JPS6068095A - Batch activated sludge process equipment - Google Patents

Batch activated sludge process equipment

Info

Publication number
JPS6068095A
JPS6068095A JP58175733A JP17573383A JPS6068095A JP S6068095 A JPS6068095 A JP S6068095A JP 58175733 A JP58175733 A JP 58175733A JP 17573383 A JP17573383 A JP 17573383A JP S6068095 A JPS6068095 A JP S6068095A
Authority
JP
Japan
Prior art keywords
water
water level
treatment
suction pipe
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58175733A
Other languages
Japanese (ja)
Other versions
JPH0355197B2 (en
Inventor
Noboru Suzuki
登 鈴木
Kazuyuki Yamazaki
和幸 山嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP58175733A priority Critical patent/JPS6068095A/en
Publication of JPS6068095A publication Critical patent/JPS6068095A/en
Publication of JPH0355197B2 publication Critical patent/JPH0355197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To carry out efficiently the waste water treatment including denitrification by opening and closing a valve on the basis of a water level detected with a water level gauge, and selecting a suction pipe for discharging the supernatant water. CONSTITUTION:The original waste water is supplied into a treating tank 1 from a supply pipe 11, mixed by operating a mechanical agitator 2 with an appropriate amt. of treated water which is left in the treating tank 1 in the preceding cycle of the discharging stage, and anaerobically treated. Air is blown into the treated water in the treating tank 1 from an air sparger 3 by driving a blower 8, and the aeration and agitation are carried out. Thereafter, the blowing of air from the air sparger 3 is stopped, and the settling is carried out in the treating tank 1. Then the supernatant water is discharged from a suction pipe with a pump 7 by opening and closing valves 4, 4', and 4'', and selecting the suction pipe 5, etc. for discharging the supernatant water on the basis of the water level detected with a water level gauge 6.

Description

【発明の詳細な説明】 本発明は回分式活性汚泥処理装置に関するものである。[Detailed description of the invention] The present invention relates to a batch type activated sludge treatment apparatus.

近年、閉鎖性水域、特に湖沼の汚染源として窒素やリン
分が指摘されており、これらの物質の排出規制を行なう
自治体も現われている。そのため大小を問わず排水処理
施設の機能向上が要求されているが、窒素の除去、即ち
脱窒素処理についてはいまだ不十分である。かかる脱窒
素処理を行ない得る処理方法の1つとして、排水中の窒
素化合物を好気条件下で微生物処理して、NO2やNO
3まで酸化する工程、即ち好気的処理工程と、この好気
的処理工程後嫌気的条件下で再度微生物処理して、NO
2やNO3をN2ガスとして還元除去する工程、即ち嫌
気的処理工程の両方の処理工程を有する生物的処理方法
が提案されている。ところがかかる処理方法を〜連続式
として具現化した従来の処理装置は前記好気的処理工程
、嫌気的処理工程並びに沈降分離工程を、夫々個別の処
理槽で行なうものであるので設置スペースや運転管理等
が大規模となってしまう傾向がある。ところで中小企業
のように、作業が日間作業で、排水の流出時間が一定で
あり、しかも排水量が比較的夕景である業種に於いては
、設置スペースや運転管理等の観点からは処理槽が1つ
の回分式活性汚泥処理装置が最適であるが、従来かかる
回分式活性汚泥処理装置では前記好気的処理工程並びに
嫌気的処理工程の両者を含む前述の処理方法を実際上具
現化しておらず、窒素を十分に除去し得ていない。
In recent years, nitrogen and phosphorus have been pointed out as sources of pollution in closed water bodies, especially lakes, and some local governments have begun to regulate the discharge of these substances. Therefore, there is a need to improve the functionality of wastewater treatment facilities, regardless of their size, but nitrogen removal, that is, denitrification treatment, is still insufficient. One treatment method that can perform such denitrification treatment is to treat nitrogen compounds in wastewater with microorganisms under aerobic conditions to remove NO2 and NO.
3, that is, an aerobic treatment step, and after this aerobic treatment step, microbial treatment is performed again under anaerobic conditions to remove NO.
A biological treatment method has been proposed that includes both a process of reducing and removing NO2 and NO3 as N2 gas, that is, an anaerobic treatment process. However, conventional treatment equipment that embodies this treatment method as a continuous type performs the aerobic treatment process, anaerobic treatment process, and sedimentation separation process in separate treatment tanks, which requires installation space and operation management. etc. tend to become large-scale. By the way, in industries such as small and medium-sized enterprises, where the work is done every day, the outflow time of wastewater is constant, and the amount of wastewater is relatively evening, it is difficult to install a single treatment tank in terms of installation space and operation management. Although a batch type activated sludge treatment apparatus is most suitable, conventional batch type activated sludge treatment apparatuses do not actually embody the above-mentioned treatment method including both the aerobic treatment step and the anaerobic treatment step. Nitrogen has not been removed sufficiently.

