JPS6068176A - Butt welding method of heavy-gauge low-alloy steel - Google Patents

Butt welding method of heavy-gauge low-alloy steel

Info

Publication number
JPS6068176A
JPS6068176A JP17757983A JP17757983A JPS6068176A JP S6068176 A JPS6068176 A JP S6068176A JP 17757983 A JP17757983 A JP 17757983A JP 17757983 A JP17757983 A JP 17757983A JP S6068176 A JPS6068176 A JP S6068176A
Authority
JP
Japan
Prior art keywords
welding
cracking
weld
buttering
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17757983A
Other languages
Japanese (ja)
Other versions
JPH0242027B2 (en
Inventor
Koji Arita
幸司 有田
Yasuo Murai
康生 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17757983A priority Critical patent/JPS6068176A/en
Publication of JPS6068176A publication Critical patent/JPS6068176A/en
Publication of JPH0242027B2 publication Critical patent/JPH0242027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To perform satisfactorily fitting welding without possibility of SR cracking by build-up welding the part near the rear side of the groove of heavy- gauge low-alloy steels with a welding metal consisting of an alloy having the lower sensitivity with SR cracking than the base metals then subjecting the steel to normal butt welding without SR treatment. CONSTITUTION:A buttering weld zone N is formed only on the rear side near the rear side part of the groove of light-gauge low-alloy steels at such a width that extends to about 10mm. from the center of the regular weld line by using a welding material consisting of an alloy comps. having the lower sensitivity with SR cracking than the base metals in the stage of butt welding the light-gauge low-alloy steels. The regular butt weld zone M is then formed as it is without SR treatment.

Description

【発明の詳細な説明】 本発明は、低合金鋼の溶接において遭遇することの多い
応力除去焼鈍(SR)割れを少々くする突合わせ溶接方
法に関し、特に厚板材のはめ込み溶接継手に対する突合
わせ溶接方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a butt welding method that reduces stress relief annealing (SR) cracking that is often encountered in welding low alloy steels, and in particular to butt welding for insert weld joints of thick plate materials. It is about the method.

SR割れの発生原因については、溶接熱影響部あるいは
溶接金属部に生成する結晶粒粗大化域に、高い引張残留
応力が負荷された状態でSR処理を行なうためであると
考えられているが、SR割れ感受性は合金成分によって
累々り、特にCr−MO=■成分系成分表る鋳鋼や鍛鋼
の厚板突合わせ溶接継手ではSR割れ発生の頻度が高い
。例えばとのような成分系からなる高温圧力容器のノズ
ルや蓋などのはめ込み溶接部では、特に熱影響部のSR
割れを発生させる恐れが強く、高温圧力容器であること
から重大な事故に波及する危険性を秘めている。その為
SR割れについては1.従来から冶金現象としての理論
的検討、割れ感受性に対する合金組成の検討あるいは溶
接施工法に関する検討が進められ、夫々成果を得ている
が、前述の厚板のはめ込み溶接継手即ち裏波溶接を必要
とするような継手に対してどのような施工法を行なえば
割れ発生を防止でかるかという点については解決手段が
未だ確立されていない状況にある。
The cause of SR cracking is thought to be that SR treatment is performed with high tensile residual stress being applied to the weld heat-affected zone or the grain coarsening region that forms in the weld metal. The susceptibility to SR cracking varies depending on the alloy composition, and SR cracking occurs particularly frequently in thick plate butt welded joints of cast steel and forged steel in which the Cr-MO=■ component system is expressed. For example, in the welded parts of the nozzles and lids of high-temperature pressure vessels consisting of component systems such as
There is a strong risk of cracking, and since it is a high-temperature pressure vessel, there is a potential for serious accidents to occur. Therefore, regarding SR cracking, 1. Theoretical studies on metallurgical phenomena, studies on alloy compositions for cracking susceptibility, and studies on welding methods have been carried out, and each has achieved results. No solution has yet been established as to what kind of construction method should be used to prevent the occurrence of cracks in such joints.

本発明は溶接施工法の面からの検討による技術的成果に
属するものであり、とれまでの溶接施工法に関する検討
例の問題点を追求した成果である。
The present invention belongs to a technical achievement based on a study from the aspect of a welding method, and is a result of pursuing problems in previous studies on welding methods.

