JPS6067768A - Pneumatic starter of diesel engine - Google Patents

Pneumatic starter of diesel engine

Info

Publication number
JPS6067768A
JPS6067768A JP17584083A JP17584083A JPS6067768A JP S6067768 A JPS6067768 A JP S6067768A JP 17584083 A JP17584083 A JP 17584083A JP 17584083 A JP17584083 A JP 17584083A JP S6067768 A JPS6067768 A JP S6067768A
Authority
JP
Japan
Prior art keywords
air
cylinder
passage
compressed air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17584083A
Other languages
Japanese (ja)
Inventor
Takeaki Nozaki
豪朗 野崎
Yoshiaki Moriya
森谷 芳明
Tadashi Yoshida
正 吉田
Michio Kasai
笠井 途男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP17584083A priority Critical patent/JPS6067768A/en
Publication of JPS6067768A publication Critical patent/JPS6067768A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N9/00Starting of engines by supplying auxiliary pressure fluid to their working chambers
    • F02N9/04Starting of engines by supplying auxiliary pressure fluid to their working chambers the pressure fluid being generated otherwise, e.g. by compressing air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To improve the startability of an engine by controlling the quantity of compressed air to be flown into a cylinder at an approximately constant rate regardless of variation in pressure of air discharged from an air supply source when a starting valve provided for each cylinder is opened to send compressed air into each cylinder at the expansion stroke so as to start the engine. CONSTITUTION:The entitled equipment controls the opening and closing timings of a starting valve 2 by sending compressed air, fed from an air source 3, into the control chamber of said valve 2 via a passage 6, a distributor 8 and a passage 10, and promotes the starting by sending said compressed air from a passage 5 to the inlet of the starting valve 2 and flowing the compressed air into a cylinder 1 when said valve 2 is opened. A passage resistor 23 is disposed in the passage 6. Inside this passage resistor 23, a two-stage piston 24 is engaged in the two-stage cylinder 25 and pushed higher as the pressure of air discharged by the air source 3, namely, the pressure P0 of air inside a large-diameter chamber 30 becomes higher. Resultantly, the number of the turns of the helical groove 31 with respect to the internal face of a small-diameter part 25a, that is, the resistance against the compressed air may be increased along with the lift of the piston 24.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は舶用の大型ディーゼル機関等に好適な空気始動
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air starter suitable for large-scale marine diesel engines and the like.

(従来例) 例えば舶用の大型ディーゼ/L’41!関においては、
大きな始動トルクを必要とするため、YL気式の始動機
で始動させる場合、そのバッテリー電源が大きくなり、
始動機の重量も増大する。そのため、従来から圧縮空気
により機関を始動させるのが通例となっている・ ここで従来のディーゼ/I/機関用空電始動装置の一例
を説明すると、第1図中、1はシリンダで、シリンダ1
は合計6側設けられ、各シリンダ1は始動弁2を備えて
いる。8は空気源(空気タンク等)で、空気源8の吐出
口には、元パルプ4を設けている。尤バpプ4の下流側
で、圧縮空気の供給通路(供給管路)は2股に分かれ、
そのうち一方の通路5は、6本に分岐して各始動弁2の
入口(後述)に連通している。又他方の通路6は、パル
プ7を介して直接分配弁8の入口に連通している。
(Conventional example) For example, a large diesel engine for ships/L'41! In Seki,
Since a large starting torque is required, when starting with a YL type starter, the battery power will be large,
The weight of the starter also increases. Therefore, it has conventionally been customary to start the engine using compressed air.Here, to explain an example of a conventional static electric starter for Diesel/I/engines, in Fig. 1, 1 is a cylinder; 1
A total of six sides are provided, and each cylinder 1 is equipped with a starting valve 2. Reference numeral 8 denotes an air source (such as an air tank), and the original pulp 4 is provided at the outlet of the air source 8. On the downstream side of the spring pump 4, the compressed air supply passage (supply pipe line) is divided into two branches,
One of the passages 5 branches into six passages and communicates with an inlet of each starting valve 2 (described later). The other passage 6 also communicates directly with the inlet of the distribution valve 8 via the pulp 7.

分配弁8は6つの出口を有し、各出口は通路10を介し
て各始動、1lF2の制御室(後述)に連通している。
The distribution valve 8 has six outlets, each outlet communicating via a passage 10 with a respective start-up, 11F2 control chamber (described below).

