JPS6067760A - Electronic-hydraulically controlled fuel injector - Google Patents

Electronic-hydraulically controlled fuel injector

Info

Publication number
JPS6067760A
JPS6067760A JP17664583A JP17664583A JPS6067760A JP S6067760 A JPS6067760 A JP S6067760A JP 17664583 A JP17664583 A JP 17664583A JP 17664583 A JP17664583 A JP 17664583A JP S6067760 A JPS6067760 A JP S6067760A
Authority
JP
Japan
Prior art keywords
valve
oil
fuel
servo piston
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17664583A
Other languages
Japanese (ja)
Inventor
Atsushi Saito
篤 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP17664583A priority Critical patent/JPS6067760A/en
Publication of JPS6067760A publication Critical patent/JPS6067760A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To effect easy and accurate regulation of a small amount of fuel to be injected by constituting a fuel injector such that supply of working oil for a plunger operating servo piston is changed over by means of a changeover valve which is actuated by the operation a solenoid valve. CONSTITUTION:At the injection stroke, when a solenoid coil 11 is electrified near the top dead center point of a piston, a core 12 is forced upwards so that a spool valve 13 is pushed up by a distance L by a spring 20. The working oil in the valve casing 37 of a conical slide valve 18 acting as a changeover valve is thereby fed out of an outflow port 43 via an oil passage 45 or the like. The working oil runs out of an inflow port 35' to push up and open said valve 18 and then flows into a servo piston chamber 24. Fuel inside a plunger chamber 16 which is the upper section of the plunger 15 operated coincidently with a servo piston 14 is boosted up in pressure at a ratio equivalent to the doubled ratio of the sectional area of the servo piston 14 with respect to that of the plunger 15 and then carried into a nozzle oil reservoir 19. The fuel is then injected from a nozzle body 9.

Description

【発明の詳細な説明】 本発明は、ディーゼル機関用の電子油圧制御燃料噴射装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electro-hydraulic controlled fuel injection system for a diesel engine.

周知のように、ディーゼル機関の燃料噴射装置の機能は
、燃焼室内の高圧・高温となった空気内へ燃料を高圧・
噴霧状態で噴射することであり、一方、機関の発生する
トルクは、燃焼する燃料量によって決まるので、その燃
焼室内にljt則する燃料量を、正確に制御する機能が
必要である。さらに噴射の時間的条件として噴射時期、
噴射期間、噴射率および噴霧の状態などは、燃焼室形状
と結合し、混合気の形成、燃焼パターンを決定するため
、機関性能、排気状態、排気煙濃度に大きく影響する。
As is well known, the function of a diesel engine's fuel injection system is to inject fuel into the high-pressure, high-temperature air inside the combustion chamber.
On the other hand, since the torque generated by the engine is determined by the amount of fuel being combusted, it is necessary to have a function to accurately control the amount of fuel in the combustion chamber according to the ljt law. In addition, the injection timing,
The injection period, injection rate, spray condition, etc. are combined with the combustion chamber shape to determine the mixture formation and combustion pattern, and therefore greatly affect engine performance, exhaust conditions, and exhaust smoke concentration.

そのため、各種の外部条件に適合した細かい噴射量側、
御を行うため、電子技術を利用した燃料システムが各種
提案され、久しい。
Therefore, the fine injection amount side that matches various external conditions,
Various fuel systems using electronic technology have been proposed for a long time.

この電子噴射装置は、端的にいえば、燃料供給ポンプか
ら送られた燃料は、圧力管内で圧力調節弁によって、一
定に保たれ、コンピュータからの指令で噴射ノズル駆動
用のソレノイドバルブが作動シテコニカルスライドバル
ブを開き、噴射ノズルより燃料は噴射される。その噴射
量はアクティブコアが磁石に吸引されて上昇している時
間によって規制される。この電子噴射装置をディーゼル
機関用に適用した場合、電子制御から油圧制御に変換し
、油圧でもって従来と同様、噴射ノズルを制御する電子
油圧制御燃料噴射装置が提案されている。
Simply put, in this electronic injection device, the fuel sent from the fuel supply pump is kept constant by a pressure regulating valve in the pressure pipe, and the solenoid valve for driving the injection nozzle is actuated by a command from the computer. The slide valve is opened and fuel is injected from the injection nozzle. The injection amount is regulated by the time the active core is attracted by the magnet and raised. When this electronic injection device is applied to a diesel engine, an electro-hydraulic control fuel injection device has been proposed that converts electronic control to hydraulic control and controls the injection nozzle using hydraulic pressure in the same manner as in the past.