本発明は以上のような従来の装置を改善し、1つの処理
槽内で合理的に回分式に前記好気的処理工程、嫌気的処
理工程並びに沈降分離工程を行なわせるようにして、小
規模の装置に於いても、効率良く脱窒床処理を含めた排
水処理を行なえるようにしたものである。以下本発明を
実施例に基づいて詳細に説明すると次の通りである。
The present invention improves the conventional equipment as described above, allows the aerobic treatment process, anaerobic treatment process, and sedimentation separation process to be performed in a rational batch manner in one treatment tank, thereby reducing the This system is also designed to efficiently perform wastewater treatment including denitrification bed treatment. The present invention will be described in detail below based on examples.

第1図に於いて符号1は処理槽であり、本発明装置は該
処理槽1に機械的攪拌装置2と散気装置3並びに吸込部
a’、a’、a”、・・の高さを異ならせ、夫々に弁4
. 4’、4”、を設けた複数本の吸込パイプ5. 5
’、5“、・と水位計6とを設ける。そして前記処理槽
1内に於ける沈降分離後の上澄水の排出工程に於いて、
前記水位計6で検知した水位に基づいて前記弁4. 4
’、4″、・・・を操作して、上澄水を排出するための
吸込パイプ5. 5’、5“、・・・を選択する構成と
づる。ここで前記弁4. 4’、 4”。
In FIG. 1, reference numeral 1 is a processing tank, and the apparatus of the present invention is provided with a mechanical stirring device 2, an aeration device 3, and suction sections a', a', a'', etc. in the processing tank 1. with different valves, each with 4 valves.
.. Multiple suction pipes with 4', 4", 5.5
', 5'', and a water level gauge 6 are provided.In the process of discharging the supernatant water after sedimentation and separation in the treatment tank 1,
Based on the water level detected by the water level gauge 6, the valve 4. 4
', 4'', . . . to select the suction pipe 5. 5', 5'', . . . for discharging supernatant water. Here, the valve 4. 4', 4".

・・は電磁式、電動式、空気作動式等の自動操作式とし
て、前記水位計6の水位信号に基づいて適宜の制御装置
(図示せず)によって自動操作するようにする他、手動
式として、前記水位計6の水位信号に基づいて作業者が
手動で操作するようにしても良い。符号7は上澄水排出
用ポンプ、1七プロワ−19は余剰汚泥引抜ポンプ、1
0は余剰汚泥引抜パイプ、11は原排水供給パイプであ
る。
... is an automatic operation type such as an electromagnetic type, an electric type, or a pneumatic type, which is automatically operated by an appropriate control device (not shown) based on the water level signal of the water level gauge 6, or a manual type. , an operator may operate the water level manually based on the water level signal from the water level gauge 6. Reference numeral 7 is a supernatant water discharge pump, 17 blower 19 is an excess sludge extraction pump, 1
0 is an excess sludge extraction pipe, and 11 is a raw wastewater supply pipe.

かかる構成に於いて本発明の動作を、第2図に示す代表
的運転シーケンス並びに第6図に基づいて説明すると次
の通りである。
The operation of the present invention in such a configuration will be explained below based on the typical operation sequence shown in FIG. 2 and FIG. 6.