次に分配弁8(t!S2図)の内部構造を説明すると、
略円板状の回転子9は、カム軸11の端に固定され、そ
の周縁部に切欠き12(第8図)を備えている。回転子
9には、円弧状の溝13と、溝13より中心寄りに位置
する環状溝14が設けられ、両溝18.14は半径方向
の溝15を介して連通している。分配弁8の出口、即ち
各通路10の入口10aは、回転子90回転に伴って、
切欠き12と円弧状溝13の双方に連通自在となってい
る。環状溝14は、逃し通路16に連通している。
Next, the internal structure of the distribution valve 8 (t!S2 diagram) will be explained.
The substantially disc-shaped rotor 9 is fixed to the end of the camshaft 11, and has a notch 12 (FIG. 8) at its peripheral edge. The rotor 9 is provided with an arcuate groove 13 and an annular groove 14 located closer to the center than the groove 13, and both grooves 18,14 communicate with each other via a radial groove 15. As the rotor 90 rotates, the outlet of the distribution valve 8, that is, the inlet 10a of each passage 10,
It can freely communicate with both the notch 12 and the arcuate groove 13. The annular groove 14 communicates with a relief passage 16.

第4図中前述の各通路5は始動弁2の入口17(流入口
)に連通し、又各通路10は始動弁2の制御室18に連
通している。19は始動弁本体、20はスプリングであ
る。
In FIG. 4, each of the aforementioned passages 5 communicates with an inlet 17 (inflow port) of the starter valve 2, and each passage 10 communicates with a control chamber 18 of the starter valve 2. 19 is a starter valve body, and 20 is a spring.

第2図中通路6から分配弁8の分配室21に導入された
圧縮空気(制御空気)は、切欠き12を介して各通路1
0に、カム軸1101回転中に1回ずつ、しかも各通路
10に対応するシリンダ1の膨張行程時に供給される。
Compressed air (control air) introduced into the distribution chamber 21 of the distribution valve 8 from the passage 6 in FIG.
0, once during the rotation of the camshaft 1101, and during the expansion stroke of the cylinder 1 corresponding to each passage 10.

通路10(第4図)を介して圧縮空気の供給を受けた始
動弁2においては、制御室18内の空気圧(制御空気圧
)が上昇し、該空気圧がシリンダ1内の圧力(筒内圧力
)及びスプリング20の弾力(スプリング力)に打ち勝
ち、それにより弁本体19が図の下方へ移動して始動弁
2が開く。即ち、今制御室18の断面積をAよ、制御空
気圧をPl、弁本体19の断面積をA3、筒内圧力をP
2、スプリング力をFとすると、PIAl) P、A2
+ Fとなった時点で、始動弁2が開く(P、、P2は
単位断面積当りの圧力)。そしてこの始動弁2の弁開期
間中に、通路5から導かれた圧縮空気(始動空気)が入
口17を介してシリンダ1内に流入し、図示しないビヌ
トンを付勢してエンジンを始動させる。第8図中通路1
0の入口が、円弧状溝18に連通ずると、制、御室18
内の圧縮空気が、通路10及び溝18等を介して逃し通
路16に漏れ、制御空気圧P□が低下して始動弁2が閉
じる。
In the starting valve 2 that receives compressed air through the passage 10 (Fig. 4), the air pressure in the control chamber 18 (control air pressure) increases, and this air pressure increases the pressure in the cylinder 1 (in-cylinder pressure). This overcomes the elasticity (spring force) of the spring 20 and the valve body 19 moves downward in the figure, opening the starter valve 2. That is, now the cross-sectional area of the control chamber 18 is A, the control air pressure is Pl, the cross-sectional area of the valve body 19 is A3, and the cylinder pressure is P.
2. If the spring force is F, PIAl) P, A2
When the pressure reaches +F, the starting valve 2 opens (P, P2 is the pressure per unit cross-sectional area). During the opening period of the starter valve 2, compressed air (starting air) led from the passage 5 flows into the cylinder 1 through the inlet 17, energizes a binuton (not shown) and starts the engine. Passage 1 in Figure 8
0 communicates with the arcuate groove 18, the control chamber 18
The compressed air inside leaks to the relief passage 16 through the passage 10, the groove 18, etc., the control air pressure P□ decreases, and the starting valve 2 closes.

上述の始動弁弁開期間は、機関停止時、即ち、シリンダ
1への第1回目の圧縮空気注入時には、例えば第5図中
Bの如くになり、又、機関回転開始後の第2回目以降の
圧縮空気注入時には、例えば第5図中Cの如くになる。
The above-mentioned starting valve opening period is, for example, as shown in B in Fig. 5 when the engine is stopped, that is, when compressed air is injected into the cylinder 1 for the first time, and after the second time after the engine starts rotating. When compressed air is injected, the condition will be as shown in C in FIG. 5, for example.

