JPH0355197B2 - - Google Patents

Info

Publication number
JPH0355197B2
JPH0355197B2 JP58175733A JP17573383A JPH0355197B2 JP H0355197 B2 JPH0355197 B2 JP H0355197B2 JP 58175733 A JP58175733 A JP 58175733A JP 17573383 A JP17573383 A JP 17573383A JP H0355197 B2 JPH0355197 B2 JP H0355197B2
Authority
JP
Japan
Prior art keywords
treatment
water
water level
level gauge
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58175733A
Other languages
Japanese (ja)
Other versions
JPS6068095A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58175733A priority Critical patent/JPS6068095A/en
Publication of JPS6068095A publication Critical patent/JPS6068095A/en
Publication of JPH0355197B2 publication Critical patent/JPH0355197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 本発明は回分式活性汚泥処理装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a batch type activated sludge treatment apparatus.

近年、閉鎖性水域、特に湖沼の汚染源として窒
素やリン分が指摘されており、これらの物質の排
出規制を行なう自治体も現われている。そのため
大小を問わず排水処理施設の機能向上が要求され
ているが、窒素の除去、即ち脱窒素処理について
はいまだ不十分である。かかる脱窒素処理を行な
い得る処理方法の1つとして、排水中の窒素化合
物を好気条件下で微生物処理して、NO2やNO3
まで酸化する工程、即ち好気的処理工程と、この
好気的処理工程後嫌気的条件下で再度微生物処理
して、NO2やNO3をN2ガスとして還元除去する
工程、即ち嫌気的処理工程の両方の処理工程を有
する生物的処理方法が提案されている。ところが
かかる処理方法を連続式として具現化した従来の
処理装置は前記好気的処理工程、嫌気的処理工程
並びに沈降分離工程を、夫々個別の処理槽で行な
うものであるので設置スペースや運転管理等が大
規模となつてしまう傾向がある。ところで中小企
業のように、作業が日間作業で、排水の流出時間
が一定であり、しかも排水量が比較的少量である
業種に於いては、設置スペースや運転管理等の観
点からは処理槽が1つの回分式活性汚泥処理装置
が最適であるが、従来かかる回分式活性汚泥処理
装置では前記好気的処理工程並びに嫌気的処理工
程の両者を含む前述の処理方法を実際上具現化し
ておらず、窒素を十分に除去し得ていない。
In recent years, nitrogen and phosphorus have been pointed out as sources of pollution in closed water bodies, especially lakes, and some local governments have begun to regulate the discharge of these substances. Therefore, there is a need to improve the functionality of wastewater treatment facilities, regardless of their size, but nitrogen removal, that is, denitrification treatment, is still insufficient. One of the treatment methods that can perform such denitrification treatment is to treat nitrogen compounds in wastewater with microorganisms under aerobic conditions to reduce NO 2 and NO 3 .
The process of oxidizing to oxidation, i.e., an aerobic treatment process, and the process of reducing and removing NO 2 and NO 3 as N 2 gas by performing microbial treatment again under anaerobic conditions after this aerobic treatment process, i.e., anaerobic treatment. Biological treatment methods have been proposed that have both treatment steps in the process. However, conventional treatment equipment that embodies this treatment method as a continuous type performs the aerobic treatment process, anaerobic treatment process, and sedimentation separation process in separate treatment tanks, which requires installation space, operation management, etc. tends to become large-scale. By the way, in industries such as small and medium-sized enterprises where the work is done every day, the outflow time of wastewater is constant, and the amount of wastewater is relatively small, it is difficult to install a single treatment tank in terms of installation space and operation management. Although a batch type activated sludge treatment apparatus is most suitable, conventional batch type activated sludge treatment apparatuses do not actually embody the above-mentioned treatment method including both the aerobic treatment step and the anaerobic treatment step. Nitrogen has not been removed sufficiently.