〔1〕・□嫌気的処理工程 処理すべき原排水をこの工程内に於いて随時間欠的に原
排水供給パイプ11から処理槽1内に供給し、機械的攪
拌装置2を作動させることにより、供給された原排水を
、前サイクルの排出工程に於いて処理槽1内に適量残留
させた処理水と混合して嫌気的処理を行なう。残留させ
た処理水は、前サイクルの好気的処理工程に於いて原排
水の有機物の酸化と硝化が行なわれていて、硝化によっ
て生成された硝酸体及び亜硝酸体窒素を含むため、これ
らの窒素体とこのサイクルに於いて供給された原排水中
の有機物とにより脱窒床処理が行なわれる。この工程に
於いては散気装置3からの空気の吹込みは行なわない。
[1]・□ Anaerobic treatment process Raw wastewater to be treated is intermittently supplied into the treatment tank 1 from the raw wastewater supply pipe 11 during this process, and the mechanical stirring device 2 is operated. The supplied raw wastewater is mixed with the treated water that remained in an appropriate amount in the treatment tank 1 in the discharge process of the previous cycle to perform anaerobic treatment. The remaining treated water has undergone oxidation and nitrification of organic matter in the raw wastewater in the aerobic treatment process of the previous cycle, and contains nitrate and nitrite nitrogen produced by nitrification. Denitrification bed treatment is performed using nitrogen bodies and organic matter in the raw wastewater supplied in this cycle. In this step, air is not blown from the air diffuser 3.

かかる嫌気的処理工程に於いては、処理槽1内に不定期
に原排水が供給されるが、処理槽1内では前述した通り
機械的攪拌装置2が作動しているので、前述の通り前サ
イクルの処理水に含有される硝酸体及び亜硝酸体窒素分
と、原排水の有機物とが良好に接触して効率良(脱窒床
処理を行なうことができる。
In this anaerobic treatment process, raw wastewater is supplied irregularly into the treatment tank 1, but since the mechanical stirring device 2 is operating in the treatment tank 1 as described above, the Nitrate and nitrite nitrogen contained in the treated water of the cycle come into good contact with the organic matter of the raw wastewater, making it possible to perform efficient denitrification bed treatment.

気装置3から処理槽1内処理水に空気を吹込み、曝気と
共に攪拌を行なう。処理水はこのように空気吹込みによ
って攪拌されるので、嫌気的処理工程に於いて作動させ
た機械的攪拌装置2を作動させる必要はない。しかしな
がら場合によっては作動も可能である。この工程では前
段の工程中に供給された原排水中の有機物の酸化と、窒
素化合物の硝化を微生物処理で行なう。
Air is blown into the treated water in the treatment tank 1 from the air device 3 to perform aeration and stirring. Since the treated water is thus stirred by air blowing, there is no need to operate the mechanical stirring device 2 that was operated in the anaerobic treatment process. However, activation is also possible in some cases. In this step, microbial treatment is used to oxidize organic matter and nitrify nitrogen compounds in the raw wastewater supplied during the previous step.

〔6〕・・・沈降分離工程 所定の前工程終了後、散気装置3かもの空気の吹込み等
の機械的装置の動作を休止させ、処理槽1を沈殿槽とし
て使用する。この工程は活性汚泥と上澄水の界面を作り
出し、次の排出工程を効率良く行なうための工程である
が、この工程も一種の嫌気的状態となるので、ある程度
の脱窒床処理が行なわれる。
[6] Sedimentation separation process After the predetermined pre-process is completed, the operation of mechanical devices such as the air diffuser 3 and air blowing is stopped, and the processing tank 1 is used as a settling tank. This step creates an interface between activated sludge and supernatant water to allow the next discharge step to be carried out efficiently, but since this step is also in a kind of anaerobic state, a certain degree of denitrification bed treatment is performed.

〔4〕・排出工程 所定の前工程終了後、水位計6で検知した水位に基つい
て前記弁4 、 4/ 、4tt、・・を開閉操作して
上澄水を排出するための吸込パイプ5 、 5/、5/
/。
[4] - Discharge process After completion of a predetermined pre-process, a suction pipe 5 for discharging supernatant water by opening and closing the valves 4, 4/, 4tt, etc. based on the water level detected by the water level gauge 6; 5/, 5/
/.

・を選択し、こうして選択した吸込パイプから上澄水排
出用ポンプ7により上澄水を排出する。また活性汚泥の
増殖が見られる場合には適所に設けた適宜の汚泥引抜装
置、例えば図示のような余剰汚泥引抜パイプ10から余
剰汚泥引抜ポンプ9により余剰汚泥を引き抜く。そして
以上の排出工程完了後は再び次サイクルの嫌気的処理工
程に移行する。
- is selected, and the supernatant water is discharged from the suction pipe thus selected by the supernatant water discharge pump 7. In addition, if proliferation of activated sludge is observed, excess sludge is pulled out by an appropriate sludge extraction device provided at an appropriate location, for example, an excess sludge extraction pump 9 from an excess sludge extraction pipe 10 as shown. After the above discharge process is completed, the next cycle of anaerobic treatment process is started again.