第5図中TDCは圧縮上死点、BDCは膨張終りの下死
点である。なお第5図には、クランク角と、機関回転開
始直後の筒内圧力との関係を示している。
In FIG. 5, TDC is compression top dead center, and BDC is bottom dead center at the end of expansion. Note that FIG. 5 shows the relationship between the crank angle and the cylinder pressure immediately after the engine rotation starts.

次に上述した従来の装置における問題点を説明すると、
空気源8の吐出空気圧P0は、次第に変化(低下)する
が、従来は、空気源8の吐出圧P。が高い時に、第5図
中の開弁時期C1が図の左方に移動して弁開期間Cが長
くなり、しかも単位クランク角尚りのシリンダ1への圧
縮空気流入量が増して、1回の膨張行程当りの圧縮空気
流入量が全体として大幅に増加する欠点があった。それ
にょb、シリンダ1内での圧縮空気の断熱膨張が激しく
なル、シリンダ1が冷却されて圧縮温度が下がり、機関
の始動性が低下していた。
Next, to explain the problems with the conventional device mentioned above,
The discharge air pressure P0 of the air source 8 gradually changes (decreases), but conventionally, the discharge pressure P0 of the air source 8 is the same. When C1 is high, the valve opening timing C1 in FIG. There was a drawback that the amount of compressed air inflow per expansion stroke increased significantly as a whole. Moreover, the intense adiabatic expansion of the compressed air within the cylinder 1 cooled the cylinder 1, lowering the compression temperature and reducing the startability of the engine.

又近年燃料事情の悪化から、機関の低燃費化、高過給化
の要求が高まっているが、そのためには機関の圧縮比を
可及的に小さくする必要があり、それによって始動時の
シリンダ1内の圧縮温度を高くすることは、従来より更
に難しくなっている。
In addition, due to the deterioration of fuel conditions in recent years, there has been an increasing demand for lower engine fuel consumption and higher turbocharging. It has become more difficult to increase the compression temperature within the compressor 1 than in the past.

(発明の目的) 本発明は、空気始動式ディーゼル機関の始動性を向上さ
せることを目的としている。
(Object of the Invention) An object of the present invention is to improve the startability of an air-starting diesel engine.

(発明の構成) 第1発明によるディーゼル機関用空電始動装置は、空気
源の吐出空気圧が高い時にシリンダへの空気流入量が増
加するのを抑制し、空気源の吐出圧変化に拘らず1回の
膨張行程当りのシリンダへの空気流入量が略一定となる
ように構成したものである。又第2発明においては、第
1発明の構成に加えて、始動時に圧縮行程中にも始動弁
を開き、シリンダ内への圧縮空気を流入させるようにし
ている。
(Structure of the Invention) A pneumatic starter for a diesel engine according to the first invention suppresses an increase in the amount of air flowing into the cylinder when the discharge air pressure of the air source is high, and suppresses an increase in the amount of air flowing into the cylinder when the discharge air pressure of the air source is high. The structure is such that the amount of air flowing into the cylinder per expansion stroke is approximately constant. Further, in the second invention, in addition to the configuration of the first invention, the starting valve is opened during the compression stroke at the time of starting, so that compressed air flows into the cylinder.

(実施例) まず第1発明によるディーゼル機関用空気始動装置の第
1実施例を説明する。即ち、第1実施例においては、始
動装置を前述の従来例と略同様に構成しているが、パル
プ7(第1図)と分配弁8との間の通路6内に、新たに
通路抵抗器23を挿入している。
(Example) First, a first example of the air starting device for a diesel engine according to the first invention will be described. That is, in the first embodiment, the starter device is configured almost the same as the conventional example described above, but a new passage resistance is added in the passage 6 between the pulp 7 (FIG. 1) and the distribution valve 8. The container 23 is inserted.

次に第6図に基づいて、通路抵抗器28の内部構造を説
明する。即ち、第6図は通路抵抗器28の拡大した断面
を示して訃り、図中2段ピストン24は、2段シリンダ
25に摺動自在に嵌合している。ピストン24の小径部
24aとシリンダ25との間には、環状室26を設けて
いる。ピストン24内には、軸方向の孔27と、それに
直交する半径孔28を設け、孔27.28により、シリ
ンダ25内の大径室30と環状室26とを連通させてい
る。ピストン24の小径部外周には、比較的断面積の小
さい螺旋溝81を設け、螺旋溝81により、環状室26
とシリンダ26内の小径室82とを連通させている。ピ
ストン24の大径部24bとシリンダ25との間には、
スプリング88を縮設している。84はシリンダ25に
設けた通気孔である。
Next, the internal structure of the path resistor 28 will be explained based on FIG. That is, FIG. 6 shows an enlarged cross section of the passage resistor 28, and in the figure, the two-stage piston 24 is slidably fitted into the two-stage cylinder 25. An annular chamber 26 is provided between the small diameter portion 24a of the piston 24 and the cylinder 25. An axial hole 27 and a radial hole 28 perpendicular to the axial hole 27 are provided in the piston 24, and the large diameter chamber 30 in the cylinder 25 and the annular chamber 26 are communicated through the holes 27,28. A spiral groove 81 with a relatively small cross-sectional area is provided on the outer periphery of the small diameter portion of the piston 24, and the spiral groove 81 allows the annular chamber 26 to be closed.
and a small diameter chamber 82 within the cylinder 26 are communicated with each other. Between the large diameter portion 24b of the piston 24 and the cylinder 25,
The spring 88 is compressed. 84 is a ventilation hole provided in the cylinder 25.

