JPS6069537A - Infrared ray gas analyzer - Google Patents

Infrared ray gas analyzer

Info

Publication number
JPS6069537A
JPS6069537A JP58177595A JP17759583A JPS6069537A JP S6069537 A JPS6069537 A JP S6069537A JP 58177595 A JP58177595 A JP 58177595A JP 17759583 A JP17759583 A JP 17759583A JP S6069537 A JPS6069537 A JP S6069537A
Authority
JP
Japan
Prior art keywords
infrared
main body
gas
window
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58177595A
Other languages
Japanese (ja)
Inventor
Kunio Sukigara
鋤柄 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58177595A priority Critical patent/JPS6069537A/en
Publication of JPS6069537A publication Critical patent/JPS6069537A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To improve a measuring precision, responsiveness and maintenance of the titled analyzer, and to make a continuous measurement for a gaseous sample containing dust as well by cleaning automatically the surfaces of a main body part side of an infrared transmission window at a position apart from a measuring cell as blocking plates move. CONSTITUTION:Blades 291, 292 exist respectively at a main body part 15 side of closing plates 221, 222, and are provided radially at an opposite side to the part 15 side against shafts 231, 232. Widths L1, L2 of respective top end parts of the blades are set equally to those of annulations of the infrared transmission windows 191, 192, and said end parts are in contact with surfaces of the windows 191, 192. With revolutions of the plates 221, 222, the parts of the windows 191, 192, to which dusts contained in the gaseous sample in the main body part are allowed to adhere when opening ends of the part 15 are closed, are brought to positions of blades 291, 292. The adhering dusts are removed automatically by these blades as the plates 221, 222 revolve.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はガスの赤外縁吸収特性を利用して混合ガス中の
所定成分ガスの濃度を連続的に測定する赤外線ガス分析
計、特に混合ガスが試料ガ、スとして導かれる試料セル
を構成している赤外線透過窓を、自動的に掃除するよう
にした赤外線ガス分析計に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to an infrared gas analyzer that continuously measures the concentration of a predetermined component gas in a mixed gas by utilizing the infrared edge absorption characteristics of gas, and particularly to a mixed gas analyzer. The present invention relates to an infrared gas analyzer that automatically cleans an infrared transmitting window constituting a sample cell through which sample gas is introduced.

〔従来技術とその問題点〕[Prior art and its problems]

第1図は従来よく用いられている非分散植光束形の赤外
線ガス分析計の構成図である。この分析計では、光源部
1から放射された赤外線が分配管2によって光量の等し
い測定光線3と基準光線4とに分配され、測定光m3は
測定セル5に入射され基準光線4は基準セル6に入射さ
れる。測定セル5は試料ガス導管7,8を介して試料ガ
スが導入されるように構成されており、基準セル6には
赤外線吸収特性を有しないガス、たとえば窒素が封入さ
れているので、測定セル5に赤外線吸収特性を有する測
定成分ガスが導かれると、該ガスの濃度に応じた該ガス
の特性吸収波長帯域における赤外線吸収か測定セル5に
入射された測定光線3に発生し、測定セル6に入射され
た基準光線4には赤外線吸収は発生しない。9は第1検
出室10と第2検出室11とを鳴し、この両室の境に流
速検出素子12が設けられ、かつ画室に測定成分ガスが
所定濃度で充填された検出器で、測定セル5および基準
セ、ル6を透過した測定光線3および基準光線4はそれ
ぞれ第1検出室10および第2検出室11に入射される
。検出素子12は検出室10゜11に充填されたガスが
この検出素子を通って流動しうるように構成されてい□
る。したがって検出室10.11に入射された光線3.
41土前記封入ガスによって該ガス固有の波長領域が吸
Jヌされ、封入ガスは温度が上昇して膨張する。測定セ
ル5および基準セル6と検出器9との間にはモータ13
によって秘動されるセクタ14が設けられ、このセクタ
14によって検出器9に入射される光線3゜4は同時に
かつ周期的に断続されている。この結果検出室10.1
1における充填ガスの膨1肢は周期的にくり返される。
FIG. 1 is a block diagram of a conventional non-dispersive flooded beam type infrared gas analyzer. In this analyzer, infrared rays emitted from a light source section 1 are distributed by a distribution pipe 2 into a measurement light beam 3 and a reference light beam 4 having the same light intensity, the measurement light m3 is incident on a measurement cell 5, and the reference light beam 4 is incident on a reference cell 6. is incident on the The measurement cell 5 is configured so that a sample gas is introduced through sample gas conduits 7 and 8, and the reference cell 6 is filled with a gas that does not have infrared absorption characteristics, such as nitrogen. When a measurement component gas having infrared absorption characteristics is introduced into the measurement cell 5, infrared absorption in the characteristic absorption wavelength band of the gas corresponding to the concentration of the gas occurs in the measurement light beam 3 incident on the measurement cell 5. No infrared absorption occurs in the reference light beam 4 incident on the reference beam 4 . 9 is a detector having a first detection chamber 10 and a second detection chamber 11, a flow rate detection element 12 is provided at the boundary between the two chambers, and a chamber is filled with measurement component gas at a predetermined concentration. The measurement light beam 3 and the reference light beam 4 that have passed through the cell 5 and the reference cell 6 enter the first detection chamber 10 and the second detection chamber 11, respectively. The detection element 12 is configured such that the gas filled in the detection chamber 10°11 can flow through the detection element □
Ru. Therefore, the light beam 3. incident on the detection chamber 10.11.
The wavelength range specific to the gas is absorbed by the filled gas, and the temperature of the filled gas rises and expands. A motor 13 is connected between the measuring cell 5 and the reference cell 6 and the detector 9.
A sector 14 is provided, which is activated by a sector 14, by means of which the light beams 3.4 incident on the detector 9 are interrupted simultaneously and periodically. This result detection chamber 10.1
The expansion of the filling gas at step 1 is repeated periodically.