即ちこれ1での溶接施工法に関する検討例としては、(
1)突合わせ開先面全面に本体よりSR割れ感受性の低
い溶接材料でバタリング溶接した後SR処理を施し、次
いで本溶接を行々う方法や、(2)突合わせ溶接部の止
端部付近に対し再加熱ビードを溶接し、特に母材熱影響
部の結晶粒微細化を図る方法が知られている。しかしく
1)の方法においては、下記■〜■の如く要約される問
題点がある。
In other words, as an example of the study regarding the welding method in 1.
1) A method of buttering welding the entire surface of the butt groove with a welding material that is less susceptible to SR cracking than the main body, then applying SR treatment, and then performing main welding, and (2) a method near the toe of the butt weld. A method is known in which a reheated bead is welded to the base metal to refine the crystal grains, especially in the heat affected zone of the base metal. However, in method 1), there are problems summarized as shown in (1) to (2) below.

■板厚が比較的小さい突合わせ継手に対しては有効な手
段とも考えられるが、板厚が100mmあるいはこれを
越えるようなものに対してはバタリング溶接自体の工数
が極めて増大する。
(2) Although it is considered to be an effective method for butt joints with relatively small plate thicknesses, the number of man-hours for battering welding itself increases significantly for plates with a thickness of 100 mm or more.

■本発明の対象の1つである厚板のはめ込み溶接継手に
対してこの方法を適用した場合、多大な工数を費すにも
かかわらず後述する理由にょシ適確な割れ防止策とはな
シ得ず、バタリングに要した工数、費用がむだになる。
■When this method is applied to the inset welded joints of thick plates, which is one of the objects of the present invention, it is not an appropriate measure to prevent cracking for the reasons described later, although it requires a large amount of man-hours. The man-hours and costs required for battering are wasted.

■継手の形状によってはバタリング溶接後のSR処理の
段階でSR割れ発生の危険性がある。
■Depending on the shape of the joint, there is a risk of SR cracking occurring during the SR treatment after buttering welding.

又上記r2)の方法においては、■再加熱といえども溶
接ビードにかわシないことから、そのビードの熱影響部
は粗大粒でしかも硬化組織となシ易い、■裏波ビード近
傍に対しては適用ができない等の問題がある。
In addition, in the method r2) above, (1) even though reheating does not affect the weld bead, the heat-affected zone of the bead has coarse grains and is likely to become a hardened structure; (2) in the vicinity of the Uranami bead; There are problems such as inapplicability.

これら(1) 、 (2)の方法はいずれも単に冶金的
現象即ち割れ感受性と合金組成あるいは金属組織との関
連から実際への適用を考えたものであるが、前述した様
にSR割れの発生原因として欠かせない因子に残留応力
がある以上、個々の継手における残留応力あるいは残留
応力分布を無視した施工法はむだが多いばかシでなく、
かえって危険となることも考えられる。尚開先面にバタ
リングを行なわずに溶接する一般鋼種と同様の溶接施工
法では、SR割れ発生の危険性が高いことは言うまでも
ない。
Both of these methods (1) and (2) were considered for practical application simply from the perspective of metallurgical phenomena, that is, the relationship between cracking susceptibility and alloy composition or metal structure, but as mentioned above, the occurrence of SR cracking Since residual stress is an essential factor as a cause, construction methods that ignore residual stress or residual stress distribution in individual joints are not wasteful and foolish;
It may even be dangerous. It goes without saying that if the welding method used for general steel types is used, in which welding is performed without buttering the groove surface, there is a high risk of SR cracking occurring.

本発明は上記の事情に着目してなされたものであって、
SR割れが生じないだけでなく継手強度の高い厚板溶接
部が得られる様な突合わせ溶接方法を提供しようとする
ものである。
The present invention has been made with attention to the above circumstances, and
The present invention aims to provide a butt welding method that not only does not cause SR cracking but also produces a thick plate welded part with high joint strength.

しかして本発明は、母材よ、!1lISR割れ感受性の
低い合金組成よシなる溶接材料で厚板低合金鋼の開先裏
面部近傍に肉盛溶接した後、SR処理を行なうことなく
その!ま突合わせ本溶接を行なう点に要旨を有するもの
である。
However, the present invention is based on the base material! 11 After overlay welding near the back surface of the groove of a thick plate of low alloy steel using a welding material with an alloy composition that has low ISR cracking susceptibility, it can be done without SR treatment! The main point is that actual butt welding is performed.