螺旋溝B1の一部は、ピストン小径部25aの内周に対
向しており、空気源8から分配弁8へ供給される圧縮空
気は、この小径部内周と対向する螺旋溝81の部分を通
過する際に、その空気圧に応じた抵抗を受けるようにな
っている。即ちピストン24は、大径室30内の空気圧
P。、即ち空気源8の吐出圧が高くなるにつれて、第6
図の上方へ摺動する。それに伴って、小径部25aの内
周に対向する螺旋溝31の長さ、換言すれば小径部内周
に対向する螺旋溝3゛1の巻き数が増し、圧縮空気に対
する抵抗も増加する。又大径室8o内の空気圧P0が低
下すると、ピストン24は図の下方に摺動し、圧縮空気
に対する抵抗が低減する。
A portion of the spiral groove B1 faces the inner circumference of the piston small diameter portion 25a, and the compressed air supplied from the air source 8 to the distribution valve 8 passes through the portion of the spiral groove 81 that faces the inner circumference of the small diameter portion. When doing so, it is designed to receive resistance depending on the air pressure. That is, the piston 24 maintains the air pressure P in the large diameter chamber 30. , that is, as the discharge pressure of the air source 8 increases, the sixth
Slide upwards in the diagram. Accordingly, the length of the spiral groove 31 facing the inner periphery of the small diameter portion 25a, in other words, the number of turns of the spiral groove 3'1 facing the inner periphery of the small diameter portion increases, and the resistance to compressed air also increases. Furthermore, when the air pressure P0 in the large diameter chamber 8o decreases, the piston 24 slides downward in the figure, reducing the resistance to compressed air.

第7図には、前記空気源3の種々の吐出空気圧Poに対
して、分配弁8からの圧縮空気供給開始後に、制御空気
圧P□が時間の経過と共に次第に増加する様子を表して
おり、図中曲線′L□は吐出空気圧P07%最も低い場
合の制御空気圧P1と時間Tとの関係を、以下L2、L
3の順に吐出空気圧P0が高くなシ、L4は吐出空気圧
P。が最も高い場合の制御空気圧P1と時間Tとの関係
を表している。第7図から明らかなように、通路抵抗器
2Bの存在によシ、制御空気圧P□が一定@p□′に到
達するに要する時間T1は、空気源3の吐出空気圧P。
FIG. 7 shows how the control air pressure P□ gradually increases over time after the start of compressed air supply from the distribution valve 8 for various discharge air pressures Po of the air source 3. The middle curve 'L□ represents the relationship between the control air pressure P1 and time T when the discharge air pressure P07% is the lowest, as follows L2, L
The discharge air pressure P0 is higher in the order of No. 3, and L4 is the discharge air pressure P. The relationship between the control air pressure P1 and the time T is shown when P1 is the highest. As is clear from FIG. 7, due to the presence of the passage resistor 2B, the time T1 required for the control air pressure P□ to reach a constant @p□' is equal to the discharge air pressure P of the air source 3.

が高くなる程長くなる。The higher the value, the longer it will be.

この関係をグラフに表わせば、第8図の如くになる。If this relationship is expressed in a graph, it will be as shown in FIG.