第1図のガス分析計は上述のように構成されているので
、試料ガス中に測定成分ガスが含まれ℃いない場合は、
測定セル5および基準セル6における赤外線吸収はない
ので検出室10.11に入射する赤外線光量は等しく、
したかつて画室における充填ガスの温度上昇および膨張
の太きさも等しく、この結果両室間に4ψ出素子12を
通って流れるガス流は発生しない。しかし試料ガス中に
測定成分ガスが含まれていると、測定セル5においては
前述のような赤外線吸収が発生するので検出室10に入
射する光量は検出室11に入射する光量よりも減少し、
この結果両横出室に発生するガス膨張の太さにも差を生
じ、したがってこの画室間に検出索子12を通るガス流
が発生する。このガス流は試料ガスに含まれている測定
成分ガスの濃度に応じた太さを有しており、検出素子1
2はこのガス流の太さに応じた信号を出方するので、こ
の信号によって試料ガス中の測定成分ガス濃度が両足さ
れる。上述の説明では12を流速検出素子としたがこの
素子の代りに圧力検出素子が用いられることもある。第
1図において、15は円筒状の本体部、16.17は本
体部15の両端を気密に塞ぐように設けた;たとえば弗
化カルシウム製の赤外線透過窓で、測定セル5は、この
場合本体部15とこの本体部に設けられた試料ガス導管
7゜8と赤外線透過窓16.17とで構成され、基準セ
ル6も導管16.17の構成を除いて測定セル5と同様
に構成されている。したがって光線3.4はそれぞれセ
ル5.6を透過することができる。
The gas analyzer shown in Figure 1 is configured as described above, so if the sample gas contains the component gas to be measured and the temperature is below ℃,
Since there is no infrared absorption in the measurement cell 5 and reference cell 6, the amount of infrared light incident on the detection chamber 10.11 is equal;
The temperature rise and expansion of the filling gas in the compartments are also equal, so that no gas flow is generated between the two chambers through the 4ψ output element 12. However, if the sample gas contains the measurement component gas, the above-mentioned infrared absorption will occur in the measurement cell 5, so the amount of light incident on the detection chamber 10 will be smaller than the amount of light incident on the detection chamber 11.
As a result, there is a difference in the thickness of the gas expansion generated in both side chambers, and therefore a gas flow passing through the detection cord 12 is generated between these chambers. This gas flow has a thickness that corresponds to the concentration of the measurement component gas contained in the sample gas, and the detection element 1
2 outputs a signal corresponding to the thickness of this gas flow, so the concentration of the gas component to be measured in the sample gas is summed up by this signal. In the above description, 12 is used as a flow rate detection element, but a pressure detection element may be used instead of this element. In FIG. 1, 15 is a cylindrical main body, and 16 and 17 are provided so as to airtightly close both ends of the main body 15; for example, an infrared transmitting window made of calcium fluoride, and the measurement cell 5 is in this case the main body. The reference cell 6 is constructed in the same manner as the measuring cell 5 except for the configuration of the conduit 16.17. There is. The light rays 3.4 can therefore each be transmitted through a cell 5.6.

第2図は公知の非分散単光束形光外線ガス分析計の構成
図で、本図の第1図と異なる主な点は基準セルが設けら
れていないことであり、この分析計においても光源部1
から放射された赤外線は第1検出室10に入射し、この
入射した赤外線光量が検出素子12で検出される。第1
図の分析計では検出室10.11に入射した光量の差を
検出素子12で検出しているが、本図の分析計では検出
量10に入射する光量の絶対値を検出していることにな
る。
Figure 2 is a block diagram of a known non-dispersive single-beam external beam gas analyzer.The main difference from Figure 1 is that a reference cell is not provided, and this analyzer also has a light source. Part 1
The infrared rays emitted from the first detection chamber 10 enter the first detection chamber 10, and the amount of the incident infrared light is detected by the detection element 12. 1st
In the analyzer shown in the figure, the difference in the amount of light incident on the detection chamber 10. Become.