すなわち、ディーゼル機関用燃料噴射装置において、噴
射ノズルに設けられたノズル油溜室の圧力によりノズル
バルブが昇降するか、このノズル油溜室と連通ずるサー
ボピストン室へ作動油を、ソレノイドバルブによって駆
動されるコニカルスライドバルブを介して、導入し、こ
のサーボピストンを降下させて、前記ノズル油溜室の油
圧を加圧し、従来の機械式燃料噴射ポンプと同様、ノズ
ルバルブを押し上げ、高圧燃料を噴射する方策がとられ
ている。
In other words, in a diesel engine fuel injection system, a nozzle valve is raised and lowered by the pressure in a nozzle oil reservoir provided in the injection nozzle, or hydraulic oil is driven by a solenoid valve to a servo piston chamber that communicates with the nozzle oil reservoir. This servo piston is lowered to pressurize the oil pressure in the nozzle oil reservoir chamber, and similar to a conventional mechanical fuel injection pump, the nozzle valve is pushed up and high-pressure fuel is injected. Measures are being taken to do so.

例えば、本発明の近似例である特公昭54−35254
号公報でその1例が提案されている。
For example, Japanese Patent Publication No. 54-35254, which is an approximation of the present invention,
An example of this is proposed in the publication.

これによれば、サーボピストン室の流入口及び流出口を
スライドバルブ(スプール弁)で開閉し、更に該スプー
ル弁を作動する球形の可動弁をソレノイドバルブに採用
し、該ソレノイドバルブの流出口及び流入口の開閉によ
り前記スプール弁の端面に作用する油圧力を調整して作
動させるようにしている。そのため、ソレノイドバルブ
である可動弁の流出入口面積を大きくする場合には、そ
の運動部分の質量が大きくなるので、その運動部分の作
動を強力にするためにより強力なソレノイドが必要とな
り、またソレノイドバルブである可動弁の受圧面積が大
きくなるので、ソレノイドのアクティブコアを圧力バラ
ンスタイプにする必要がある、といった不具合を有して
いる。また、同公報によれば、サーボピストン及びプラ
ンジャからのスピルを油路によって排出するようにし、
該油路の途中にチェックバルブを介在させ、サーボピス
トンか背圧によって運動阻止されるのを回避しているが
、かかる場合、サーボピストンの背圧を生じる背圧側油
溜室と、プランジャのスピル用の油路とが合流されてい
る・ので、サーボピストンの該油溜室内の圧力は、プラ
ンジャの圧送り時のスピル圧ならびにノズルバルブの作
動の影響を受けることになる。
According to this, the inlet and outlet of the servo piston chamber are opened and closed by a slide valve (spool valve), and a spherical movable valve that operates the spool valve is adopted as a solenoid valve, and the outlet and outlet of the solenoid valve are The spool valve is operated by adjusting the hydraulic pressure acting on the end face of the spool valve by opening and closing the inlet. Therefore, when increasing the inlet/outlet area of a movable solenoid valve, the mass of the moving part increases, so a more powerful solenoid is required to make the moving part more powerful, and the solenoid valve Since the pressure receiving area of the movable valve increases, the active core of the solenoid must be of a pressure balance type. Additionally, according to the same publication, spills from the servo piston and plunger are discharged through an oil path,
A check valve is interposed in the middle of the oil passage to prevent the servo piston from being blocked by back pressure. Since the oil passage for the servo piston is merged with the oil passage, the pressure inside the oil reservoir chamber of the servo piston is affected by the spill pressure during pressure feeding of the plunger and the operation of the nozzle valve.