第9図には、第1実施例による始動弁2の弁開期間C゛
と空気源3の吐出空気圧P。との関係を表しており、第
8図の関係から明らかなように、第1実施例においては
、吐出空気圧Poが高くなる程開弁時期C1°が遅くな
り、従って弁開期間C°は、吐出空気圧P。が高くなる
程短くなる。一方、単位クランク角当りのシリンダ1へ
の圧縮空気流入量は、前述の通り吐出空気圧P。が高く
なる程多くなるので、弁開期間C′全全体のシリンダ1
への圧縮空気す如く、吐出空気圧P。の変化に拘らず、
略一定となる。従ってシリンダ1内の圧縮温度も、第1
1図中に実線で示す如く、吐出空気圧P。の変化に拘ら
ず、略一定となる。なお第9図中C2“は閉弁時期、又
第10図、第11図中の破線は、従来例における吐出空
気圧P。と空気消費量及び圧縮温度との関係を表してい
る。
FIG. 9 shows the valve opening period C' of the starter valve 2 and the discharge air pressure P of the air source 3 according to the first embodiment. As is clear from the relationship shown in FIG. 8, in the first embodiment, the higher the discharge air pressure Po, the later the valve opening timing C1° becomes. Therefore, the valve opening period C° is Discharge air pressure P. The higher the value, the shorter it becomes. On the other hand, the amount of compressed air flowing into the cylinder 1 per unit crank angle is the discharge air pressure P as described above. The higher the value, the greater the number, so the valve opening period C' for the entire cylinder 1
As with the compressed air, the discharge air pressure P. Regardless of changes in
It remains approximately constant. Therefore, the compression temperature inside the cylinder 1 is also the same as the first one.
As shown by the solid line in Figure 1, the discharge air pressure P. It remains approximately constant regardless of changes in . Note that C2'' in FIG. 9 represents the valve closing timing, and the broken lines in FIGS. 10 and 11 represent the relationship between the discharge air pressure P, air consumption, and compression temperature in the conventional example.

次に第2実施例を説明する。第2実施例においては、前
述の通路抵抗器28に代えて、第12図の分配弁8“中
に抵抗部41を設けている。即ち、分配弁8°に設けた
切欠き12°の円周方向幅は、第3図の切欠き12の円
周方向幅よシ狭くなりておシ、その代わりに、切欠き1
2′に隣接して小径孔41(抵抗部・・・第18図参照
)とそれに連通ずる大径孔42とを設けている。第12
図中大径孔42と切欠き12との間隔l□は、通路1o
の入口1oaの直径より小さくなっており、又円弧状溝
18′と切欠き12゛との間隔l、は、入口10aの直
径と等しくなっている。
Next, a second embodiment will be explained. In the second embodiment, in place of the passage resistor 28 described above, a resistance portion 41 is provided in the distribution valve 8'' of FIG. The circumferential width is narrower than the circumferential width of the notch 12 in FIG.
A small diameter hole 41 (resistance section...see FIG. 18) and a large diameter hole 42 communicating with the small diameter hole 41 are provided adjacent to 2'. 12th
In the figure, the distance l□ between the large diameter hole 42 and the notch 12 is the passage 1o.
The distance l between the arcuate groove 18' and the notch 12' is equal to the diameter of the inlet 10a.

まず大径孔42(第18図)が通路10に連通し、分配
室21°内の圧縮空気は、小径孔41及び大径孔42を
介して通路10に供給される。なお分配室21′内の圧
縮空気は、小径孔41を通過する際に大きな抵抗を受け
る。回転子9′の回転に伴い、切欠き12′(第14図
)が引き続いて通路10に連通し、分配室21°内の圧
縮空気は、無抵抗の状態で通路10内に流入する。第1
2図中の間隔へは、前述のように設定しているので、大
径孔42による通路10への圧縮空気の供給と、切欠き
12′による圧縮空気の供給は絶え間なしに行われる。
First, the large-diameter hole 42 (FIG. 18) communicates with the passage 10, and compressed air within the distribution chamber 21° is supplied to the passage 10 through the small-diameter hole 41 and the large-diameter hole 42. Note that the compressed air in the distribution chamber 21' is subjected to large resistance when passing through the small diameter hole 41. As the rotor 9' rotates, the cutout 12' (FIG. 14) continues to communicate with the passage 10, and the compressed air in the distribution chamber 21° flows into the passage 10 without resistance. 1st
Since the spacing shown in FIG. 2 is set as described above, the supply of compressed air to the passage 10 through the large diameter hole 42 and the supply of compressed air through the notch 12' are continuously performed.

それにより第4図の制御空気圧P□がと昇し、始動弁2
が開いて通路5からシリンダ1内へ始動用の圧縮空気が
流入する。引き続き第15図中の円弧状溝18°が通路
10の入口に連通すると、通路10内の空気が溝18′
、15′、14゛を介して逃し通路16′に漏れ、制御
空気圧P1が低下して始動弁2が閉じる。
As a result, the control air pressure P□ in Fig. 4 rises, and the starting valve 2
is opened and compressed air for starting flows into the cylinder 1 from the passage 5. Subsequently, when the arcuate groove 18° in FIG.
, 15', and 14' into the relief passage 16', the control air pressure P1 decreases, and the starting valve 2 closes.