以下実験考察の経緯を明らかにしつつ本発明の内容を詳
しく説明する。
The content of the present invention will be explained in detail below while clarifying the background of the experimental considerations.

SR割れは一般に突合わせ溶接部表面あるいは裏面にお
けるビード止端部付近に発生することが多い。従って本
発明者等はSR割れ発生防止を検討するには特に継手の
表裏面における残留応力分布と、継手各部のSR割れ感
受性及び切欠の有無など形状的要因との関連から溶接施
工法を決定することが重要である点に鑑み、その関連を
明確にすべく実験を重ねた。第1図は第2図に示される
ようなCr−Mo−V鋼材の厚板はめ込み溶接継手を初
層裏波溶接しだ後更に本溶接した場合の、溶接部表裏面
における溶接線直角方向の残留応力分布を測定した結果
を示すものである。図中Sは厚板円筒胴体、Cは該胴体
Sにはめ込まれた厚板円板、Wは本溶接部であシ、又寸
法の単位はmmである。第1図の結果よシ、溶接線直角
方向の残留応力は表裏面とも溶接金属及び最もSR割れ
感受性が高いと考えられるビード止端部近傍が圧縮応力
である一方、引張応力のピークは止端部から約20〜2
5mm離れた母材側に現われることが判明した。
Generally, SR cracking often occurs near the bead toe on the front or back surface of a butt weld. Therefore, in order to study the prevention of SR cracking, the present inventors determined the welding method in particular in relation to the residual stress distribution on the front and back surfaces of the joint, the SR cracking susceptibility of each part of the joint, and geometric factors such as the presence or absence of notches. Considering the importance of this, we conducted repeated experiments to clarify the relationship. Figure 1 shows the direction perpendicular to the weld line on the front and back surfaces of the weld when the welded joint of a thick plate of Cr-Mo-V steel as shown in Figure 2 is welded after initial layer welding. This figure shows the results of measuring residual stress distribution. In the figure, S is a thick plate cylindrical body, C is a thick plate disc fitted into the body S, W is a main welding part, and the unit of dimension is mm. The results in Figure 1 show that the residual stress in the direction perpendicular to the weld line is compressive stress in the weld metal on both the front and back surfaces and in the vicinity of the bead toe, which is considered to be most susceptible to SR cracking, while the peak of tensile stress is at the toe. Approximately 20 to 2
It was found that it appeared on the base metal side 5 mm away.

次に第3図は第2図と同様のCr−Mo−V鋼材の厚板
はめ込み溶接継手を厚板表裏面のみ予めバタリングを施
した後(バタリング溶接後のSR処理はなし)、本溶接
を行なった場合の溶接部表裏面における溶接線直角方向
の残留応力分布を示すものである。第3図から明らかな
様に予めバクリング溶接を行左った場合でも第1図に示
したものとほぼ同様の応力分布形態であり、表裏面とも
ビード止端部から20〜25mm離れた母材側で引張応
力のピークが現われている。しかしこの場合はバタリン
グ溶接部の止端部が前記引張応力のピーク部とほぼ一致
することになるから、極めて危険な状態となっているこ
とが分かる。
Next, Figure 3 shows a welded joint made of a thick plate of Cr-Mo-V steel similar to that shown in Figure 2, after buttering has been applied to only the front and back surfaces of the thick plate (SR treatment is not performed after buttering welding), and the actual welding is performed. This shows the residual stress distribution in the direction perpendicular to the weld line on the front and back surfaces of the weld. As is clear from Fig. 3, even when backling welding is performed in advance, the stress distribution form is almost the same as that shown in Fig. 1, and the base metal is located 20 to 25 mm away from the bead toe on both the front and back surfaces. A peak of tensile stress appears on the side. However, in this case, since the toe of the buttering weld almost coincides with the peak of the tensile stress, it can be seen that this is an extremely dangerous situation.

以上のことから溶接線直角方向の残留応力分布からみた
場合、バタリングを施さない方かむ1〜ろ割れ防止の点
で有利であると言える。
From the above, when viewed from the residual stress distribution in the direction perpendicular to the weld line, it can be said that not buttering is more advantageous in terms of preventing cracking.