第1図および第2図の分析計では上述したように試料ガ
スが測定セル5に導かれる。したがって、この試料ガス
中にカーボン粒子や灰分などのダストが含まれていると
、このダストが赤外線透過窓16.17に付着して第1
検出室10に入射する赤外線の光量が変化し、この結果
検出素子12の出力信号、すなわちガス分析計の出力信
号に測定誤ろ過して除塵した後廁定セル5に尋<、いわ
ゆるガスサンプリング方式が広く用いられている。とこ
ろがこのようなガスサンプリング方式を採用すると、サ
ンプリングパスが長くなりまたフィルタで圧損な生じる
ので測定セル5内での試料ガスの置換に時間を要し、こ
の結果分析計の応答が遅(なって、近い応答速度を要求
されるプロセス、た問題がある。またこのようなサンプ
リング方式にはフィルタの保守に手間がかかるという問
題もある。
In the analyzer of FIGS. 1 and 2, the sample gas is introduced into the measuring cell 5 as described above. Therefore, if this sample gas contains dust such as carbon particles and ash, this dust will adhere to the infrared transmitting windows 16 and 17 and cause the first
The amount of infrared light incident on the detection chamber 10 changes, and as a result, the output signal of the detection element 12, that is, the output signal of the gas analyzer, is measured.After being filtered and dust removed, the infrared light is sent to the deformation cell 5, which is the so-called gas sampling method. is widely used. However, when such a gas sampling method is adopted, the sampling path becomes long and a pressure drop occurs in the filter, so it takes time to replace the sample gas in the measurement cell 5, and as a result, the response of the analyzer becomes slow. , processes that require close response speeds.Also, this sampling method has the problem of requiring time and effort to maintain the filter.

〔発明の目的〕[Purpose of the invention]

本発明は上述のような従来の赤外線ガス分析計における
問題点を解決して、ダストフィルタを用いることなく試
料ガスを測定セルに尋くことができ、この結果高速応答
が可能で、かつ測定精度がダストによって1戊下するこ
とがなく、さらに連続測定が可能な赤外線ガス分析計を
提供することを目的とするものである。
The present invention solves the problems in conventional infrared gas analyzers as described above, and allows sample gas to be sent to the measurement cell without using a dust filter.As a result, high-speed response is possible and measurement accuracy is improved. It is an object of the present invention to provide an infrared gas analyzer which is capable of continuous measurement without being degraded by dust.

〔発1刃の要点〕 本発明は上述の目的を達成するために、筒状の本体部と
その本体部の両端に設けた赤外a透過窓とを有し内部に
試料ガスが導かれるようにした測定セルを備え、この測
定セル内を前記赤外線透過窓を介して赤外線を透過させ
、この透過してきた赤外線の光量を検出して試料ガスに
含まれている測定成分ガスの濃度を測定するようにした
赤外線ガス分析計において、板状の窓取り付は部材と閉
塞板駆動機構とクリーニング機構とを設け、前記本体部
の端面にQ IJング等のシール部材を装着し、一方、
前記赤外線透過窓を前記窓取り付は部材に気密に貫設し
て両者の前記本体部側の面が一平面をなすように形成す
ることによってこの両者で閉塞板を構成し、この閉塞板
の前記本体部側の面を前記シール部材に当接させてこの
閉塞板によって前記本体部を気密に塞いだ状態で該閉塞
板をシール部材に対して摺動させながら移動させるよう
に前記閉塞板駆動機構を構成し、さらに、この閉塞板駆
動機構によって移動させられる前記赤外線透過窓の前記
本体部を塞いでいた部分の該本体部側の面を、前記測定
セルから外れた位置において閉塞板が移動するにつれて
自動的に掃除するように前記クリーニング機構を構成す
るとと疋よって、試料ガス中のダストが付着した赤外線
透過窓の部分を、測定セルから試料ガスが漏洩すること
な(連続的または間欠的に測定セルから外れた位置に移
動させ、この移動の過程で赤外線透過窓に付着したダス
トを測定セルの外部でクリーニング機構によって自動的
に掃除するようにしたもので、このように赤外線ガス分
析計を構成することによって測定セルにおける赤外線透
過窓の内面を常に清浄に保ち、この結果試料ガスを測定
セルに導(際ダストフィルタを用いないでもよいように
してガス分析計の測定精度、応答性および保守性を向上
させ、ダストを含む試料ガスに対してもガス分析計の連
続測定がモきるようにしたものである。
[Key Points of One Blade] In order to achieve the above-mentioned object, the present invention has a cylindrical main body and infrared a transmission windows provided at both ends of the main body, so that sample gas is guided inside. The measuring cell is equipped with a measuring cell, which transmits infrared rays through the infrared transmitting window, and detects the amount of the transmitted infrared rays to measure the concentration of the gas component to be measured contained in the sample gas. In such an infrared gas analyzer, a plate-shaped window mounting member, a closing plate drive mechanism, and a cleaning mechanism are provided, a sealing member such as a QIJ ring is attached to the end face of the main body, and, on the other hand,
The infrared transmitting window is attached to the member by airtightly penetrating the member so that both surfaces on the main body side form one plane, so that the two constitute a closing plate, and the closing plate is The closing plate is driven so that the closing plate is moved while sliding with respect to the sealing member with the body side surface in contact with the sealing member and the closing plate airtightly closing the main body. further, a closing plate moves a surface of a portion of the infrared transmitting window, which is moved by the closing plate drive mechanism, on the main body side, to a position away from the measurement cell; If the cleaning mechanism is configured to automatically clean the part of the infrared transmitting window to which dust in the sample gas adheres, it is possible to prevent the sample gas from leaking from the measurement cell (continuously or intermittently). The infrared gas analyzer By configuring a This improves maintainability and allows the gas analyzer to perform continuous measurements even on sample gases containing dust.