したがって、同公報に提案されているチェックバルブの
場合、前記のように燃料噴射装置はデリケートな制御を
必要とすることがらなお問題点を有している。
Therefore, the check valve proposed in the publication still has the problem that the fuel injection device requires delicate control as described above.

そこで本発明は、従来の電子油圧制御燃料噴射装置のこ
れらの問題を解消するために創作されたもので、以下、
本発明の構成を実施例にもとづいて詳細に説明する。第
1図は本発明の実施例の断面図で本実施例の装置II’
+l+線を縦方向にして機関に装着する。第2図は第1
図の実施例て■〜■断面を示す断面図を示す。1はソレ
ノイドボディ、2はスプールボディ、3はジヨイントボ
ディ、4はコニカルバルブボディ、5は取付ナツト、6
はプランジャボディ、7はノズルホルダボディ、8はノ
ズル取付ナツト、9はノズルボディで、本体は以上の部
材より構成されている。
Therefore, the present invention was created in order to solve these problems of the conventional electro-hydraulic control fuel injection device, and is as follows:
The configuration of the present invention will be explained in detail based on examples. FIG. 1 is a sectional view of an embodiment of the present invention, and is a sectional view of the apparatus II' of this embodiment.
Install it on the engine with the +l+ wire in the vertical direction. Figure 2 is the first
The embodiment shown in the figure is a sectional view showing cross sections ① to ②. 1 is the solenoid body, 2 is the spool body, 3 is the joint body, 4 is the conical valve body, 5 is the mounting nut, 6
1 is a plunger body, 7 is a nozzle holder body, 8 is a nozzle mounting nut, and 9 is a nozzle body, and the main body is composed of the above members.

本体内部には大路次のものが内蔵されている。The following items are built into the main body:

すなわち、11はコイルユニット、12はアクティブコ
ア、13はスプール弁、14はサーボピストン、15は
プランジャ、16はプランジャ室、17はフィードバル
ブ、18はコニカルスライドバルブ、19はノズル油溜
室、20はスプール弁13用のロアスプリング、21は
アッパスプリング、23はノズルスプリング、24はサ
ーボピストン室を示す。
That is, 11 is a coil unit, 12 is an active core, 13 is a spool valve, 14 is a servo piston, 15 is a plunger, 16 is a plunger chamber, 17 is a feed valve, 18 is a conical slide valve, 19 is a nozzle oil reservoir chamber, 20 21 is a lower spring for the spool valve 13, 21 is an upper spring, 23 is a nozzle spring, and 24 is a servo piston chamber.

油路については、燃料油流入口31よりフィートバルブ
17に連通ずる第1油路32、フィードバルブ17より
ノズル油溜室19に連Jmする第2油路33、プランジ
ャ15の漏油をυ)出する第3油路34、作動油流入口
35よりコニカルスライドバルブ18.へ連通ずる第4
油路35、作動油流入035′より半環状a46を経由
してスプール弁13に連通ずる第5油路36、スプール
弁】3よりコニカルスライドバルブ18のバルブ室37
に連通ずる第6浦路38、サーボピストン室24よりコ
ニカルスライドバルブ18の環状溝39を介在し、流出
側半回状溝40に連通する第7浦Ii+841、サーボ
ピストン14の背圧側油溜室42と作動油流出口43と
を連通ずる第8油路44、スプール弁13より作動油流
出口43に連通ずる第9浦路45が設けられている。な
お、47は冷却油または冷却水の流入口ならびに流出[
コであり、48は冷却油の循環路を示す。
Regarding the oil passages, the first oil passage 32 communicates from the fuel oil inlet 31 to the foot valve 17, the second oil passage 33 communicates from the feed valve 17 to the nozzle oil reservoir chamber 19, and the oil leakage from the plunger 15 is checked. From the third oil passage 34 and the hydraulic oil inlet 35, the conical slide valve 18. 4th line connected to
Oil passage 35, a fifth oil passage 36 communicating with the spool valve 13 via the semi-annular a46 from the hydraulic oil inflow 035', the valve chamber 37 of the conical slide valve 18 from the spool valve 3
The sixth hole passage 38 communicates with the servo piston chamber 24 through the annular groove 39 of the conical slide valve 18, and the seventh hole Ii+841 communicates with the outflow side semi-circular groove 40, and the back pressure side oil reservoir chamber of the servo piston 14. 42 and the hydraulic oil outlet 43, and a ninth oil passage 45 which communicates with the hydraulic oil outlet 43 from the spool valve 13 are provided. In addition, 47 is the inlet and outlet of cooling oil or cooling water [
48 indicates a cooling oil circulation path.