次に第5図及び第6図は夫々の溶接部即ち第2図及び第
4図の各溶接部における表裏面の溶接線方向残留応力分
布を示すものである。これらによると表面側は全般に引
張応力となっているが、本溶接時の止端部はこれよシ低
い値となっている。
Next, FIGS. 5 and 6 show residual stress distributions in the weld line direction on the front and back surfaces of each weld, that is, in each of the welds shown in FIGS. 2 and 4. According to these results, the surface side generally has tensile stress, but the toe during actual welding has a much lower value.

これに対して裏面側は溶接金属部、本溶接時の止端部と
もにかなり高い引張応力となっている。
On the other hand, on the back side, both the weld metal part and the toe at the time of main welding have a considerably high tensile stress.

前述のように本溶接継手に対しては裏波溶接が適用され
る関係で裏側ビード表面部を平滑にすることがむずかし
い。従って裏波溶接ビード形状あるいは上端部形状が不
揃いになった場合のことを考慮すると、この部分をSR
割れ感受性の高い組成で構成することは極めて危険であ
ると言える。
As mentioned above, it is difficult to make the back bead surface smooth because Uranami welding is applied to this welded joint. Therefore, considering the case where the Uranami weld bead shape or the upper end shape becomes irregular, this part should be
It can be said that it is extremely dangerous to use a composition that is highly susceptible to cracking.

又第7図は溶接線中央における板厚方向の残留応力分布
を示している。との分布図によれば、溶接線直角方向の
残留応力は表面及び裏面から夫々20mm内部側で引張
応力となっているが、値そのものは10 kg/mm2
以下であるから問題とするに足らない。又溶接線方向の
残留応力においては、板厚内部に表裏面より特に高い応
力部分もみられないことから、SR割れ防止については
前述の表裏面における応力を考慮すればよいことが理解
できる。
Moreover, FIG. 7 shows the residual stress distribution in the plate thickness direction at the center of the weld line. According to the distribution diagram, the residual stress in the direction perpendicular to the weld line becomes tensile stress at 20 mm inside from the front and back surfaces, but the value itself is 10 kg/mm2.
The following is not enough to raise the issue. In addition, regarding the residual stress in the weld line direction, there is no part of the plate thickness that is particularly higher in stress than the front and back surfaces, so it can be understood that the stress on the front and back surfaces described above should be taken into consideration to prevent SR cracking.

次に裏面側におけるバタリングの必要量について検討を
行なった結果につき説明する。第3図に示した様に、裏
面におけるバタリング幅を20mm−−25mm程度ま
で大きくすると、バタリング溶接時の止端時が溶接線直
角方向の引張応力ピーク部と一致する。従って溶接線直
角方向及び溶接線方向の残留応力がともに低い値となる
位置にバタリング溶接時の上端部がくるような量、即ち
バクリング溶接時の止端部が本溶接部溶接線中央から約
10mm程度となるような幅にバタリングすることが適
当と言える。第8図(a)はこうしてバタリング溶接さ
れた裏側溶接部の断面模式図であり、同図(1))は該
溶接部における溶接線方向及び溶接線直角方向の残留応
力分布図である。図中の本溶接部は前述の通如溶接線方
向の残留応力が高い値となっている。しかしこの部分は
バタリング溶接金属で構成されていることから、M部即
ち本溶接と−ド止端部と同様、SR割れ感受性は低くな
っている。
Next, the results of a study on the required amount of buttering on the back side will be explained. As shown in FIG. 3, when the buttering width on the back surface is increased to about 20 mm to 25 mm, the toe of buttering welding coincides with the tensile stress peak in the direction perpendicular to the weld line. Therefore, the upper end of buttering welding should be at a position where the residual stress in the direction perpendicular to the welding line and in the direction of the welding line are both low, that is, the toe of buttering welding should be approximately 10 mm from the center of the welding line of the main weld. It can be said that it is appropriate to butter the width to a certain extent. FIG. 8(a) is a schematic cross-sectional view of the back side welded part subjected to buttering welding in this way, and FIG. 8(1)) is a residual stress distribution diagram in the welding line direction and in the direction perpendicular to the welding line in the welded part. The main welded portion in the figure has a high residual stress in the direction of the weld line, as described above. However, since this part is composed of buttering weld metal, the SR cracking sensitivity is low, similar to the M part, that is, the main weld and the -do toe part.