本発明は以上のような従来の装置を改善し、1
つの処理槽内で合理的に回分式に前記好気的処理
工程、嫌気的処理工程並びに沈降分離工程を行な
わせるようにして、小規模の装置に於いても、効
率良く脱窒素処理を含めた排水処理を行なえるよ
うにしたものである。以下本発明を実施例に基づ
いて詳細に説明すると次の通りである。
The present invention improves the conventional device as described above, and has the following features:
By rationally performing the aerobic treatment process, anaerobic treatment process, and sedimentation separation process in a single treatment tank in a batch manner, denitrification treatment can be efficiently included even in small-scale equipment. It is designed to allow wastewater treatment. The present invention will be described in detail below based on examples.

第1図に於いて符号1は処理槽であり、本発明
装置は該処理槽1に機械的撹拌装置2と散気装置
3並びに吸込部a,a′,a″…の高さを異ならせ、
夫々に弁4,4′,4″,…を設けた複数本の吸込
パイプ5,5′,5″,…と水位計6とを設ける。
そして前記処理槽1内に於ける沈降分離後の上澄
水の排出工程に於いて、前記水位計6で検知した
水位に基づいて前記弁4,4′,4″,…を操作し
て、上澄水を排出するための吸込パイプ5,5′,
5″,…を選択する構成とする。ここで前記弁4,
4′,4″,…は電磁式、電動式、空気作動式等の
自動操作式として、前記水位計6の水位信号に基
づいて適宜の制御装置(図示せず)によつて自動
操作するようにする他、手動式として、前記水位
計6の水位信号に基づいて作業者が手動で操作す
るようにしても良い。符号7は上澄水排出用ポン
プ、8はブロワー、9は余剰汚泥引抜ポンプ、1
0は余剰汚泥引抜パイプ、11は原排水供給パイ
プである。
In FIG. 1, reference numeral 1 is a processing tank, and the apparatus of the present invention includes a mechanical stirring device 2, an aeration device 3, and suction sections a, a', a''... of different heights in the processing tank 1. ,
A plurality of suction pipes 5, 5', 5'', . . . each having a valve 4, 4', 4'', . . . and a water level gauge 6 are provided.
In the process of discharging supernatant water after sedimentation and separation in the treatment tank 1, the valves 4, 4', 4'', etc. are operated based on the water level detected by the water level gauge 6, and the suction pipes 5, 5' for discharging clear water;
The configuration is such that the valves 5'', . . . are selected.Here, the valves 4,
4', 4'', . . . are automatically operated such as electromagnetic, electric, or air operated, and are automatically operated by an appropriate control device (not shown) based on the water level signal from the water level gauge 6. In addition to this, it may be a manual type, and the worker may manually operate it based on the water level signal from the water level gauge 6. Reference numeral 7 is a supernatant water discharge pump, 8 is a blower, and 9 is an excess sludge extraction pump. ,1
0 is an excess sludge extraction pipe, and 11 is a raw wastewater supply pipe.

かかる構成に於いて本発明の動作を、第2図に
示す代表的運転シーケンス並びに第3図に基づい
て説明すると次の通りである。
The operation of the present invention in such a configuration will be explained below based on the typical operation sequence shown in FIG. 2 and FIG. 3.

〔1〕 …嫌気的処理工程 処理すべき原排水をこの工程内に於いて随時
間欠的に原排水供給ポンプ11から処理槽1内
に供給し、機械的撹拌装置2を作動させること
により、供給された原排水を、前サイクルの排
出工程に於いて処理槽1内に適量残留させた処
理水と混合して嫌気的処理を行なう。残留させ
た処理水は、前サイクルの好気的処理工程に於
いて原排水の有機物の酸化と硝化が行なわれて
いて、硝化によつて生成された硝酸体及び亜硝
酸体窒素を含むため、これらの窒素体とこのサ
イクルに於いて供給された原排水中の有機物と
により脱窒素処理が行なわれる。この工程に於
いては散気装置3からの空気の吹込みは行なわ
ない。かかる嫌気的処理工程に於いては、処理
槽1内に不定期に原排水が供給されるが、処理
槽1内では前述した通り機械的撹拌装置2が作
動しているので、前述の通り前サイクルの処理
水に含有される硝酸体及び亜硝酸体窒素分と、
原排水の有機物とが良好に接触して効率良く脱
窒素処理を行なうことができる。
[1] Anaerobic treatment process Raw wastewater to be treated is intermittently supplied into the treatment tank 1 from the raw wastewater supply pump 11 during this process, and the supply is carried out by operating the mechanical stirring device 2. The raw wastewater thus obtained is mixed with an appropriate amount of treated water left in the treatment tank 1 during the previous cycle's discharge process, and anaerobic treatment is performed. The remaining treated water has undergone oxidation and nitrification of organic matter in raw wastewater in the aerobic treatment process of the previous cycle, and contains nitrate and nitrite nitrogen produced by nitrification. Denitrification treatment is performed using these nitrogen bodies and the organic matter in the raw wastewater supplied in this cycle. In this step, air is not blown from the air diffuser 3. In this anaerobic treatment process, raw wastewater is supplied irregularly into the treatment tank 1, but since the mechanical stirring device 2 is operating in the treatment tank 1 as described above, the Nitrate and nitrite nitrogen contained in the cycle treated water,
The organic matter in the raw wastewater comes into good contact with the organic matter, and denitrification can be carried out efficiently.