第16図には、第2実施例による制御空気の供給状態を
示しており、第2実施例では、膨張行程中の期間E内で
大径孔42による通路10への圧縮空気の供給が行われ
、期間G内で切欠き12゛による圧縮空気の供給が打わ
れる。雨期間ID、Gの境界点は、例えば圧縮上死点後
約25°の点である。
FIG. 16 shows the supply state of control air according to the second embodiment, and in the second embodiment, compressed air is supplied to the passage 10 through the large diameter hole 42 within the period E during the expansion stroke. Then, within period G, compressed air is supplied through the notch 12'. The boundary point of the rainy period ID, G is, for example, a point approximately 25° after compression top dead center.

参考のため、第1実施例の切欠き12(第8図)による
圧縮空気の供給期間を示すと、第16図中りの如くにな
る。なおH1工はそれぞれ吸気弁と排気弁の弁開期間を
示している。
For reference, the supply period of compressed air by the notch 12 (FIG. 8) of the first embodiment is shown in FIG. 16. Note that H1 indicates the opening period of the intake valve and exhaust valve, respectively.

第2実施例においては、小径孔41による抵抗が一定で
あるため、第10図、第11図中にそれぞれ2点鎖線で
示す如く、吐出空気圧P。が増すにりれて空気消費量は
幾分増加し、又圧縮温度は幾分低下するが、従来例(破
線)と比較すると、空気消費量の増加率と圧縮温度の低
下率の双方が、大幅に改善されている。
In the second embodiment, since the resistance due to the small diameter hole 41 is constant, the discharge air pressure P is as shown by the two-dot chain lines in FIGS. 10 and 11, respectively. The air consumption increases somewhat and the compression temperature decreases somewhat as the It has been greatly improved.

第17図に示す第8実施例においては、前述の逃し通路
(16’)の途中に絞り弁50を設け、絞シ弁50の開
度を無段階に変更できるようにしている。第8実施例に
おいては、絞り弁50の開度を増して通路10から逃し
通路16への圧縮空気の漏洩を促進することができ、−
それにより第4図中の始動弁2の閉弁時期を早めて始動
弁2の弁開期間を短くすることができる。弁開期間が短
くなると、通路5からシリンダ1内への圧縮空気の流入
量が減少し、それにより始動時のクランキング回転数(
クランク軸の回転数)を低下させることができる。なお
本発明者は、始動時のクランキング回転数がある程度小
さい方が、シリンダ1内の圧縮温度は却って高くなるこ
とを実験により確めている。実験によると、始動時のク
ランキング回転数が6 Or、1)、m、〜100 r
、p、m、程度の時に、圧縮温度は最も高くなる。なお
従来は、始動時のクランキング回転数を、通常100 
r、p、m、以とに設定している。
In the eighth embodiment shown in FIG. 17, a throttle valve 50 is provided in the middle of the above-mentioned relief passage (16'), so that the opening degree of the throttle valve 50 can be changed steplessly. In the eighth embodiment, the opening degree of the throttle valve 50 can be increased to promote leakage of compressed air from the passage 10 to the relief passage 16, and -
As a result, the closing timing of the starter valve 2 shown in FIG. 4 can be advanced and the opening period of the starter valve 2 can be shortened. When the valve opening period becomes shorter, the amount of compressed air flowing into the cylinder 1 from the passage 5 decreases, which reduces the cranking speed (
crankshaft rotation speed). The inventor of the present invention has confirmed through experiments that the compression temperature inside the cylinder 1 becomes higher when the cranking rotational speed at startup is lower to some extent. According to experiments, the cranking speed at startup is 6 Or, 1), m, ~100 r
, p, m, the compression temperature is the highest. Conventionally, the cranking speed at startup was usually set to 100.
It is set to r, p, m, and so on.

第18図には、第2発明の実施例を示しており、この実
施例では、分配弁を2個設けている。そして一方の分配
弁8からは、前述の通り各シリンダ1の膨張行程時に始
動弁2の制御室へ圧縮空気を供給し、又他方の分配弁4
8からは、各シリンダ1の圧縮行程時に始動弁2の制御
室・へ圧縮空気を供給するように構成している。即ち、
この実施例では、始動時の膨張行程時ばかりでなく、始
動時の圧縮行程時にも始動弁2を開き、通路5からシリ
ンダ1へ圧縮空気を流入させるようになっている。それ
によシ、始動時の圧縮行程中に圧縮を受ける空気量が増
し、圧縮温度は更に高くなる。
FIG. 18 shows an embodiment of the second invention, in which two distribution valves are provided. As mentioned above, one distribution valve 8 supplies compressed air to the control chamber of the starter valve 2 during the expansion stroke of each cylinder 1, and the other distribution valve 4
From 8 onwards, compressed air is supplied to the control chamber of the starting valve 2 during the compression stroke of each cylinder 1. That is,
In this embodiment, the starting valve 2 is opened not only during the expansion stroke at startup but also during the compression stroke at startup to allow compressed air to flow into the cylinder 1 from the passage 5. As a result, the amount of air compressed during the compression stroke at startup increases, and the compression temperature becomes even higher.