又溶接線中央からiomm程度離れたN部即ちバタリン
グ溶接時の上端部(母材熱影響部)はSR割れ感受性の
高い部分であるが、溶接線直角方向の残留応力は零もし
くは圧縮応力であり、溶接線方向の応力も本溶接部に比
べ低くなっている。更にN部はバタリング溶接後、機械
加工などによって表面を平滑にできることもSR割れ防
止のため有利である。従って上述した様に本溶接部溶接
線中央部から約10mm程度となるよう゛な幅で裏面側
のみバタリング溶接した後SR処理を行なうことなく本
溶接を行なうという本発明の実施によう、SR割れ発生
の危険性が極めて少ない厚板継手が得られることが明ら
かとなった。
In addition, the N part, which is about iomm away from the center of the weld line, that is, the upper end part during buttering welding (base metal heat affected zone), is a part that is highly susceptible to SR cracking, but the residual stress in the direction perpendicular to the weld line is zero or compressive stress. The stress in the weld line direction is also lower than that of the actual weld. Furthermore, it is advantageous to be able to smoothen the surface of the N part by machining or the like after buttering welding in order to prevent SR cracking. Therefore, as mentioned above, when carrying out the present invention in which buttering welding is performed only on the back side with a width of about 10 mm from the center of the weld line of the main weld, and then main welding is performed without performing SR treatment, SR cracks It has become clear that a plate joint with extremely low risk of occurrence can be obtained.

尚裏面から板厚方向へのバタリング厚さについては残留
応力面からしてあまシ大きくする必要はなく、母材本体
成分の稀釈の影響によシバタリング部のSR割れ感受性
が顕著に増加しない程度(例えば成分稀釈率が10%未
満)の厚さにすればよい。
It should be noted that the buttering thickness from the back side in the plate thickness direction does not need to be too large from the perspective of residual stress, and is to the extent that the SR cracking susceptibility of the buttering part does not noticeably increase due to the dilution of the base material main components. (for example, the component dilution rate is less than 10%).

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

第1表に示す成分の厚板低合金耐熱鋼のはめ込み溶接継
手(継手形状は第2図と同様)に対し、各種施工法で溶
接し、SR割れ発生の有無を比較調査した。第2表は施
工条件を示すものである。
Inset welded joints of thick plates of low-alloy heat-resistant steel with the components shown in Table 1 (the joint shape is the same as in Figure 2) were welded using various construction methods, and the presence or absence of SR cracking was comparatively investigated. Table 2 shows the construction conditions.

即ち表中A及びBは夫々従来法として挙げたバタリング
無し及び全面バタリングによる方法であり、Cは従来法
には属さないが前述した表裏面バタリング法、Dは本発
明による方法である。尚溶接材料はバタリング、本溶接
とも市販耐熱鋼用被覆アーク溶接棒を用いた。またバク
リング後のSR処理はB法以外には行なわれなかった。
That is, in the table, A and B are methods without buttering and full-face buttering, respectively, which are cited as conventional methods, C is the above-mentioned front and back buttering method, which does not belong to the conventional method, and D is a method according to the present invention. As the welding material, a commercially available coated arc welding rod for heat-resistant steel was used for both buttering and main welding. Further, SR treatment after bagling was not performed other than method B.

本溶接後のSR処理は690℃X 10 hrとした。The SR treatment after main welding was performed at 690°C for 10 hours.

こうしてSR処理した後の溶接部につき浸透探傷試験を
行なって割れの有無を調べた。その結果は第3表に示す
通りであるが、同表にはまた夫々の施工法における所要
溶接工数も併記した。
A penetrant test was conducted on the welded portion after the SR treatment to check for cracks. The results are shown in Table 3, which also lists the required welding man-hours for each construction method.

(%) 第 3 表 第3表の結果をまとめると以下の通シである。(%) Table 3 The results in Table 3 can be summarized as follows.

