の軟が金属を介し
て押える方法や、ゴム、コルク、フェルト等のクッショ
ン材を介して押える方法、 (2)光学部品を押える替りにその部分を弾力のめる材
料で全周ボッティングし保持する方法、等があった。
(1) A method of holding down and fixing optical parts, specifically, a method of holding down with a three-point fixation method using a metal tool, and a method of holding a soft material such as lead through the metal to improve the efficiency of contact with the optical part. (2) Instead of pressing down on the optical parts, they were held in place by botting the entire circumference of the optical parts with elastic material.

しかし、これらの方法では、光学部品がさらに大型化し
、重量も大きくなり、しかも非常に高い精度が要求され
る場合、例えば波長1μm程度のλ レーザ装置に於て波面歪が /□。(λ:波長)に近い
高精度を要求される場合、或いは高分解能の大口径天体
望遠鏡の場合等に対しては次のような問題がある。
However, with these methods, the optical components become larger and heavier, and when very high precision is required, for example, in a λ laser device with a wavelength of about 1 μm, the wavefront distortion is /□. In cases where high accuracy close to (λ: wavelength) is required, or in the case of a high-resolution large-diameter astronomical telescope, the following problems arise.

第1方法(1)の場合、光学部品自身の自重による力の
他に、光学部品を保持器にガタなく装着するための締付
圧力が加えられることになり、これ等の外力の影響で光
学部品に波面歪を発生させる問題がある。また、第2の
方法(2)の場合も部品の全周をボッティングするため
ポツティング材が硬化した後実際設置する姿勢にした時
に、下部ではボッティング材が圧縮され、上部では引張
られる形となり、その反力の不均一性が光学部品に波面
歪支える力以外の外力が光学部品に加わり、その影響に
より光学部品の波面歪が大きくなり、安定した性能が得
られないという欠点があった。
In the case of the first method (1), in addition to the force due to the weight of the optical component itself, a tightening pressure is applied to attach the optical component to the holder without play, and due to the influence of these external forces, the optical component There is a problem of generating wavefront distortion in parts. Also, in the case of the second method (2), since the entire circumference of the part is potted, when the potting material hardens and is placed in the position for actual installation, the potting material is compressed at the bottom and stretched at the top. However, due to the non-uniformity of the reaction force, an external force other than the force that supports the wavefront distortion is applied to the optical component, which increases the wavefront distortion of the optical component, making it difficult to obtain stable performance.

本発明の目的は、このような応力発生の原因となる不必
要な外力の加わる欠点を除去し、光学部品自身の重量に
対する反力のみを出来るだけ分散させて光学部品に加え
るようにして応力発生を少くした大口径光学部品の保持
方法を提供することにある。
The purpose of the present invention is to eliminate the disadvantage of applying unnecessary external force that causes stress generation, and to apply stress to the optical component by dispersing only the reaction force against the weight of the optical component itself as much as possible. An object of the present invention is to provide a method for holding a large-diameter optical component in which the amount of damage is reduced.

本発明は、大口径光学部品の外周部および外周辺部の多
数個所でその取付枠に所定ボッティング材により分割ボ
ッティングを行ってこの光学部品を保持する大口径光学
部品の保持方法において、前記光学部品の保持状態で重
力のかかるボッティング個所にこれらの個所を重力のか
からない状態で支持しながらボッティングを行う第1の
工程と、前記ボッティング材が硬化した後その支持を外
して前記光学部品を前記保持状態に安定化させる第2の
工程と、前記ボッティング材が安定化した後残りのポツ
ティング個所にボッティングを行う第3の工程とを含み
構成される 本発明においては、光学部品の両面の外周部及び側面を
多点で分割ボッティングする保持構造をとり、ボッティ
ング材が硬化した後−胚要な外力が加わらないように、
次のようにボッティ/グ手順を工夫している。
The present invention provides a method for holding a large-diameter optical component in which an optical component is held by dividing the mounting frame of the large-diameter optical component at multiple locations on the outer periphery and the outer periphery using a predetermined botting material. A first step of performing botting on the botting points where gravity is applied while holding the optical component while supporting these locations in a state where no gravity is applied; and after the botting material has hardened, the support is removed and the optic is In the present invention, the optical component includes a second step of stabilizing the component in the holding state, and a third step of performing botting at the remaining potting locations after the botting material is stabilized. A holding structure is adopted in which the outer periphery and side surfaces of both sides are divided into multiple bottling points, and after the botting material has hardened, the embryo is
The botti/gu procedure has been devised as follows.

1)まず、実際の設置状態における光学部品の重量の掛
る部分(下側になる部分)のみに対して、光学部品に外
力を加えない水平状態で支持しながらボッティングを行
う。
1) First, botting is performed only on the weight-bearing part (the lower part) of the optical component in the actual installed state while supporting it in a horizontal state without applying any external force to the optical component.