本発明を具体化するに当り、シリンダ1の個数等は自由
に変更できる。又始動弁2の開閉は、空気圧によらず、
電気式、油圧式等のアクチュエイタにより行うこともで
きる。その場合本、空気源3の吐出空気圧P。の変動に
応じて、始動弁2の弁開期間を変更しうろことは勿論で
ある。又第18図の実施例においては、分配弁の溝の数
等を変えることにより、分配弁を1個のみとすることも
できる。
In embodying the present invention, the number of cylinders 1, etc. can be changed freely. Also, the opening and closing of the starting valve 2 is not based on air pressure.
It can also be performed using an electric or hydraulic actuator. In that case, the discharge air pressure P of the air source 3. It goes without saying that the opening period of the starter valve 2 may be changed in response to fluctuations in the engine speed. In the embodiment shown in FIG. 18, the number of distribution valves can be reduced to one by changing the number of grooves in the distribution valve.

(発明の効果) 以上説明したように、第1発明によると、始動時のシリ
ンダ内の圧縮温度を高めて機関の始動性を向上させるこ
とができる。又第2発明によると、圧縮温度を更に高め
て、始動性を一層向上させることが可能である。
(Effects of the Invention) As described above, according to the first invention, the compression temperature in the cylinder at the time of starting can be increased to improve the startability of the engine. Further, according to the second invention, it is possible to further increase the compression temperature and further improve the startability.

【図面の簡単な説明】 第1図は空気始動装置のレイアウトを示す略図、第2図
、第8図はそれぞれ分配弁の断面略図と1簡略図、第4
図は始動弁の断面略図、第5図はクランク角と筒内圧力
との関係を表わすグラフ、第6図は通路抵抗器の断面略
図、第7図は制御空気圧の時間的変化の様子を示すグラ
フ、第8図〜第11図は吐出空気圧と種々の変数との関
係を表わすグラフ、第12図は第2実施例における分配
弁の正面略図、第13図〜第15図はそれぞれ第12図
のXjill−XI線〜XV−XV線に沿う断面略図、
第16図は第2実施例における弁の開閉時期を示すタイ
ムチャート、第17図は第8実施例の断面図、第18図
は第2発明のレイアウト図である。1・・・シリンダ、
2・・・始動弁、8・・−空気源特許出願人 ヤンマー
ディーゼル株式会社第9図 フランツ角 −一→− 第1θ図 、7 7/ 第1I図 シL#−ア丸壓Po−− 16′ 第18図
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure 1 is a schematic diagram showing the layout of the air starting device, Figures 2 and 8 are a schematic cross-sectional diagram of the distribution valve, Figure 1 is a simplified diagram, and Figure 4 is a simplified diagram of the distribution valve.
The figure is a schematic cross-sectional diagram of the starting valve, Figure 5 is a graph showing the relationship between crank angle and cylinder pressure, Figure 6 is a schematic cross-sectional diagram of the passage resistor, and Figure 7 is a diagram showing how the control air pressure changes over time. Graphs, Figures 8 to 11 are graphs showing the relationship between discharge air pressure and various variables, Figure 12 is a schematic front view of the distribution valve in the second embodiment, and Figures 13 to 15 are Figure 12, respectively. A schematic cross-sectional diagram along the Xjill-XI line to the XV-XV line,
FIG. 16 is a time chart showing the opening and closing timing of the valve in the second embodiment, FIG. 17 is a sectional view of the eighth embodiment, and FIG. 18 is a layout diagram of the second invention. 1... cylinder,
2...Starting valve, 8...-Air source Patent applicant Yanmar Diesel Co., Ltd. Figure 9 Franz angle -1→- Figure 1θ, 7 7/ Figure 1I SIL#-Amaru Po-- 16 ' Figure 18

Claims (2)