〔2〕 …好気的処理工程 所定の前工程終了後、ブロワー8を作動させ
て散気装置3から処理槽1内処理水に空気を吹
込み、曝気と共に撹拌を行なう。処理水はこの
ように空気吹込みよつて撹拌されるので、嫌気
的処理工程に於いて作動させた機械的撹拌装置
2を作動させる必要はない。しかしながら場合
によつては作動も可能である。この工程では前
段の工程中に供給された原排水中の有機物の酸
化と、窒素化合物の硝化を微生物処理で行な
う。
[2] ...Aerobic treatment process After the predetermined pre-process is completed, the blower 8 is operated to blow air from the aeration device 3 into the treated water in the treatment tank 1 to perform aeration and stirring. Since the treated water is thus stirred by air blowing, there is no need to activate the mechanical stirring device 2 that was activated in the anaerobic treatment process. However, activation is also possible in some cases. In this step, microbial treatment is used to oxidize organic matter and nitrify nitrogen compounds in the raw wastewater supplied during the previous step.

〔3〕 …沈降分離工程 所定の前工程終了後、散気装置3からの空気
の吹込み等の機械的装置の動作を休止させ、処
理槽1を沈殿槽として使用する。この工程は活
性汚泥と上澄水の界面を作り出し、次の排出工
程を効率良く行なうための工程であるが、この
工程も一種の嫌気的状態となるので、ある程度
脱窒素処理が行なわれる。
[3] Sedimentation separation process After the predetermined pre-process is completed, the operation of mechanical devices such as air blowing from the air diffuser 3 is stopped, and the processing tank 1 is used as a settling tank. This step creates an interface between activated sludge and supernatant water, and is a step for efficiently carrying out the next discharge step, but since this step also becomes a kind of anaerobic state, denitrification treatment is performed to some extent.

〔4〕 …排出工程 所定の前工程終了後、水位計6で検知した水
位に基づいて前記弁4,4′,4″,…を開閉操
作して上澄水を排出するための吸込パイプ5,
5′,5″,…を選択し、こうして選択した吸込
パイプから上澄水排出用ポンプ7により上澄水
を排出する。また活性汚泥の増殖が見られる場
合には適所に設けた適宜の汚泥引抜装置、例え
ば図示のような余剰汚泥引抜パイプ10から余
剰汚泥引抜ポンプ9により余剰汚泥を引き抜
く。そして以上の排出工程完了後は再び次サイ
クルの嫌気的処理工程に移行する。
[4] Discharge process After the completion of the predetermined pre-process, the suction pipe 5 opens and closes the valves 4, 4', 4'', etc. to discharge the supernatant water based on the water level detected by the water level gauge 6.
5', 5'',... are selected, and the supernatant water is discharged from the suction pipe thus selected by the supernatant water discharge pump 7. In addition, if growth of activated sludge is observed, an appropriate sludge extraction device installed at an appropriate location is used. For example, excess sludge is drawn out from an excess sludge extraction pipe 10 as shown in the figure by an excess sludge extraction pump 9. After the above discharge process is completed, the process shifts to the next cycle of anaerobic treatment process again.