2)次に、このポツティング材が硬化した後、その支持
状態を外し、光学部品の重量に対してボッティング材が
安定状態になるまで待つ。
2) Next, after the potting material has hardened, the support is removed and the potting material is allowed to stabilize against the weight of the optical component.

3)次に、ボッティング材が安定な状態になったら、残
りのボッティング部分(重量の掛らない部分)を外力の
加わらない状態でボッティングし、硬化てせる。
3) Next, when the botting material is in a stable state, the remaining botting part (the part on which no weight is applied) is botted and cured without any external force being applied.

このように本発明では、弾性の大きなボッティング材を
用いて、不要な外力を加え表いようにした手順によりボ
ッティングするので、超低歪で光Y/断面)およびその
X−X/断面図で、核融合実験用大口径ガラスレーザ装
置の集光系に用いる大口径ミラーの保持構造を示してい
る。このレーザ装置においては、図のような上下関係で
、ミラー1をミラーセル2(ミラー保持金枠)とリプイ
ナー11ング3との間に設置する構造であり、次のよう
な手順でポツティングを行う。
In this way, in the present invention, since botting is performed using a botting material with high elasticity and a procedure in which unnecessary external force is applied, the beam Y/cross section) and its X-X/cross section can be processed with ultra-low distortion. The figure shows a holding structure for a large-diameter mirror used in a condensing system of a large-diameter glass laser device for nuclear fusion experiments. This laser device has a structure in which a mirror 1 is installed between a mirror cell 2 (mirror holding metal frame) and a repeater 11 ring 3 in a vertical relationship as shown in the figure, and potting is performed in the following procedure.

甘ず、ミラーセル2を水平に置き、このミラーセル2と
ミラー1との間に一定の空間が出来るようにシリコンゴ
ムのスペーサを入れてミラー1を支持し、実際の設置状
態においてミラー1の重量が掛る部分のポツティング個
所(J〜Rに相当する)をボッティング材4によりボッ
ティングする。
Please place the mirror cell 2 horizontally and insert a silicone rubber spacer to support the mirror 1 so that there is a certain space between the mirror cell 2 and the mirror 1. The potting parts (corresponding to J to R) of the hanging parts are potted with the botting material 4.

その水平状態で24時間放1し、ボッティング材を硬化
てせる。その後ミラーセル1を垂直に立てて支持し、6
時間かけてボッティング材をミラーの重量に対して安定
化させる。
Leave it in the horizontal state for 24 hours to harden the botting material. After that, support the mirror cell 1 vertically, and
Allow the botting material to stabilize against the weight of the mirror over time.

次に、垂直の状態で残りのポツティング個所をボッティ
ング材4で全てボッティングし、ここでそのままの状態
で24時間ボッティング材を硬化させる。支持用シリコ
ンゴムのスペーサを全て取り除き、7アブリ・ペロー型
干渉計でミラー1の波面歪を測定する。
Next, in a vertical position, all remaining potting points are potted with botting material 4, and the botting material is left to harden for 24 hours. All supporting silicone rubber spacers are removed, and the wavefront distortion of mirror 1 is measured using a 7Avry-Perot interferometer.

以上のようにポツティングを行った結果、ミラー単体の
自己波面歪λ/8(λ=6328λ)に対してボッティ
ング後の波面歪はλ/6 であり、波面歪の増加はλ/
10以下でめった。
As a result of potting as described above, the wavefront distortion after potting is λ/6 compared to the self-wavefront distortion of the mirror alone λ/8 (λ=6328λ), and the increase in wavefront distortion is λ/6.
Rarely below 10.

なお、この実施例においては、ボッティング材として、
米国GE社製のシリコンボッティング材几TV577を
用いたが、同様の弾性をもつシリコンボッティング材で
あれば、何でも用匹ることか出来る。
In addition, in this example, as the botting material,
A silicone botting material, TV577, made by GE, USA, was used, but any silicone botting material with similar elasticity can be used.

以上に説明したように、本発明においては、光学部品の
重量に対する反力以外の外力が加わらないようにしなが
らボッティングすることによって、高精度でしかも重量
の大きな大口径光学部品を超低歪で保持することが出来
るようになった。
As explained above, in the present invention, by performing botting while preventing the application of external forces other than the reaction force to the weight of the optical component, it is possible to manufacture high-precision, heavy, large-diameter optical components with ultra-low distortion. It is now possible to hold it.

−の保持構造の平面図(Y−Y’面)およびそのx−x
’断面図である。図において l・・・・・・ミラー、2・・・・・・ミラーセル(金
Jl)、3・・・・・リティナーリング、4・・・・・
・ボッティング材、A〜几・・・・・側面のボッティン
グ個所、である。
- Plan view of the holding structure (Y-Y' plane) and its x-x
'This is a cross-sectional view. In the figure, l...Mirror, 2...Mirror cell (gold Jl), 3...Retainer ring, 4...
・Botting material, A ~ Botting location on the side.