ここで、水位側6で検知した水位に基づく吸込パイプ5
. 5’、5″、の選択は例えば第2図に於いて次の通
り行なわれる。
Here, the suction pipe 5 based on the water level detected on the water level side 6
.. The selection of 5' and 5'' is performed as follows, for example in FIG.

■ 水位計6がD−E間を指示する場合には、九4′を
開、弁4.4’、・・・を閉とし、吸込パイプ5″が選
択さfl、て、その吸込部a“の高さまで上澄水が排出
される。
■ When the water level gauge 6 indicates between D and E, open valve 94', close valves 4.4', . The supernatant water is discharged to a height of .

■ 水位計6がC−9間を指示する場合には、弁4′を
開、弁4.4”、・・を閉とし、吸込パイプ5′が選択
されて、その吸込部a′の高さまで上澄水が排出される
■ When the water level gauge 6 indicates between C and 9, the valve 4' is opened, the valves 4.4'', etc. are closed, the suction pipe 5' is selected, and the height of the suction part a' is The supernatant water will be drained.

■ 水位計6がB−0間を指示する場合には、弁4を開
、弁4’、4”、・・・を閉とし、吸込パイプ5が選択
されて、その吸込部aの高さまで上澄水がUト出される
■ When the water level gauge 6 indicates between B and 0, the valve 4 is opened, the valves 4', 4'', etc. are closed, and the suction pipe 5 is selected to reach the height of its suction part a. The supernatant water is discharged.

本発明はこのように処理槽1の水位が高い場合には吸込
部が高い位置にある吸込パイプを選択して高い位置まで
、また低い場合には吸込部が低い位置にある吸込パイプ
を選択して低い位置筐で上澄水を排出するようにしてい
るので、第4図に示す従来の回分式活性汚泥処理装置の
ように吸込パイプが単一の装置と比較して沈降分離工程
後の処理槽1内の全処理水量に対して常時所定割合以上
の処理水を処理槽1内に残留させることができる。
In this way, when the water level of the treatment tank 1 is high, a suction pipe with a suction part located at a high position is selected and the suction pipe is moved to a high position, and when the water level is low, a suction pipe with a suction part located at a low position is selected. Since the supernatant water is discharged from a low-positioned casing, compared to a conventional batch-type activated sludge treatment device shown in Figure 4, which has a single suction pipe, the treatment tank after the sedimentation separation process is A predetermined proportion or more of treated water can always remain in the treatment tank 1 with respect to the total amount of treated water in the treatment tank 1.

こうしてかかる所定割合以上の残留処理水を前述゛した
通り次サイクルの嫌気的処理工程に於いて脱窒米処理す
ることができるので、全体として原排水に対しての上澄
水の理論的窒素除去率を常時前記所定割合9、上に維持
することができる。例えば常時50%以上の処理水を残
留させると、理論的窒素除去率も50%以上とすること
ができる。
In this way, the residual treated water above a predetermined ratio can be denitrified in the anaerobic treatment process of the next cycle as described above, so the overall theoretical nitrogen removal rate of the supernatant water relative to the raw wastewater is can be maintained above the predetermined ratio 9 at all times. For example, if 50% or more of the treated water remains at all times, the theoretical nitrogen removal rate can also be 50% or more.