ここで、水位計6で検知した水位に基づく吸
込パイプ5,5′,5″,…の選択は例えば第2
図に於いて次の通り行なわれる。
Here, the selection of the suction pipes 5, 5', 5'', etc. based on the water level detected by the water level gauge 6 is performed, for example, at the second
In the figure, this is done as follows.

水位計6がD−E間を指示する場合には、
弁4″を開、弁4,4′,…を閉とし、吸込パ
イプ5″が選択されて、その吸込部a″の高さ
まで上澄水が排出される。
When the water level gauge 6 indicates between D and E,
The valve 4'' is opened and the valves 4, 4', .

水位計6がC−D間を指示する場合には、
弁4′が開、弁4,4″,…を閉とし、吸込パ
イプ5′が選択されて、その吸込部a′の高さま
で上澄水が排出される。
When the water level gauge 6 indicates between C and D,
Valve 4' is opened, valves 4, 4'', . . . are closed, suction pipe 5' is selected, and supernatant water is discharged to the level of suction section a'.

水位計6がB−C間を指示する場合には、
弁4を開、弁4′,4″,…を閉とし、吸込パ
イプ5が選択されて、その吸込部aの高さま
で上澄水が排出される。
When the water level gauge 6 indicates between B and C,
The valve 4 is opened and the valves 4', 4'', .

本発明はこのように処理槽1の水位が高い場合
には吸込部が高い位置にある吸込パイプを選択し
て高い位置まで、また低い場合には吸込部が低い
位置にある吸込パイプを選択して低い位置まで上
澄水を排出するようにしているので、第4図に示
す従来の回分式活性汚泥処理装置のように吸込パ
イプが単一の装置と比較して沈降分離工程後の処
理槽1内の全処理水量に対して常時所定割合以上
の処理水を処理槽1内に残留させることができ
る。こうしてかかる所定割合以上の残留処理水を
前述した通り次サイクルの嫌気的処理工程に於い
て脱窒素処理することができるので、全体として
原排水に対しての上澄水の理論的窒素除去率を常
時前記所定割合以上に維持することができる。例
えば常時50%以上の処理水を残留させると、理論
的窒素除去率も50%以上とすることができる。
In this way, when the water level of the treatment tank 1 is high, a suction pipe with a suction part located at a high position is selected and the suction pipe is moved to a high position, and when the water level is low, a suction pipe with a suction part located at a low position is selected. Since the supernatant water is discharged to a lower position through the process, compared to a conventional batch type activated sludge treatment device shown in Fig. 4, which has a single suction pipe, the treatment tank 1 after the sedimentation separation process is A predetermined proportion or more of treated water can always remain in the treatment tank 1 with respect to the total amount of treated water in the treatment tank 1. In this way, residual treated water exceeding a predetermined proportion can be denitrified in the anaerobic treatment process of the next cycle as described above, so that the theoretical nitrogen removal rate of supernatant water relative to raw wastewater can be maintained at all times. The ratio can be maintained at or above the predetermined ratio. For example, if 50% or more of the treated water remains at all times, the theoretical nitrogen removal rate can also be 50% or more.