【特許請求の範囲】[Claims] (1) シリンダに設けた始動弁に空気源から始動用の
圧縮空気を導き、始動時の膨張行程中に始動弁を開いて
シリンダ内に圧縮空気を流入させるように構成したディ
ーゼル機関用空気始動装置において、空気源の吐出空気
圧が高い時にシリンダへの空気流入量が増加するのを抑
制し、空気源の吐出圧変化に拘らず1回の膨張行程当シ
のyjJンダヘの空気流入量が略一定となるようにした
ことを特徴とする空気始動装置。
(1) Air starter for a diesel engine configured to introduce compressed air for starting from an air source to a starting valve installed in the cylinder, open the starting valve during the expansion stroke during starting, and allow the compressed air to flow into the cylinder. In the device, the amount of air flowing into the cylinder is suppressed from increasing when the discharge air pressure of the air source is high, and the amount of air flowing into the cylinder during one expansion stroke is approximately An air starting device characterized by being made to be constant.
(2) シリンダに設けた始動弁に空気源から始動用の
圧縮空気を導き、始動時の膨張行程中に始動弁を開いて
シリンダ内に圧縮空気を流入させるように構成したディ
ーゼル機関用空気始動装置において、空気源の吐出空気
圧が高い時にシリンダへの空気流入量が増加するのを抑
制すると共に、始動時の圧縮行程中にも始動弁を開いて
シリンダ内へ圧縮空気を流入させるようにしたことを特
徴とする空気始動装置。
(2) Air starter for a diesel engine configured to introduce compressed air for starting from an air source to a starting valve provided in the cylinder, open the starting valve during the expansion stroke at starting, and allow the compressed air to flow into the cylinder. In the device, the amount of air flowing into the cylinder is suppressed from increasing when the discharge air pressure of the air source is high, and the starting valve is also opened during the compression stroke at startup to allow compressed air to flow into the cylinder. An air starting device characterized by:
JP17584083A 1983-09-22 1983-09-22 Pneumatic starter of diesel engine Pending JPS6067768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17584083A JPS6067768A (en) 1983-09-22 1983-09-22 Pneumatic starter of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17584083A JPS6067768A (en) 1983-09-22 1983-09-22 Pneumatic starter of diesel engine

Publications (1)

Publication Number Publication Date
JPS6067768A true JPS6067768A (en) 1985-04-18

Family

ID=16003130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17584083A Pending JPS6067768A (en) 1983-09-22 1983-09-22 Pneumatic starter of diesel engine

Country Status (1)

Country Link
JP (1) JPS6067768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644063A (en) * 2013-12-30 2014-03-19 淄博淄柴新能源有限公司 Air distribution device for starting large internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105640A (en) * 1977-02-25 1978-09-13 Yanmar Diesel Engine Co Air starting method of internal combustion engine
JPS53140434A (en) * 1977-05-12 1978-12-07 Kubota Ltd Starting-performance improving apparatus which utilizes a starting air distributing valve in an air starting system internal
JPS5542263A (en) * 1978-09-20 1980-03-25 Aluminum Co Of America Method of producing carbon goods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105640A (en) * 1977-02-25 1978-09-13 Yanmar Diesel Engine Co Air starting method of internal combustion engine
JPS53140434A (en) * 1977-05-12 1978-12-07 Kubota Ltd Starting-performance improving apparatus which utilizes a starting air distributing valve in an air starting system internal
JPS5542263A (en) * 1978-09-20 1980-03-25 Aluminum Co Of America Method of producing carbon goods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644063A (en) * 2013-12-30 2014-03-19 淄博淄柴新能源有限公司 Air distribution device for starting large internal combustion engine

Similar Documents

Publication Publication Date Title
JP4803059B2 (en) Cylinder head of internal combustion engine
JP3362162B2 (en) V-type engine with supercharger
EP1891314B1 (en) Starting system and method of internal combustion engine
US9879617B2 (en) Control apparatus of engine
JP2009013814A (en) Supercharger
US6945048B2 (en) Exhaust pressure restriction device with bypass passageway
US5178104A (en) Two cycle diesel engine
JP2003519314A (en) Internal combustion engine with valve control
JP2009013873A (en) Supercharger
JPS6067768A (en) Pneumatic starter of diesel engine
JPH0726994A (en) Intake device of engine provided with supercharger
JPH1089077A (en) Improving method for combustion characteristic in internal combustion engine and internal combustion engine
WO2017110189A1 (en) Engine control device
US4912930A (en) High performance exhaust system for internal combustion engine
JP2014214638A (en) Engine device with turbo supercharger
JPS6124668Y2 (en)
JP2823127B2 (en) Engine with turbocharger
CN106948950A (en) A kind of engine of variable compression ratio and ignition location
EP3015686B1 (en) Engine control device
JPH08170550A (en) Valve timing control device for internal combustion engine
KR100201608B1 (en) Apparatus for protecting turbo-rag
JPS58167841A (en) Compression ratio controller of engine
JPS59131714A (en) Valve operation switching apparatus for engine with turbocharger
JPH05187327A (en) Conbustion control device for engine
JPS61104116A (en) Intake device of engine