本発明は以上の通り、1つの処理槽内に於いて順次嫌気
的処理工程、好気的処理工程、沈降分離工程並びに排出
工程を行なわせる際、該排出工程に於いては全ての上澄
水を排出するのではなく、その所定割合以上を積極的に
残留させて、次サイクルに於ける嫌気的処理工程にもた
らすように構物とにより極め℃効率的に脱窒米処理を行
なうことができ、脱窒米処理を含めた、活性汚泥による
排水処理を回分式で具現化し得るという特徴がある。殊
に本発明は処理槽に、吸込部の高さを異ならせ、夫々に
弁を設けた複数本の吸込パイプと水位計とを設け、排出
工程に於いては水位計で検知した水位に基づいて前記夫
々の弁を開閉操作して、上澄水を排出するための吸込パ
イプを選択し、こうして沈殿処理工程後の処理水全体に
対して常時所定割合以上の処理水を容易な操作で残留可
能とすることにより、理論的窒素除去率を供給される原
排水量の多少に係らず常時一定値以上に保持し得るとい
う特徴がある。本発明はこのように回分式に脱窒米処理
を含めた活性汚泥処理が行な−えるものであるから、中
小企業のように作業が日間作業で排水の流出時間が一定
であり、しかも排水量が比較的少量である業種に最適で
、設置コストヲ大幅に低減し得るという特徴がある。尚
、前記処理槽1の形状は、縦型形状とすれば菓≠≠零沈
降分離工程に於いて沈降汚泥と上澄水との境界が大きく
取れる点、余剰汚泥として沈降汚泥を引抜く際に、汚泥
の自重作用により濃縮された汚泥の引抜きが可能となる
点、上澄水の排出に際しては、排出用ポンプに接続され
た複数のパイプの吸込部間の距離に巾を持たせることが
できるので目的とする上澄水の排出量の制御が容易とな
る点並びに沈降汚泥の吸上げ防止の点等に利点を有する
が、必ずしも縦型でなくとも良い。
As described above, when the present invention sequentially performs an anaerobic treatment process, an aerobic treatment process, a sedimentation separation process, and a discharge process in one treatment tank, all supernatant water is removed in the discharge process. Rather than discharging it, it is possible to carry out denitrification rice processing extremely efficiently by using a structure that actively retains a predetermined percentage or more of it and brings it to the anaerobic treatment process in the next cycle. A feature of this method is that wastewater treatment using activated sludge, including denitrifying rice treatment, can be realized in a batch manner. In particular, the present invention provides a treatment tank with a plurality of suction pipes each having a valve at different heights and a water level gauge, and in the discharge process, the water level is determined based on the water level detected by the water level gauge. By opening and closing each of the valves, the suction pipe for discharging the supernatant water is selected, and in this way, a predetermined proportion or more of the treated water can always remain in the total treated water after the precipitation process with easy operation. By doing so, it has the feature that the theoretical nitrogen removal rate can always be maintained at a constant value or higher regardless of the amount of raw water supplied. Since the present invention is capable of performing activated sludge treatment including denitrification rice treatment in a batch manner, it is possible for small and medium-sized enterprises to do the work every day, and the outflow time of wastewater is constant, and the amount of wastewater is reduced. It is ideal for industries where a relatively small amount of water is required, and has the feature of significantly reducing installation costs. In addition, the shape of the treatment tank 1 is vertical if it is a vertical shape, so that the boundary between settled sludge and supernatant water can be made large in the zero sedimentation separation process, and when pulling out settled sludge as surplus sludge, The purpose is that it is possible to draw out concentrated sludge due to the action of the sludge's own weight, and when discharging supernatant water, it is possible to have a width between the suction parts of multiple pipes connected to the discharge pump. It has advantages in that it becomes easy to control the discharge amount of supernatant water and prevents the settling sludge from being sucked up, but it does not necessarily have to be a vertical type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成説明図、第2図は
本発明装置の代表的運転シーケンスを示j説明図、第6
図は第2図のシーケンスの装置的説明図、第4図は従来
の回分式活性汚泥処理装置の全体構成説明図である。 符号1・・・処理槽、2・・機械的攪拌装置、3・・散
気装置、4. 4’、4”、・・・・・・弁、5.5’
、テ′、・・・・・吸込パイプ、6・・・水位計、I・
・・上澄水排出用ポンプ、8・・プロワ−19・・余剰
汚泥引抜ポンプ、10 余剰汚泥引抜パイプ、11・・
・原排水供給パイプ、
Fig. 1 is an explanatory diagram of the overall configuration of an embodiment of the present invention, Fig. 2 is an explanatory diagram showing a typical operation sequence of the device of the present invention,
This figure is an explanatory diagram of the apparatus of the sequence shown in FIG. 2, and FIG. 4 is an explanatory diagram of the overall configuration of a conventional batch type activated sludge treatment apparatus. Code 1... Processing tank, 2... Mechanical stirring device, 3... Air diffuser, 4. 4', 4"... Valve, 5.5'
, Te', ... Suction pipe, 6... Water level gauge, I...
・・Supernatant water discharge pump, 8・・Plower 19・・Excess sludge extraction pump, 10 Excess sludge extraction pipe, 11・・
・Raw wastewater supply pipe,

Claims (1)