本発明は以上の通り、1つの処理槽内に於いて
順次嫌気的処理工程、好気的処理工程、沈降分離
工程並びに排出工程を行なわせる際、該排出工程
に於いては全ての上澄水を排出するのではなく、
その所定割合以上を積極的に残留させて、次サイ
クルに於ける嫌気的処理工程にもたらすように構
成したので、嫌気的処理工程に於いては残留処理
水の硝酸体及び亜硝酸体窒素と、原排水中の有機
物とにより極めて効率的に脱窒素処理を行なうこ
とができ、脱窒素処理を含めた、活性汚泥による
排水処理を回分式で具現化し得るという特徴があ
る。殊に本発明は処理槽に、吸込部の高さを異な
らせ、夫々に弁を設けた複数本の吸込パイプと水
位計とを設け、排出工程に於いては水位計で検知
した水位に基づいて前記夫々の弁を開閉操作し
て、上澄水を排出するための吸込パイプを選択
し、こうして沈殿処理工程後の処理水全体に対し
て常時所定割合以上の処理水を容易な操作で残留
可能とすることにより、理論的窒素除去率を供給
される原排水量の多少に係らず常時一定値以上に
保持し得るという特徴がある。本発明はこのよう
に回分式に脱窒素処理を含めた活性汚泥処理が行
なえるものであるから、中小企業のように作業が
日間作業で排水の流出時間が一定であり、しかも
排水量が比較的少量である業種に最適で、設置コ
ストを大幅に低減し得るという特徴がある。尚、
前記処理槽1の形状は、縦型形状とすれば沈降分
離工程に於いて沈降汚泥と上澄水との境界が大き
く取れる点、余剰汚泥として沈降汚泥を引抜く際
に、汚泥の自重作用により濃縮された汚泥の引抜
きが可能となる点、上澄水の排出に際しては、排
出用ポンプに接続された複数のパイプの吸込部間
の距離に巾を持たせることができるので目的とす
る上澄水の排出量の制御が容易となる点並びに沈
降汚泥の吸上げ防止の点等に利点を有するが、必
ずしも縦型でなくとも良い。
As described above, when the present invention sequentially performs an anaerobic treatment process, an aerobic treatment process, a sedimentation separation process, and a discharge process in one treatment tank, all supernatant water is removed in the discharge process. Rather than discharging
The structure is configured so that a predetermined proportion or more of the residual nitrogen is left in the anaerobic treatment process in the next cycle, so that in the anaerobic treatment process, the residual treated water is treated with nitrate and nitrite nitrogen. Denitrification treatment can be carried out extremely efficiently using organic matter in raw wastewater, and wastewater treatment using activated sludge, including denitrification treatment, can be carried out in a batch manner. In particular, the present invention provides a treatment tank with a plurality of suction pipes each having a valve at different heights and a water level gauge, and in the discharge process, the water level is determined based on the water level detected by the water level gauge. By opening and closing each of the valves, the suction pipe for discharging the supernatant water is selected, and in this way, a predetermined proportion or more of the treated water can always remain in the total treated water after the precipitation process with easy operation. By doing so, it has the feature that the theoretical nitrogen removal rate can always be maintained at a constant value or higher regardless of the amount of raw water supplied. Since the present invention is capable of performing activated sludge treatment including denitrification treatment in a batch manner, it is possible for small and medium-sized enterprises to do the work every day, and the outflow time of wastewater is constant, and the amount of wastewater is relatively small. It is ideal for industries that operate in small quantities, and has the feature of significantly reducing installation costs. still,
The shape of the treatment tank 1 is such that if it is vertical, there will be a large boundary between the settled sludge and supernatant water in the sedimentation separation process, and when the settled sludge is pulled out as surplus sludge, it will be concentrated by the action of the sludge's own weight. When discharging supernatant water, the distance between the suction parts of multiple pipes connected to the discharging pump can be widened, so that the desired supernatant water can be discharged. Although it has advantages in terms of easy control of the amount and prevention of sucking up of settled sludge, it does not necessarily have to be vertical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体構成説明図、
第2図は本発明装置の代表的運転シーケンスを示
す説明図、第3図は第2図のシーケンスの装置的
説明図、第4図は従来の回分式活性汚泥処理装置
の全体構成説明図である。 符号1……処理槽、2……機械的撹拌装置、3
……散気装置、4,4′,4″,……弁、5,5′,
5″,……吸込パイプ、6……水位計、7……上
澄水排出用ポンプ、8……ブロワー、9……余剰
汚泥引抜ポンプ、10……余剰汚泥引抜パイプ、
11……原排水供給パイプ。
FIG. 1 is an explanatory diagram of the overall configuration of an embodiment of the present invention;
Fig. 2 is an explanatory diagram showing a typical operation sequence of the apparatus of the present invention, Fig. 3 is an explanatory diagram of the equipment of the sequence shown in Fig. 2, and Fig. 4 is an explanatory diagram of the overall configuration of a conventional batch type activated sludge treatment equipment. be. Code 1... Processing tank, 2... Mechanical stirring device, 3
...Diffuser, 4,4',4'', ...Valve, 5,5',
5'',...Suction pipe, 6...Water level gauge, 7...Supernatant water discharge pump, 8...Blower, 9...Excess sludge extraction pump, 10...Excess sludge extraction pipe,
11... Raw wastewater supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 処理槽に、機械的撹拌装置と散気装置並びに
吸込部の高さを異ならせ、夫々に弁を設けた複数
本の吸込パイプと、水位計とを設け、前記処理槽
内に於ける沈降分離工程後の上澄水の排出工程に
於いて、前記水位計で検知した水位に基づいて前
記弁を開閉操作して上澄水を排出するための吸込
パイプを選択することにより沈降分離工程後の処
理水全体に対して常時所定割合以上の処理水を残
留可能に構成したことを特徴とする回分式活性汚
泥処理装置。
1. A treatment tank is equipped with a mechanical agitation device, an aeration device, a plurality of suction pipes each having a valve at different heights, and a water level gauge, to prevent sedimentation in the treatment tank. In the process of discharging the supernatant water after the separation process, the valve is opened and closed based on the water level detected by the water level gauge to select a suction pipe for discharging the supernatant water, thereby controlling the process after the sedimentation separation process. A batch activated sludge treatment device characterized by being configured such that a predetermined proportion or more of treated water remains in the total water at all times.
JP58175733A 1983-09-22 1983-09-22 Batch activated sludge process equipment Granted JPS6068095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175733A JPS6068095A (en) 1983-09-22 1983-09-22 Batch activated sludge process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175733A JPS6068095A (en) 1983-09-22 1983-09-22 Batch activated sludge process equipment