〔発明の実施例〕 次に本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Next, embodiments of the present invention will be described with reference to the drawings.

第3図は本発明による赤外線ガス分析計の一実施例の概
略縦断側面図、第4図は第3図の要部を説明するための
平面図である。第3図および第4図において、15aお
よび15bはそれぞれ本体部15の光源部1および検出
部9側にあってかつ一平面上にあるように形成された端
面で、これら端面にはそれぞれシール部材としてQ I
Jング181゜状をした弗化カルシウム製の赤外io、
a過窓、201゜202はそれぞれ円板状の芯取り付は
部材で、赤外線透過窓191′i6よび192は、それ
ぞれ窓堰り付は部材201および202をこれら取り付
は部材と同軸状態で貫通ずるようにして接漸剤でこれら
の取り付は部材に固定されている。211,212はそ
れぞれ窓取り伺は部材201.202の外側面に設けた
ギアの歯である。221,222は上述のようにして赤
外線透過%191,192と窓取り付は部制201.2
02とによって構成された閉塞板で、閉塞板221およ
び222はそれぞれ赤外線透過窓191および192の
各一部によって本体部15の端面15aおよび15 b
 itl!lの谷開口部を塞ぐように配置され、これら
閉塞板の前記端面側においては、赤外線透過窓の面と窓
取り付は部Iの面とが一平面上にあるように形成されて
いる。231.232はそれぞれ窓取り付は部材201
,202、すなわち閉塞板221.222の中心に固定
した軸、241゜242はこれら軸231.232の軸
受け、251゜252はそれぞれ歯211,212にか
み合うようにしたギア、26はギア251,252に共
通な軸、27は軸26を駆動するモータで、閉塞板22
1゜222は、モータ27によって@26、ギア251
゜252、歯211.212を順次介して軸231.2
32を中心として同時に回転する。この時これら閉塞板
221.222は、0リング181.182に当接して
赤外線透過窓191.192の部分で本体部150両端
両端部を塞ぎなから0リング181.182との蟲接面
を摺動して回転するように構成されている。
FIG. 3 is a schematic vertical sectional side view of one embodiment of the infrared gas analyzer according to the present invention, and FIG. 4 is a plan view for explaining the main part of FIG. 3. In FIGS. 3 and 4, 15a and 15b are end faces of the main body 15 on the light source 1 and detection unit 9 sides, respectively, and are formed on one plane, and these end faces are provided with sealing members, respectively. as Q I
Infrared IO made of calcium fluoride with a J-shaped 181° shape,
The infrared transmitting windows 191'i6 and 192 are members 201 and 202 with window dams, respectively, and the infrared transmitting windows 191'i6 and 192 are coaxial with the members. These mounts are secured to the member by threading fluid. 211 and 212 are gear teeth provided on the outer surface of the members 201 and 202, respectively. 221, 222 are as described above, infrared transmission % 191, 192 and window installation is part system 201.2
02, and the closing plates 221 and 222 close the end faces 15a and 15b of the main body 15 by a portion of the infrared transmitting windows 191 and 192, respectively.
itl! They are arranged so as to close the valley openings of portions I, and on the end surfaces of these closing plates, the surfaces of the infrared transmitting windows and the surfaces of the window mounting portions I are formed on one plane. 231 and 232 are each window mounting member 201
, 202 are shafts fixed at the center of the closing plates 221, 222, 241° 242 are bearings of these shafts 231, 232, 251° 252 are gears meshing with the teeth 211, 212, respectively, and 26 are gears 251, 252. 27 is a motor that drives the shaft 26, and the blockage plate 22
1°222 is @26 by motor 27, gear 251
252, the shaft 231.2 sequentially through the teeth 211.212
They rotate simultaneously around 32. At this time, these closing plates 221 and 222 do not come into contact with the O-rings 181 and 182 and block both ends of the main body part 150 at the infrared transmitting windows 191 and 192, but slide the contact surfaces with the O-rings 181 and 182. It is configured to move and rotate.