本実施例は、概略以上のように構成されているので、電
子制御システム(図示せず)では機関のフライホイルに
近接設置した回転位相角センサーからの信号ならびに時
期センナ−からの信号を演算し、本実施例の燃料噴射装
置のコイルユニット11の通電時期とその電流遮断時期
とを制御する。
Since this embodiment is roughly configured as described above, the electronic control system (not shown) calculates the signal from the rotational phase angle sensor installed close to the flywheel of the engine and the signal from the timing sensor. , controls the energization timing and current cutoff timing of the coil unit 11 of the fuel injection device of this embodiment.

一方、本燃料噴射装置は、作動油供給システム(図示せ
ず)から供給された作動油を用いて、燃料油供給システ
ム(図示せず)から供給された燃料を増圧して噴射ノズ
ルのノズルボディ9より噴射する。すなわち、燃料噴射
弁の作動は次のようにして行われる。
On the other hand, this fuel injection device uses hydraulic oil supplied from a hydraulic oil supply system (not shown) to increase the pressure of the fuel supplied from the fuel oil supply system (not shown) to the nozzle body of the injection nozzle. Inject from 9. That is, the operation of the fuel injection valve is performed as follows.

■噴射行程 機関のピストンの上死点近傍で、ソレノイドコイルユニ
ット11に通電すると、アクティブコア12が図中左方
に吸引され、スプール弁13がロアスプリング20の作
用でリフトL=Q、5wn押上げられる。その結果、コ
ニカルスライドバルブJ8のバルブ室37内の作動油は
、第6油路38ならびに第9油路45を経由して作動油
流出口43かう流出し、コニカルスライドバルブ18は
作動油流入口65からの作動油の油圧によりコニカルス
ライドバルブ18内のスプリンーグに抗して押上げられ
、該流入口65からサーボピストン室24へ流入する。
■ When the solenoid coil unit 11 is energized near the top dead center of the piston of the injection stroke engine, the active core 12 is attracted to the left in the figure, and the spool valve 13 is pushed by the lower spring 20 to lift L=Q, 5wn. It can be raised. As a result, the hydraulic oil in the valve chamber 37 of the conical slide valve J8 flows out through the hydraulic oil outlet 43 via the sixth oil passage 38 and the ninth oil passage 45, and the conical slide valve 18 flows out through the hydraulic oil inlet. The hydraulic oil from 65 is pushed up against the spring in the conical slide valve 18 and flows into the servo piston chamber 24 from the inlet port 65 .

したがって、サーボピストン14と連動スルフランジャ
15の上部のプランジャ室16内の燃料は、はぼサーボ
ピストン14とプランジャ15との横断面積比の倍率分
に増圧されて/ズル油溜室19に送られ、ノズルボディ
9より噴射される。
Therefore, the fuel in the plunger chamber 16 above the servo piston 14 and the interlocking sulfur flanger 15 is increased in pressure by an amount equal to the cross-sectional area ratio of the servo piston 14 and the plunger 15, and is sent to the sulfur oil reservoir chamber 19. and is injected from the nozzle body 9.