Claims (1)

【特許請求の範囲】[Claims] 大口径光学部品の外周部および外周辺部の多数個所でそ
の取付枠に所定ポツティング材により分割ポツティング
を行ってこの光学部品を保持する大口径光学部品の保持
方法において、前記光学部品の保持式れる保持状態で重
力のかかるボッティング個所にこれらの個所を重力のか
からない状態で支持しながらボッティングを行う第1の
工程と、前記ボッティング材が硬化した後その支持を外
して前記光学部品を前記保持状態にして安定化させる第
2の工程と、前記ボッティング材が安定化した後残りの
ボッティング個所にボッティングを行う第3の工程とを
含む大口径光学部品の保持方法。
In a method for holding a large-diameter optical component, the method for holding a large-diameter optical component includes performing divided potting on the mounting frame of the large-diameter optical component at multiple locations on the outer periphery and outer periphery using a predetermined potting material to hold the optical component. A first step is to perform botting on the botting points where gravity is applied in a held state while supporting these points in a state where no gravity is applied, and after the botting material has hardened, the support is removed and the optical component is placed in the botting location. A method for holding a large-diameter optical component, comprising: a second step of stabilizing the botting material in a holding state; and a third step of botting the remaining botting locations after the botting material is stabilized.
JP17863883A 1983-09-27 1983-09-27 Holding method of large aperture optical parts Pending JPS6069611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17863883A JPS6069611A (en) 1983-09-27 1983-09-27 Holding method of large aperture optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17863883A JPS6069611A (en) 1983-09-27 1983-09-27 Holding method of large aperture optical parts

Publications (1)

Publication Number Publication Date
JPS6069611A true JPS6069611A (en) 1985-04-20

Family

ID=16051953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17863883A Pending JPS6069611A (en) 1983-09-27 1983-09-27 Holding method of large aperture optical parts

Country Status (1)

Country Link
JP (1) JPS6069611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750826A (en) * 1986-07-08 1988-06-14 U.S. Philips Corporation Optical assembly comprising a holder and an optical element
US6928649B2 (en) 2001-09-13 2005-08-09 Funai Electric Co., Ltd. Method of attaching a sensor to a pickup head and pickup head
JP2008295491A (en) * 2007-05-29 2008-12-11 Toshiba Home Technology Corp Rice cooker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750826A (en) * 1986-07-08 1988-06-14 U.S. Philips Corporation Optical assembly comprising a holder and an optical element
US4796252A (en) * 1986-07-08 1989-01-03 U.S. Philips Corporation Optical assembly comprising a holder and an optical element, and device provided with said optical assembly
US6928649B2 (en) 2001-09-13 2005-08-09 Funai Electric Co., Ltd. Method of attaching a sensor to a pickup head and pickup head
JP2008295491A (en) * 2007-05-29 2008-12-11 Toshiba Home Technology Corp Rice cooker

Similar Documents

Publication Publication Date Title
CN107329225B (en) Side standing lens group and mounting method thereof
CN107450146A (en) A kind of high-precision heavy-caliber lens flexible supporting device
USRE46564E1 (en) Kinematic optical device mount
JPS6069611A (en) Holding method of large aperture optical parts
JPH075352A (en) Lens supporting barrel frame
Fata et al. Design of a cell for the wide-field corrector for the converted MMT
Chan et al. Recent advances in the alignment of silicon mirrors for high-resolution x-ray optics
JPS5932967Y2 (en) lens support
Doyle et al. Athermal design of nearly incompressible bonds
US6533426B2 (en) Method of centrifugally casting a parabolic membrane mirror having a shape-restorative force
Doel et al. Assembly, alignment, and testing of the DECam wide field corrector optics
Chan et al. Preserving accurate figures in coating and bonding mirrors for lightweight x-ray telescopes
CN115407471A (en) Low-stress multi-point flexible supporting structure and supporting method of large-caliber rectangular optical lens
CN210720834U (en) Micro-stress supporting adjustable optical lens frame structure
US11150439B2 (en) Bi-metal optical mount
KR101667598B1 (en) COUPLING APPARATUS FOR SiC REFLEX MIRROR
JPH06250061A (en) Optical member holding device
Bongiorno et al. Assembly of the FOXSI-4 mirror modules
Chan et al. Mounting and alignment of IXO mirror segments
Li et al. Design of multipurpose optical antenna for laser communication
JPH0614171Y2 (en) Fixing structure for optical system members
CN216013772U (en) Optical mirror bracket, optical device and laser system
CN214954297U (en) Lens fixing shell and lens device
RU2815326C1 (en) Support element for unloading telescope mirror with blind relief cavities and method of gluing support elements into blind cavities
WO2020202696A1 (en) Method for manufacturing optical element