28は閉塞板221 、222を上述のように駆動する
、軸231,232、軸受け241,242、歯211
,212、ギア251,252、軸26およびモータ2
7からなる閉塞板駆動機構である。上述の実施例では閉
塞板221,222はギア機構で駆動されるようにした
がロール機構で駆動されるようにしても着し支えない。
28 are shafts 231, 232, bearings 241, 242, and teeth 211 that drive the closing plates 221, 222 as described above.
, 212, gears 251, 252, shaft 26 and motor 2
This is a closing plate drive mechanism consisting of 7. In the above-described embodiment, the closing plates 221 and 222 are driven by a gear mechanism, but even if they are driven by a roll mechanism, they will not be supported.

291,292はそれぞれ閉塞板221 、222の本
体s15側にあって、かつ軸231.232に対して本
体部15側とは反対側に放射状に設けたブレードで、こ
れらブレード291,292は各先端部の幅L1. L
、が赤外線透過窓191,192の円環の幅に等しく形
成され、かつ前記各先端部がこれら透過光 窓191.192の物面に接触するように(′i4成さ
れている。ブレード291.292は上述のように構成
されているので、閉基板221 、222が回転するに
つれて、本体部15の開ロ端ン塞いでいた時該本体部中
の試料ガスに含まれたダストが付着した赤外線透過窓1
91 、192の部分がブレード291,292の位置
に(ると、前記の付着ダストは閉基板221゜222の
回転に伴なってこれらのグレードによって自動的に除去
される。すなわちブレード291゜292は上記のよう
にして赤外線透過窓191,192を掃除するクリーニ
ング機構の機能な有している。
Blades 291 and 292 are located on the main body s15 side of the closing plates 221 and 222, respectively, and are provided radially on the side opposite to the main body 15 side with respect to the shafts 231 and 232. Width L1. L
are formed to have the same width as the circular ring of the infrared transmitting windows 191, 192, and the tips of the blades 291. 292 is configured as described above, and as the closed substrates 221 and 222 rotate, when the open end of the main body 15 is closed, the infrared rays attached to the dust contained in the sample gas in the main body are emitted. Transparent window 1
When the parts 91 and 192 are at the position of the blades 291 and 292, the adhering dust is automatically removed by these grades as the closed substrates 221 and 222 rotate. That is, the blades 291 and 292 are It has the function of a cleaning mechanism that cleans the infrared transmitting windows 191 and 192 as described above.

このクリーニング機構は上記のようなブレードに代えて
空気ジェット機構としてもよいものである。
This cleaning mechanism may be an air jet mechanism instead of the blade as described above.

第3図の実施例では分析計が上述のように構成されてい
るので、試料ガス中のダストが付着した赤外線透過窓1
91.192の部分は、閉塞板駆動機構28によって試
料ガスが廁足セル5外に漏れることなく該測定セル外に
連続的に移動させられ、クリーニング機構としてのブレ
ード291,292によって自動的に掃除される。すな
わちこの分析計では閉塞板221,222が回転しても
本体部15の開口端は常に赤外線透過窓191.192
で塞がれ、またこれら透過窓の本体部15を塞いでいる
部分はブレード291.292によって常に清浄に保た
れることになる。なお上記の実施例ではブレード291
.292の位置を軸231.232に対して本体部15
側とは反対側の位置とし、かつ各ブレードの個数を一個
としたが、これらのブレードは、測定上ル5から外れた
任意の位置に配置されてよいもの゛で、あること、およ
び個数が複数個であってもよいものであることは明らか
である。
In the embodiment shown in FIG. 3, since the analyzer is constructed as described above, the infrared transmitting window 1 on which dust in the sample gas is attached
The portions 91 and 192 are continuously moved outside the measurement cell by the closing plate drive mechanism 28 without leaking the sample gas outside the measurement cell 5, and are automatically cleaned by blades 291 and 292 as cleaning mechanisms. be done. That is, in this analyzer, even if the closing plates 221 and 222 rotate, the open end of the main body 15 is always infrared transmitting windows 191 and 192.
The portions of these transparent windows that cover the main body portion 15 are always kept clean by the blades 291 and 292. In the above embodiment, the blade 291
.. 292 relative to the axes 231 and 232 of the main body 15.
Although the number of each blade is one, it is noted that these blades may be placed at any position outside of the measurement point 5, and that the number of blades may be plural. It is clear that there may be only one.