(2)燃料充填行程 ソレノイドコイルユニット11への通電を遮断スルト、
スプール弁16のアンパスブリング21の押下刃がロア
スプリング2oの押上刃より大きいので、アクティブコ
ア12とスプール弁13とが下方に押下げられる。その
ため、スプール弁16により第6油路68と第9油路4
5とは閉ざされ、その代り、第5油路36と第6油路6
8とは開かれるので、作動油は作動油流入口35より半
環状溝46を経 由し、コニカルスライドバルブ18のノくルブ室37に
流入する。したがって、コニカルス−ライトノくバルブ
18は作動油が作動油流入口35′と背圧とで均衡とな
り、弁に内蔵されたスプリングの作用で、サーボピスト
ン室24の流入口を閉ざす。同時に、サーボピストン室
24の作動油は第7油路41、コニカルスライドバルブ
14の外周の環状溝39、流出側半環状溝40、第8油
路44を経由して作動油流出口43より流出する。その
結果、サーボピストン室24とプランジャ室16の圧力
が下り、燃料油は燃料2dJ流人口31よりフィートノ
句レブ17を押し開き、プランジャ室16に流入し充填
する。
(2) Shut off electricity to the fuel filling stroke solenoid coil unit 11;
Since the push-down blade of the unpass ring 21 of the spool valve 16 is larger than the push-up blade of the lower spring 2o, the active core 12 and the spool valve 13 are pushed down. Therefore, the spool valve 16 allows the sixth oil passage 68 and the ninth oil passage 4 to
5 will be closed, and instead, the 5th oilway 36 and the 6th oilway 6 will be closed.
8 is opened, the hydraulic oil flows from the hydraulic oil inlet 35 through the semi-annular groove 46 and into the knob chamber 37 of the conical slide valve 18. Therefore, in the conical light valve 18, the hydraulic oil is balanced between the hydraulic oil inlet 35' and the back pressure, and the inlet of the servo piston chamber 24 is closed by the action of the spring built in the valve. At the same time, the hydraulic oil in the servo piston chamber 24 flows out from the hydraulic oil outlet 43 via the seventh oil passage 41, the annular groove 39 on the outer periphery of the conical slide valve 14, the outflow side semi-annular groove 40, and the eighth oil passage 44. do. As a result, the pressure in the servo piston chamber 24 and the plunger chamber 16 decreases, and the fuel oil pushes open the foot valve 17 from the fuel 2dJ flow rate 31, flows into the plunger chamber 16, and fills it.

なお、プランジャ室16の燃料充填量はソレノイドコイ
ルユニット11の通電時間の長さにより決まる。これを
詳しくいえば、噴射器変更はソレノイドコイルユニット
11の通電・遮断時間の長さを変えて行い、それにより
プランジャ15の充填行程長さく戻し行程長さ)が変化
する。また、機関の回転速度はソレノイドコイルユニッ
ト11への通電サイクルの時間間隔(または遮断サイク
ルの時間間隔)を変更することにより行い、例えば、時
間間隔が小の場合、機関回転速度は上昇する。
Note that the amount of fuel filled into the plunger chamber 16 is determined by the length of time for which the solenoid coil unit 11 is energized. More specifically, the injector is changed by changing the length of the energization/cutoff time of the solenoid coil unit 11, thereby changing the filling stroke length and return stroke length of the plunger 15. The rotational speed of the engine is controlled by changing the time interval of the energization cycle (or the time interval of the cutoff cycle) to the solenoid coil unit 11. For example, when the time interval is small, the engine rotational speed increases.

更に、燃料噴射時期の制御は回転位相角センサー(l!
!1.I示せず)の信号と、噴射時期センサー49の信
号と、各部の温度ならびに圧力の補償センサ〜(図示せ
ず)の信号等をマイクロコンピュータに入力し、ソレノ
イドコイルユニット11への通電時期を制御している。
Furthermore, the fuel injection timing is controlled by a rotational phase angle sensor (l!
! 1. A signal from the injection timing sensor 49 (not shown), a signal from a temperature and pressure compensation sensor (not shown) of each part, etc. are input to the microcomputer to control the timing of energizing the solenoid coil unit 11. are doing.