A法では裏側溶接ビード表面に微小な横割れが発生し、
B法ではバクリング溶接後のSR処理時に胴体側バタリ
ング上端部で割れがみられたため、本溶接を行なうに至
らなかった。C法では主として板表面側のバタリング溶
接止端部付近に割れが発生した。これに対し本発明のD
法では表裏面ともに何ら割れの発生はみられなかった。
In method A, small horizontal cracks occur on the backside weld bead surface,
In method B, cracks were observed at the upper end of the buttering on the fuselage side during the SR treatment after bagling welding, so actual welding was not performed. In method C, cracks mainly occurred near the battering weld toe on the plate surface side. In contrast, D of the present invention
No cracks were observed on either the front or back surfaces using the method.

一方所要工数をみると、A法が60hr (本溶接のみ
)、B法がバタリングのみで60hr、C法がバタリン
グ50hr+本溶接60hrで合計110hrであるの
に対し、本発明のD法ではバタリングShr十本溶接6
0hrで合計65h丁とバタリングに要する工数が非常
に少ないことが分かる。
On the other hand, looking at the required man-hours, method A requires 60 hr (main welding only), method B requires 60 hr for battering only, and method C requires 50 hr for battering + 60 hr for main welding, totaling 110 hr, while method D of the present invention requires battering Sh. ten welding 6
It can be seen that the number of man-hours required for buttering is extremely small, with a total of 65 hours in 0 hours.

2尚実験は行なっていないが、B法においてバタリング
後のSR処理を行なわなければ割れの発生がなかったと
いうことも一応考えられる。しかし疫からこの場合のバ
タリング溶接工数が60hrと、本発明法による場合の
10倍以上も要していることから極めて無駄の多く、た
とえSR処理を行なわないとしても検討に値するほどの
方法でないことに変わ)はない。
2.Although no experiments have been conducted, it is conceivable that cracks would not have occurred if the SR treatment after battering had not been performed in method B. However, the number of man-hours required for battering welding in this case is 60 hours, which is more than 10 times that of the method of the present invention, so it is extremely wasteful, and even if SR treatment is not performed, it is not a method worth considering. ) is not available.

本発明は以上の様に構成したので、厚板低合金偶の突合
わせ溶接、特にはめ込み溶接をSR割れ発生の恐れなく
良好に行なえる様になった。
Since the present invention is constructed as described above, butt welding, especially fit welding, of thick low alloy plates can be performed satisfactorily without fear of SR cracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は厚板はめ込み溶接継手の表裏面にお
ける溶接線直角方向の残留応力分布状態説明図、第2図
及び第4図は厚板はめ込み溶接継手形状説明図、85図
及び第6図は厚板はみ込み溶接継手の表裏面における溶
接線方向の残留応力分布状態説明図、第7図は厚板はめ
込み溶接継手の溶接線中央における板厚方向の残留応力
分布状態説明図、第8図(a)は厚板はめ込み溶接継手
の裏側溶接部の断面模式図、第8図(b)はその裏側溶
接部における溶接線方向及び溶接線直角方向の残留応力
分布状態説明図、第9〜12図は実施例の施工条件説明
図である。 C・・・厚板円板 S・・・厚板円筒胴体W・・・本溶
接部 Bバタリング部 出願人 株式会社神戸製鋼所 第1図 第2図 第4図 一一一一−φ600−−−−− 第3図 第5図 第6図 第7図
Figures 1 and 3 are explanatory diagrams of the distribution of residual stress in the direction perpendicular to the weld line on the front and back surfaces of a thick plate inset welded joint, Figures 2 and 4 are explanatory diagrams of the shape of a thick plate inset welded joint, and Figures 85 and 3 are Figure 6 is an explanatory diagram of the residual stress distribution state in the weld line direction on the front and back surfaces of a thick plate inset welded joint, and Figure 7 is an explanatory diagram of the residual stress distribution state in the plate thickness direction at the center of the weld line of a thick plate inset welded joint. Figure 8(a) is a schematic cross-sectional view of the back side weld of a thick plate inset weld joint, Figure 8(b) is an explanatory diagram of the residual stress distribution state in the weld line direction and the direction perpendicular to the weld line in the back side weld. Figures 9 to 12 are explanatory diagrams of the construction conditions of the example. C...Thick plate disk S...Thick plate cylindrical body W...Main welding part B Buttering Department Applicant: Kobe Steel, Ltd. Figure 1 Figure 2 Figure 4 1111-φ600-- --- Figure 3 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 厚板低合金鋼を突合わせ溶接する方法において、母材よ
りSR割れ感受性の低い合金組成よりなる溶接材料で前
記厚板銅の開先裏面部近傍に肉盛溶接した後、SR処理
を行なうことなくそのまま突合わせ本溶接を行なうこと
を特徴とする厚板低合金鋼の突合わせ溶接方法。
In a method of butt welding thick low alloy steel plates, SR treatment is performed after overlay welding near the back surface of the groove of the thick copper plate using a welding material made of an alloy composition with lower SR cracking susceptibility than the base metal. A method for butt welding thick plates of low-alloy steel, which is characterized in that actual butt welding is performed as is.
JP17757983A 1983-09-26 1983-09-26 Butt welding method of heavy-gauge low-alloy steel Granted JPS6068176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17757983A JPS6068176A (en) 1983-09-26 1983-09-26 Butt welding method of heavy-gauge low-alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17757983A JPS6068176A (en) 1983-09-26 1983-09-26 Butt welding method of heavy-gauge low-alloy steel