第5図は第3図における閉塞板の他の実施例の平面図で
、第5図の閉塞板301では、窓城り付は部材201に
少なくとも不休部15の内径に等しい直径を有する円板
状の赤外線透過窓31が軸231に対して対称に4個貝
設されている。第3図の分析計において閉塞板221.
222の代りにこのような閉塞板301を用いた場合、
これら閉塞板を間欠的に回転させて赤外線透過窓31を
本体部15の位置にもってくるように閉塞板駆動機構を
構成することによって、赤外線透過窓をブレードによっ
て掃除しながら分析計をほぼ連続的に動作させることが
できる。この場合ブレード291゜292は、第5図に
示したように軸231に対して本体部15を塞いでいる
透過窓31と対称な位置にある透過窓を挾むようにして
90°の角度をなすようにそれぞれ二個配置されると、
透過窓、31のクリーニングを行なうのに好都合である
FIG. 5 is a plan view of another embodiment of the closure plate in FIG. 3. In the closure plate 301 in FIG. Four shaped infrared transmitting windows 31 are provided symmetrically with respect to the axis 231. In the analyzer of FIG. 3, the occluding plate 221.
When such a closing plate 301 is used instead of 222,
By configuring the closing plate drive mechanism to intermittently rotate these closing plates to bring the infrared transmitting window 31 to the position of the main body 15, the analyzer can be operated almost continuously while cleaning the infrared transmitting window with a blade. can be operated. In this case, the blades 291 and 292 are arranged at an angle of 90 degrees with respect to the shaft 231 so as to sandwich the transparent window located symmetrically to the transparent window 31 blocking the main body 15, as shown in FIG. When two of each are placed,
This is convenient for cleaning the transmission window 31.