ここで本発明は、特に、第8浦路44の中間にチェック
バルブ50を介在させ、サーボピストン14の背圧側油
溜室42に、サーボピストン14の作動による油圧変動
以外の影響が加わらないようにしである。以下その理由
を説明する。
Here, in particular, the present invention interposes a check valve 50 in the middle of the eighth channel 44 to prevent the back pressure side oil reservoir chamber 42 of the servo piston 14 from being affected by anything other than oil pressure fluctuations caused by the operation of the servo piston 14. It's Nishide. The reason will be explained below.

プランジャ室16に燃・料油を充填する際、→ノ′−ボ
ビストン室24の流出面積である第7油路41の横断面
積は適切な面積に決めであるので、プランジャ15の後
退を抑え気味に作用する。またその後退速度はプランジ
ャ室16の充填圧力により決まり、その圧力はフィード
バルブ7のスプリング開弁圧ならびに弁座の最小流出面
積により適切に決めであるその充填圧力は通常約15〜
50kg/cm2 の燃料油圧力の範囲で、作−動部流
入口35′の圧力150〜450kg/Ciよりかなり
低く、むしろ作動油流出側脈圧に近い値となり、プラン
ジャ作動時のプランジャ15のサーボピストン14側荷
重が変動すれば、プランジャ室16の充填圧力は影響さ
れることになる。したがって、本燃料噴射装嘗の小噴射
量の調節が特に困難になる場合がある。
When filling the plunger chamber 16 with fuel oil, the cross-sectional area of the seventh oil passage 41, which is the outflow area of the →No'-Boviston chamber 24, is determined to be an appropriate area, so that the retreat of the plunger 15 is slightly suppressed. It acts on The retraction speed is determined by the filling pressure of the plunger chamber 16, which is appropriately determined by the spring opening pressure of the feed valve 7 and the minimum outflow area of the valve seat.
In the fuel oil pressure range of 50 kg/cm2, the pressure at the working part inlet 35' is considerably lower than the pressure of 150 to 450 kg/Ci, and is rather close to the hydraulic oil outlet side pulse pressure, and the servo of the plunger 15 when the plunger operates. If the load on the piston 14 changes, the filling pressure in the plunger chamber 16 will be affected. Therefore, it may be particularly difficult to adjust the small injection amount of the present fuel injection system.

ところが、本発明ではチェックバルブ50の存在により
、背圧側油溜室42は燃料充填行程の際には、その背圧
はほぼ負圧で一定となり、燃料圧送行程の際には、その
背圧はサーボピストン14と嵌合されたプランジャボデ
ィ6との間よりの漏油のみを圧送しほぼ一定圧とするこ
とができ、小噴射量といえども調節は容易にできる。
However, in the present invention, due to the existence of the check valve 50, the back pressure of the back pressure side oil reservoir chamber 42 is almost constant at a negative pressure during the fuel filling process, and the back pressure becomes constant during the fuel pressure feeding process. Only the oil leaking between the servo piston 14 and the fitted plunger body 6 can be pumped to a substantially constant pressure, and even a small injection amount can be easily adjusted.