Publications (2)

Publication Number Publication Date
JPS6068176A true JPS6068176A (en) 1985-04-18
JPH0242027B2 JPH0242027B2 (en) 1990-09-20

Family

ID=16033435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17757983A Granted JPS6068176A (en) 1983-09-26 1983-09-26 Butt welding method of heavy-gauge low-alloy steel

Country Status (1)

Country Link
JP (1) JPS6068176A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009218060B2 (en) * 2008-02-28 2014-08-28 Toray Industries, Inc. Pharmaceutical composition for transnasal administration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680379A (en) * 1979-12-03 1981-07-01 Hitachi Ltd Welding method of low alloy steel
JPS5868481A (en) * 1981-10-19 1983-04-23 Kawasaki Steel Corp Narrow groove welding method for high carbon steel material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680379A (en) * 1979-12-03 1981-07-01 Hitachi Ltd Welding method of low alloy steel
JPS5868481A (en) * 1981-10-19 1983-04-23 Kawasaki Steel Corp Narrow groove welding method for high carbon steel material

Also Published As

Publication number Publication date
JPH0242027B2 (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US5233149A (en) Reprocessing weld and method
JP6769467B2 (en) Resistance spot welding method and manufacturing method of resistance spot welding member
CN107866628B (en) Welding method for improving bearing capacity of aging-strengthened aluminum alloy fusion welding joint
TWI642506B (en) Point welding method
EP3473368B1 (en) Gas-shielded arc welding method and method for manufacturing welded structure
US20070045260A1 (en) Welded aluminum sheets and process therefore
US4564743A (en) Fusion welding of aluminum alloys
JPS6068176A (en) Butt welding method of heavy-gauge low-alloy steel
WO2018003341A1 (en) Laser welded joint and method for manufacturing laser welded joint
JP2007253160A (en) Method for arc-welding galvanized ultra-high tensile strength steel
EP3808488A1 (en) Plated steel sheet weld member having excellent porosity-resistance and fatigue property of weld zone, and method for manufacturing same
US3196537A (en) Method and composition for welding cast iron
JP2004136314A (en) Method for welding galvanized sheet iron by which crack of galvanized layer during welding is prevented
JP3714815B2 (en) Hard metal multi-layer overlay welding method for cast iron base metal
JPH06320280A (en) Butt welding method for both-side clad plural layer steels
KR102046957B1 (en) High Efficient Welded Joint Having Excellent Brittle Crack Propagation Stopping Performance and Method for Manufacturing the Same
KENYON et al. Composite welds(for cryogenic and high strength steels)
JP4304892B2 (en) Welded joint
SU1489935A1 (en) Method of protecting the underside of weld in multipass welding of hard-melting alloys and metals
JPS6144598B2 (en)
SU421449A1 (en) METHOD OF CONNECTING COPPER AND L / EAL ALLOYS WITH STEEL
JP2605800B2 (en) Gas shielded arc welding wire
YAN et al. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding
KR20190074662A (en) Method of welding coated steel sheet and austenite based stianless pipe
Hinde Corrosion resistance part 2: Materials