以上の実施例は単光束形の赤外線ガス分析計に関するも
のであったが、第3図の11・y成を第1図の測定セル
部に適用することによって、複光束形の赤外線ガス分析
計においても第3図の場合と同様なりリーニングが行な
われることは明らかであり、また上述の実施例では閉塞
板か回転運動をするように構成したが、閉塞板を往復運
動をするように構成しても前述と同様なりリーニングを
行なわせることができることもまた明らかである。
The above embodiments were related to a single beam type infrared gas analyzer, but by applying the configuration 11/y shown in Figure 3 to the measurement cell part in Figure 1, a double beam type infrared gas analyzer can be constructed. It is clear that leaning is carried out in the same way as in the case of FIG. It is also clear that leaning can be performed in the same manner as described above.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明においては、筒状の本体部
と前記本体部の両端に設けた赤外線透過窓とからなり内
部に試料ガスが導かれる測定セルと、赤外線を前記赤外
線透過窓を介して前記測定セル内を透過させるようにし
た光源部と、前記測定セルを透過した前記赤外線の光量
を検出する検出部とを備え、前記検出部によって前記試
料ガス中の測定成分ガスの濃度を測定する赤外線ガス分
析計において、板状の窓取り付は部材と閉塞板駆動機構
とクリーニング機構とを設け、前記本体部の端面な一平
面上にあるように形成してこの端面にシー/I/部材を
装着し、前記赤外線透過窓を前記窓取り付は部材に気密
に貫設しかつ前記赤外線透過窓および前記窓取り付は部
材の各々の前記本体部側の面が一平面上にあるように形
成して前記赤外線透過窓と前記窓取り付は部材とで閉塞
板を構成し、前記閉塞板の前記本体部側の面を前記シー
ル部材に当接させて前記本体部′?:塞ぎ、かつ前記閉
塞板を前記シール部材に対して摺動させて移動させるよ
うに前記閉塞板駆動機構を構成し、前記閉塞板駆動機構
によって移動させられる前記赤外線透過窓の前記本体部
を塞いでいた部分の前記本体部側の面を、前記測定セル
から外れた位置において前記閉塞板の移動に伴なって掃
除するように前記クリーニング機構を構成するようにし
て赤外線ガス分析計を構成したので、このようなガス分
析計においては、試料ガス中のダストが付着した赤外線
透過窓の部分が、閉塞板駆動機構によって、測定セルか
ら試料カスが漏出することな(連続的または間欠的にT
:R+1定セルから外れた位置に移動させられ、この移
動の過程で前記透過窓に付着したダストが測定セルの外
部においてクリーニング機構によって自動的に掃除され
、この掃除された前記透過窓の部分が閉塞板駆動機構に
よって再び測定セルの本体部に設置される。したがって
このようなガス分析計では測定セルにおける赤外線透過
窓の内面が常にダスト付着の少ない清浄な状態に保たれ
るので、本発明によれば、試料ガスを清浄にするための
ダストフィルタを用いる必要がなく、この結果、応答性
および保守性が良くその上測定精度の低下が少なくかつ
連続測定が可能な赤外線ガス分析計を構成できる効果が
ある。
As explained above, in the present invention, there is provided a measurement cell which is composed of a cylindrical main body and infrared transmitting windows provided at both ends of the main body, into which a sample gas is introduced, and an infrared ray is transmitted through the infrared transmitting windows. a light source section that transmits the infrared light through the measurement cell; and a detection section that detects the amount of the infrared light that has passed through the measurement cell, and the detection section measures the concentration of the measurement component gas in the sample gas. In an infrared gas analyzer, a plate-shaped window mounting member, a closing plate drive mechanism, and a cleaning mechanism are provided, and the plate-shaped window mounting member is formed so as to be on one plane at the end face of the main body, and a sheet/I/I/ The member is mounted, the infrared transmitting window is airtightly penetrated through the member, and the infrared transmitting window and the window mounting are arranged so that the surfaces of the members on the main body side are on one plane. The infrared transmitting window and the window mounting member constitute a closing plate, and a surface of the closing plate on the main body side is brought into contact with the sealing member to close the main body'? : The closing plate driving mechanism is configured to close and move the closing plate by sliding it with respect to the sealing member, and the body portion of the infrared transmitting window that is moved by the closing plate driving mechanism is closed. The infrared gas analyzer is configured such that the cleaning mechanism is configured to clean the surface of the exposed portion on the main body side at a position away from the measurement cell as the closing plate moves. In such a gas analyzer, the portion of the infrared transmitting window to which dust in the sample gas has adhered is operated by a closing plate drive mechanism to prevent sample debris from leaking from the measurement cell (continuously or intermittently).
: R+1 is moved to a position away from the constant cell, and during this movement, the dust adhering to the transmission window is automatically cleaned by a cleaning mechanism outside the measurement cell, and the cleaned part of the transmission window is It is installed again in the main body of the measuring cell by the closing plate drive mechanism. Therefore, in such a gas analyzer, the inner surface of the infrared transmitting window in the measurement cell is always kept in a clean state with little dust adhesion, so according to the present invention, there is no need to use a dust filter to clean the sample gas. As a result, it is possible to construct an infrared gas analyzer that has good responsiveness and maintainability, has little deterioration in measurement accuracy, and is capable of continuous measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来の複光束形および単
光束形赤外線ガス分析計の構成図、第3図は本発明によ
る赤外線ガス分析計の一実施例の概略縦断側面図、第4
図は第3図の要部説明用平面図、第5図は閉塞板の第2
実施例の平面図である。 1・・・・・・光源部、5・・・・・・測定セル、9・
・・・・・検出部、15・・・・・・本体部、15 a
 、 15 b−旧一端面、16.17・・・・・・赤
外線透過窓、28・・・・・・閉塞板駆動機構、 18
1 、182・・・・・・シール部材としての0リング
、191 、192・・・・・・赤外線透過窓、201
.202・・・・・・窓取り付は部材、221 、22
2・・・・・・閉塞板、291.292・・・・・・ク
リーニング機構としてのブレード、301・・・・・・
閉塞板。 第 1 図 第 2 図 第 3 図 7
1 and 2 are configuration diagrams of conventional double-beam and single-beam infrared gas analyzers, respectively; FIG. 3 is a schematic longitudinal sectional side view of an embodiment of the infrared gas analyzer according to the present invention; and FIG.
The figure is a plan view for explaining the main part of Fig. 3, and Fig. 5 is a plan view for explaining the main part of Fig. 3.
FIG. 3 is a plan view of the embodiment. 1...Light source part, 5...Measurement cell, 9.
...detection section, 15 ... main body section, 15 a
, 15 b-old one end surface, 16.17... Infrared transmission window, 28... Closure plate drive mechanism, 18
1, 182... O-ring as a sealing member, 191, 192... Infrared transmitting window, 201
.. 202...Window mounting is a component, 221, 22
2... Closure plate, 291.292... Blade as cleaning mechanism, 301...
Occlusion plate. Figure 1 Figure 2 Figure 3 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 筒状の本体部と前記本体部の両端に設けた赤外線透過窓
とからなり内部に試料ガスが導かれる測定セルと、赤外
線を前記赤外線透過窓を介して前記測定セル内を透過さ
せるようにした光源部と、前記測定セルを透過した前記
赤外線の光量を検出する検出部とを備え、前記検出部に
よって前記試料ガス中の測定成分ガスの濃度を測定する
赤外線ガス分析計において、板状の窓取り付は部材と閉
塞板駆動機構とクリーニング機構とを設け、前記本体部
の端面な一平面上にあるように形成してこの端面にシー
ル部材を装着し、前記赤外線透過窓を前記窓取り付は部
材に気密に貫設しかつ前記赤外線透過窓および前記窓取
り付は部材の各々の前記本体部側の面が一平面上にある
ように形成して前記赤外線透過窓と前記窓取り付は部材
とで閉塞板を構成し、前記閉塞板の前記本体部側の面を
前記シール部材に当接させて前記本体部を塞ぎ、かつ前
記閉塞板を前記シール部材に対し℃摺動させるように前
記閉塞板駆動機構を構成し、前記閉塞板駆動機構によっ
て移動させられる前記赤外線透過窓の前記本体部を塞い
でいた部分の前記本体部側の面を、前記測定セルから外
れた位置において前記閉塞板の移動に伴なって掃除する
ように前記クリーニング機構を構成したことを特徴とす
る赤外線ガス分析計。
A measurement cell is comprised of a cylindrical main body and infrared transmission windows provided at both ends of the main body, into which a sample gas is introduced, and infrared rays are transmitted through the measurement cell through the infrared transmission windows. In an infrared gas analyzer that includes a light source section and a detection section that detects the amount of the infrared light transmitted through the measurement cell, the infrared gas analyzer measures the concentration of the measurement component gas in the sample gas by the detection section, For mounting, a member, a closing plate driving mechanism, and a cleaning mechanism are provided, and the sealing member is mounted on the end face of the main body portion, and the infrared transmitting window is mounted on the window mounting member. is airtightly penetrated through the member, and the infrared transmitting window and the window mounting are formed so that the surfaces of the members on the main body side are on the same plane, and the infrared transmitting window and the window mounting are and a closure plate, the main body side surface of the closure plate is brought into contact with the sealing member to close the main body, and the closure plate is slid relative to the sealing member at °C. The occluding plate driving mechanism is configured to close the main body side surface of the portion of the infrared transmitting window that is moved by the occluding plate driving mechanism, and which is moved by the occluding plate driving mechanism, at a position away from the measurement cell. An infrared gas analyzer characterized in that the cleaning mechanism is configured to clean the plate as it moves.
JP58177595A 1983-09-26 1983-09-26 Infrared ray gas analyzer Pending JPS6069537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58177595A JPS6069537A (en) 1983-09-26 1983-09-26 Infrared ray gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58177595A JPS6069537A (en) 1983-09-26 1983-09-26 Infrared ray gas analyzer