以上要するに本発明は、ソレノイドバルブをパイロット
バルブとし、該ソレノイドバルブの作動でコニカルスラ
イドバルブからなる切換弁を作動し、該コニカルスライ
ドバルブによって、燃料油圧送用フランシャを連動する
サーボピストンへの作動油を切換する電子油圧制御燃料
噴射装置であって、該サーボピストンの背圧側油溜室と
その出口との途中にチェックバルブを設け、該背圧側油
溜室と該チェックバルブとは少くとも単独油路とした電
子油圧制御燃料噴射装置であるから、次の効果を奏する
。・ ■サーボピストンに大量の作動油を導入するため、切換
弁にて制御し、該切換弁を直接ソレノイドバルブで作動
すれば、切換え流量が大きくなると流体抵抗が増し磁力
だけでそのバルブを操作できなくなり、ソレノイドが大
形となるのて、ソレノイドバルブをパイロット弁として
用いて、小形のソレノイドバルブでもって大量の作動油
をサーボピストンに供給することができる。
In summary, the present invention uses a solenoid valve as a pilot valve, and the operation of the solenoid valve operates a switching valve consisting of a conical slide valve, and the conical slide valve supplies hydraulic oil to a servo piston that interlocks a fuel oil pressure delivery flancia. The electro-hydraulic control fuel injection device is configured to provide a check valve between the back pressure side oil reservoir chamber of the servo piston and its outlet, and the back pressure side oil reservoir chamber and the check valve are connected to at least a single oil source. Since it is an electro-hydraulic controlled fuel injection system, it has the following effects.・ ■In order to introduce a large amount of hydraulic oil into the servo piston, it is controlled by a switching valve, and if the switching valve is operated directly by a solenoid valve, the fluid resistance increases as the switching flow rate increases, making it impossible to operate the valve with just magnetic force. Since the solenoid is large in size, the solenoid valve can be used as a pilot valve to supply a large amount of hydraulic fluid to the servo piston with a small solenoid valve.

■その結果、大量の作動油をサーボピストンに導入する
ことによってサーボピストンの背圧側油溜室の容量が増
大し、そのため、該室内hIJ圧が変動さればプランジ
ャの運動に大なる影響を与える。
(2) As a result, by introducing a large amount of hydraulic oil into the servo piston, the capacity of the oil reservoir chamber on the back pressure side of the servo piston increases, and therefore, if the indoor hIJ pressure fluctuates, the movement of the plunger will be greatly affected.

しかしながら、本発明ではチェックバルブ及び単独通路
によって、背圧側油溜室の油圧を一定ならしめたので、
プランジャの運動を円滑化することかできる。殊に、本
電子油圧制御燃料噴射装置では、小噴射量の調節が容易
となる。
However, in the present invention, the oil pressure in the back pressure side oil reservoir chamber is made constant using a check valve and a separate passage.
It is possible to smooth the movement of the plunger. In particular, with this electro-hydraulic control fuel injection device, it is easy to adjust the small injection amount.

すなわち、第3図に示す通電時間−ストローク当りの噴
射量グラフにおいて、(イ)は従来例で、(ロ)は本発
明の実施例を示すが、(イ)においては小噴射路で非直
線部分Aがあって、調節が困難となる。
That is, in the graph of energization time vs. injection amount per stroke shown in Fig. 3, (a) shows the conventional example, and (b) shows the embodiment of the present invention, but in (a), the small injection path is non-linear. There is part A, which makes adjustment difficult.

■ソレノイドを小形にし、その作動を適確にして燃料噴
射装置のデリケートな機能の制御に対し、背圧側油溜室
の油圧一定とが相まって、信頼性の高い燃料噴射装置を
提供することができる。
■By making the solenoid smaller and operating it more accurately to control the delicate functions of the fuel injection device, combined with the constant oil pressure in the back pressure side oil reservoir chamber, we can provide a highly reliable fuel injection device. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の断面図、第2区は第1図の■
〜■断面図、第3図は本発明と従来例との比較グラフを
示す。 11・・・ソレノイドコイルユニット、12・・・アク
ティブコア、13・・・スプール弁、14・・・サーボ
ピストン、43・・・作動油流出口、44・・・第8油
路、50・・・チエックノくルブー
Figure 1 is a cross-sectional view of an embodiment of the present invention, and the second section is shown in Figure 1.
~■ Cross-sectional view, FIG. 3 shows a comparison graph between the present invention and the conventional example. DESCRIPTION OF SYMBOLS 11... Solenoid coil unit, 12... Active core, 13... Spool valve, 14... Servo piston, 43... Hydraulic oil outlet, 44... Eighth oil path, 50...・Cheek no ku rubuu

Claims (1)