【特許請求の範囲】[Claims] 処理槽に、機械的攪拌装置と散気装置並びに吸込部の高
さを異ならせ、夫々に弁を設けた複数本の吸込パイプと
、水位計とを設け、前記処理槽内に於ける沈降分離工程
後の上澄水の排出工程に於いて、前記水位計で検知した
水位に基づいて前記弁を開閉操作して上澄水を排出する
ための吸込パイプを選択することによ−り沈降分離工程
後の処理水全体に対して常時所定割合以上の処理水を残
留可能に構成したことを特徴とする回分式活性汚泥処理
装置
The treatment tank is equipped with a mechanical agitation device, an aeration device, a plurality of suction pipes each having a valve at different heights, and a water level gauge. In the process of discharging supernatant water after the process, the valve is opened and closed based on the water level detected by the water level gauge to select a suction pipe for discharging the supernatant water after the sedimentation separation process. A batch-type activated sludge treatment device characterized by being configured such that a predetermined proportion or more of treated water always remains in the total treated water.
JP58175733A 1983-09-22 1983-09-22 Batch activated sludge process equipment Granted JPS6068095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175733A JPS6068095A (en) 1983-09-22 1983-09-22 Batch activated sludge process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175733A JPS6068095A (en) 1983-09-22 1983-09-22 Batch activated sludge process equipment

Publications (2)

Publication Number Publication Date
JPS6068095A true JPS6068095A (en) 1985-04-18
JPH0355197B2 JPH0355197B2 (en) 1991-08-22

Family

ID=16001284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175733A Granted JPS6068095A (en) 1983-09-22 1983-09-22 Batch activated sludge process equipment

Country Status (1)

Country Link
JP (1) JPS6068095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264197A (en) * 1987-04-22 1988-11-01 Meidensha Electric Mfg Co Ltd Device for discharging supernatant water of batch-type waste water treating device
CN104003591A (en) * 2014-06-24 2014-08-27 肖帅帅 Denitrification collaborative bio-doubling process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046470A1 (en) 2005-10-21 2007-04-26 Asahi Kasei Chemicals Corporation Highly crosslinkable low-viscosity polyisocyanate composition and coating composition containing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264197A (en) * 1987-04-22 1988-11-01 Meidensha Electric Mfg Co Ltd Device for discharging supernatant water of batch-type waste water treating device
CN104003591A (en) * 2014-06-24 2014-08-27 肖帅帅 Denitrification collaborative bio-doubling process

Also Published As

Publication number Publication date
JPH0355197B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
JP2003126890A (en) Wastewater treatment apparatus and wastewater treatment method using the same
CN103539317A (en) Device and method for nitrogen and phosphorus removal treatment by denitrification on high-ammonia nitrogen anaerobic ammonia oxidation effluent and domestic sewage
US7442307B2 (en) Method and apparatus for the biological activated sludge treatment of wastewater
KR101471053B1 (en) Organic oxidation tank having a manure treatment device
JP3119770B2 (en) Sewage denitrification treatment method and denitrification treatment device
JPS6068095A (en) Batch activated sludge process equipment
CN201395543Y (en) Aeration and sedimentation type sewage treatment system
KR20050095571A (en) Continuous inflow and intermittent outflow type sequencing batch reactor and wastewater treatment method using the same
KR100435107B1 (en) Advance Treatment Equipment and Process for Nitrogen and Phosphate Removal in Sewage and Wastewater
CN213171672U (en) A2/O and deformation process integrated sewage treatment equipment
CN210012656U (en) Pulse type sludge transfer SBR sewage treatment device
US8431025B2 (en) Method and apparatus for biologically processing fluid
CN112110620A (en) Intelligent integrated sewage treatment equipment and sewage treatment process
CN203392927U (en) Fully-pneumatic type integrated domestic sewage treatment device
CN1123769A (en) Treatment for organic wastewater containing ammonia from oil refinery
KR0139656B1 (en) Method of waste water treatment by biological alternating reaction
JP3276904B2 (en) Wastewater treatment method
CN1115304C (en) Continuous sewage treating process and system through intermittent aeration and by active sludge
CN214032142U (en) Intelligent integrated sewage treatment equipment
CN208716956U (en) Integrated SBR sewage treating machine
JP3697334B2 (en) Sewage treatment equipment
JP2002346585A (en) Wastewater treatment method
KR20040083044A (en) Advanced wastewater treatment method using reactor-regulated raw water storage tank
CN1381407A (en) Process for treating sewage
JPH054094A (en) Batchwise activated sludge treating device for sewage