Publications (1)

Publication Number Publication Date
JPS6069537A true JPS6069537A (en) 1985-04-20

Family

ID=16033738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58177595A Pending JPS6069537A (en) 1983-09-26 1983-09-26 Infrared ray gas analyzer

Country Status (1)

Country Link
JP (1) JPS6069537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063579A (en) * 2012-12-26 2013-04-24 东南大学 Spectral detection apparatus for residual gas in storage-state vacuum electronic device and detection method
CN103245616A (en) * 2012-02-14 2013-08-14 利得仪器股份有限公司 Optical path measuration reflection unit for environmental monitoring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110981A (en) * 1974-05-28 1976-01-28 Bosch Gmbh Robert
JPS51122490A (en) * 1975-03-26 1976-10-26 Hitachi Ltd Photoabsorbing analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110981A (en) * 1974-05-28 1976-01-28 Bosch Gmbh Robert
JPS51122490A (en) * 1975-03-26 1976-10-26 Hitachi Ltd Photoabsorbing analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245616A (en) * 2012-02-14 2013-08-14 利得仪器股份有限公司 Optical path measuration reflection unit for environmental monitoring
CN103063579A (en) * 2012-12-26 2013-04-24 东南大学 Spectral detection apparatus for residual gas in storage-state vacuum electronic device and detection method

Similar Documents

Publication Publication Date Title
US3677652A (en) Fluid analyzer apparatus
US4746218A (en) Gas detectors and gas analyzers utilizing spectral absorption
US3089382A (en) Method and apparatus for analyzing fluids
US3796887A (en) Photometric analyzer
CA2421509C (en) Isotopic gas analyzer and method of determining absorption capacity of carbon dioxide absorbent
US4381153A (en) Opacity monitor
KR20060064689A (en) Monitoring system comprising infrared thermopile detector
EP0531067B1 (en) Monitoring film fouling in a process stream
JPS649568B2 (en)
US4692622A (en) Infrared analyzer
JPS6069537A (en) Infrared ray gas analyzer
US20180364152A1 (en) Flow cell and optical system for analyzing fluid
KR102114557B1 (en) A NDIR analyzer using Two Functional Channels
US2721578A (en) Multistream rotary selector valve
GB2045931A (en) Sample chamber for ducted gas analyzer
CN109001154B (en) Efficient seed vigor measuring system based on laser absorption spectrum technology
US4591268A (en) Accumulative absorption-dispersion spectrophotometer
Adams et al. Optoacoustic Spectrometry of Surfaces: Dielectric Coatings for Laser Mirrors
CN114136898B (en) System and method for measuring net generation rate of high-precision cavity ozone photochemistry
US3572946A (en) Fluid analyzer apparatus
CA1204851A (en) Automatic ultrasonic flaw detector for tubes
JP2001324446A (en) Apparatus for measuring isotope gas
JPS6182142A (en) Measuring device for concentration of gas in gas current
US4206630A (en) Sample chamber for gas analyzer
JPH02276927A (en) Integral spectroscope and on-line spectral measuring instrument