Publications (2)

Publication Number Publication Date
JPS6068095A JPS6068095A (en) 1985-04-18
JPH0355197B2 true JPH0355197B2 (en) 1991-08-22

Family

ID=16001284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175733A Granted JPS6068095A (en) 1983-09-22 1983-09-22 Batch activated sludge process equipment

Country Status (1)

Country Link
JP (1) JPS6068095A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046470A1 (en) 2005-10-21 2007-04-26 Asahi Kasei Chemicals Corporation Highly crosslinkable low-viscosity polyisocyanate composition and coating composition containing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771674B2 (en) * 1987-04-22 1995-08-02 株式会社明電舎 Clear water discharge device for batch type waste water treatment equipment
CN104003591A (en) * 2014-06-24 2014-08-27 肖帅帅 Denitrification collaborative bio-doubling process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046470A1 (en) 2005-10-21 2007-04-26 Asahi Kasei Chemicals Corporation Highly crosslinkable low-viscosity polyisocyanate composition and coating composition containing same

Also Published As

Publication number Publication date
JPS6068095A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
JP2003126890A (en) Wastewater treatment apparatus and wastewater treatment method using the same
EP1720803B1 (en) Equipment for the biological activated sludge treatment of waste-water and procedure for its operation
EP1854766B1 (en) Method and device for handling wastewater
KR101471053B1 (en) Organic oxidation tank having a manure treatment device
GB2400369A (en) Apparatus for and method of treating sewage sludge
US5490934A (en) Method of biological denitrification
JPH0355197B2 (en)
US6884354B1 (en) System and process for the treatment of wastewater
CN201395543Y (en) Aeration and sedimentation type sewage treatment system
JPS6082191A (en) Method and device for treating sewage by microorganism
KR20050095571A (en) Continuous inflow and intermittent outflow type sequencing batch reactor and wastewater treatment method using the same
CN210012656U (en) Pulse type sludge transfer SBR sewage treatment device
AU639642B2 (en) Domestic waste water treatment and apparatus therefor
US8431025B2 (en) Method and apparatus for biologically processing fluid
JP3276904B2 (en) Wastewater treatment method
CN1123769A (en) Treatment for organic wastewater containing ammonia from oil refinery
KR0139656B1 (en) Method of waste water treatment by biological alternating reaction
CN1115304C (en) Continuous sewage treating process and system through intermittent aeration and by active sludge
Battistoni et al. The retrofitting of an extended aeration process to optimise biological nitrogen removal in liquid industrial wastes
JPS61287498A (en) Biological treatment of organic sewage
CN106608677A (en) Sewage treatment system and treatment process thereof
JP2002346585A (en) Wastewater treatment method
JPH1157766A (en) Waste water treatment
JPS635831Y2 (en)
JPH054094A (en) Batchwise activated sludge treating device for sewage