【特許請求の範囲】[Claims] ソレノイドバルブをパイロットバルブとし、該ソレノイ
ドバルブの作動でコニカルスライドバルブからなる切換
弁を作動し、該コニカルスライドバルブによって、燃料
油圧送用プランジャを連動するサーボピストンへの作動
油を切換する電子油圧制御燃料噴射装置であって、該サ
ーボピストンの背圧側油溜室とその出口との途中にチェ
ックノくルブを設け、該油溜室と該チェックバルブとは
少くとも単独油路とした電子油圧制御燃料噴射装置。
Electro-hydraulic control in which a solenoid valve is used as a pilot valve, the operation of the solenoid valve operates a switching valve consisting of a conical slide valve, and the conical slide valve switches hydraulic oil to a servo piston that interlocks a plunger for sending fuel oil pressure. The fuel injection device is an electronic hydraulic control device in which a check knob valve is provided between the back pressure side oil reservoir chamber of the servo piston and its outlet, and the oil reservoir chamber and the check valve are at least independent oil passages. Fuel injection device.
JP17664583A 1983-09-24 1983-09-24 Electronic-hydraulically controlled fuel injector Pending JPS6067760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17664583A JPS6067760A (en) 1983-09-24 1983-09-24 Electronic-hydraulically controlled fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17664583A JPS6067760A (en) 1983-09-24 1983-09-24 Electronic-hydraulically controlled fuel injector

Publications (1)

Publication Number Publication Date
JPS6067760A true JPS6067760A (en) 1985-04-18

Family

ID=16017199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17664583A Pending JPS6067760A (en) 1983-09-24 1983-09-24 Electronic-hydraulically controlled fuel injector

Country Status (1)

Country Link
JP (1) JPS6067760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037699A1 (en) * 1995-05-26 1996-11-28 Caterpillar Inc. Direct-operated spool valve for a fuel injector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112418A (en) * 1978-01-25 1979-09-03 Bosch Gmbh Robert Pump nozzle for internal combustion engine
JPS5791334A (en) * 1980-11-29 1982-06-07 Yanmar Diesel Engine Co Ltd Fuel injector for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112418A (en) * 1978-01-25 1979-09-03 Bosch Gmbh Robert Pump nozzle for internal combustion engine
JPS5791334A (en) * 1980-11-29 1982-06-07 Yanmar Diesel Engine Co Ltd Fuel injector for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037699A1 (en) * 1995-05-26 1996-11-28 Caterpillar Inc. Direct-operated spool valve for a fuel injector

Similar Documents

Publication Publication Date Title
EP0187112B1 (en) Solenoid valve, particularly as bypass valve with fuel injector
US4702212A (en) Electromagnetically operable valve
JPS6363745B2 (en)
JP4418594B2 (en) Hydraulically actuated fuel injector with seating pin actuator
JP3732248B2 (en) Fuel injection device for internal combustion engine, especially diesel engine, and monitoring method thereof
JPS6050269A (en) Servo piston controlling device for plunger
US4317541A (en) Fuel injector-pump unit with hydraulic needle fuel injector
US5458103A (en) Fuel injection arrangement for internal combustion engines
JPH01500843A (en) Fuel injection system for diesel internal combustion engines
US6408829B1 (en) Fuel pressure delay cylinder
JPS6067760A (en) Electronic-hydraulically controlled fuel injector
JPH0230914A (en) Valve device for lubricating oil
KR100241037B1 (en) Electronic control type high pressure fuel injector for diesel engine
JPS6358247B2 (en)
JP2007024016A (en) Fuel injection valve
JPH11229999A (en) Amount adjusting mechanism for high pressure fuel pump
JPS6179857A (en) Fuel injection device for internal-combustion engine
JPS5941658A (en) Fuel injection unit
JPH02275058A (en) Fuel injection system
JPH0138168B2 (en)
JPH0428902B2 (en)
JPS6314187B2 (en)
JPS5968559A (en) Fuel injection device of diesel engine
JPS6143228A (en) Electrohydraulic control device of internal-combustion engine
JPS59176412A (en) Electronic oil pressure controller of internal- combustion engine