JPS5941658A - Fuel injection unit - Google Patents

Fuel injection unit

Info

Publication number
JPS5941658A
JPS5941658A JP15243482A JP15243482A JPS5941658A JP S5941658 A JPS5941658 A JP S5941658A JP 15243482 A JP15243482 A JP 15243482A JP 15243482 A JP15243482 A JP 15243482A JP S5941658 A JPS5941658 A JP S5941658A
Authority
JP
Japan
Prior art keywords
chamber
servo piston
fuel
switching valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15243482A
Other languages
Japanese (ja)
Other versions
JPS6314186B2 (en
Inventor
Atsushi Saito
篤 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP15243482A priority Critical patent/JPS5941658A/en
Publication of JPS5941658A publication Critical patent/JPS5941658A/en
Publication of JPS6314186B2 publication Critical patent/JPS6314186B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To eliminate the problem of malfunction in fuel injection due to low- grade fuel by installing a working oil supplying system, which operates a servo piston for an injector plunger, separately from a fuel feeding system. CONSTITUTION:An injector, in which a spool valve 26 is inserted into a spool valve chamber 23 within an injector body 13, lowers the spool valve 26 via a core 28 when a solenoid coil 8 is magnetized. A changeover valve 41, which is inserted into a changeover valve chamber 19 that is connected to the valve chamber 23 via an oil passage 17', is energized downward by a spring 42. Working oil, which is supplied from a working oil supply system via an oil passage 12 and a flow inlet 14 by opening the changeover valve 41, is introduced into a servo piston chamber 46 to lower a servo piston 50. With this contrivance, fuel, which has been supplied from a fuel feeding system to a fuel passage 54 via a fuel passage 12a and a flow inlet 14a, is pressurized to push up a needle 36, thereby being injected from a nozzle 55.

Description

【発明の詳細な説明】 本発明Vi電子油圧制御方式に適した内燃機関用燃料噴
射装置に関するもので、燃料油に低重質油を使用した場
合の、パイロットバルブならびにメインバルブの作動障
害、即ち高粘度による作動抵抗大、摩耗増大、固着、燃
料加熱によるソレノイド部昇温に起因する作動特性の劣
化等の防止を目的としている。ソレノイドへの荷重を少
なくして昇温によるソレノイド特性の変化を少なくシ、
又サーボピストンの応答性を速くすることも本発明の目
的の一部である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection device for an internal combustion engine suitable for the electro-hydraulic control system. The purpose is to prevent deterioration of operating characteristics due to high operating resistance due to high viscosity, increased wear, sticking, and temperature rise of the solenoid due to fuel heating. Reduces the load on the solenoid and reduces changes in solenoid characteristics due to temperature rise.
It is also part of the purpose of the present invention to increase the responsiveness of the servo piston.

従来、電子油圧制御燃料噴射装置としてインジェクター
内にパイロットバルブ、メインバルブ等の切換弁機構と
、プランジャ作動用サーボ機構とを有する構造において
、作動油供給システムと燃料油供給システムとをそれぞ
れ別個に設けた構造はない、ところが燃料油に低重質油
を使用した場合、高粘度ならびに燃料油中への燃料噴射
装置の異常摩耗成分(スラッジ等)の混入等があり、ソ
レノイドのパイロットバルブ、メインバルブ、サーボ機
構の作動障害(応答性不良、異常摩耗、固着等)や、粘
度低減を回避するだめの加熱によるソレノイドの作用力
や作用速度の低下が問題になる。
Conventionally, an electro-hydraulic control fuel injection device has a structure in which an injector has a switching valve mechanism such as a pilot valve and a main valve, and a servo mechanism for operating a plunger, and a hydraulic oil supply system and a fuel oil supply system are provided separately. However, when low-heavy oil is used as fuel oil, it has a high viscosity and abnormal wear components (sludge, etc.) of the fuel injection device are mixed into the fuel oil, and the solenoid pilot valve and main valve Problems include operational failure of the servo mechanism (poor response, abnormal wear, sticking, etc.) and a decrease in the operating force and operating speed of the solenoid due to heating of the reservoir to avoid viscosity reduction.

本発明は電子油圧制御燃料噴射装置において、作動油供
給システムと燃料油供給システムとをそれぞれ別個に設
けることによシ、上記従来の問題を回避しようとするも
ので、次に図面だより説明する。
The present invention aims to avoid the above-mentioned conventional problems by separately providing a hydraulic oil supply system and a fuel oil supply system in an electro-hydraulic control fuel injection device. .

ソレノイドへの電流通電時(燃料噴射行程)を示す第1
図において1はエンジン%Slは電気制御システム、”
lは作動油供給システム、S 、l aは燃料油供給シ
ステム、S3はインジエクグーシステムテする。眠気制
御システム54内において、エンジン 1のフライホイ
ール2には回転位相角センサー6が対向し、センサー6
は信−号賂4を介してマイクトノコンピュータ5 IC
接続し、マイクロコンピユータ5の各気筒に対応した出
力端子6は信号路7をへティンジェッターシステム53
円のコイ/l’8(71/メイド)K接続している。
The first line indicates when current is applied to the solenoid (fuel injection stroke).
In the figure, 1 is the engine %Sl is the electric control system,
1 is a hydraulic oil supply system, S and 1a are a fuel oil supply system, and S3 is an engine oil supply system. In the drowsiness control system 54, a rotational phase angle sensor 6 faces the flywheel 2 of the engine 1;
is the signal to the computer 5 IC via the signal wire 4
The output terminals 6 corresponding to each cylinder of the microcomputer 5 connect the signal path 7 to the jetter system 53.
Circle carp/l'8 (71/maid) K connected.

作動油供給システムS2内にはエンジン1で駆動される
供給ポンプ9があり、ポンプ9の吸込口はフィルター1
0をへて作動油タンク’I 1 vc接1読し、ポンプ
9の吐出口は油路12をへてインジェクターボディ16
の作動油流入口14(油圧源)に接続している。ポンプ
9に並列に圧力調整弁15が配置され、これにより油路
12内の油圧が一定111LK保持される。又油路12
にはアキュムレータ15が接続されるか又は油路12の
一部がアキュムレータ機能を発揮する集合管を形成して
いる。
There is a supply pump 9 driven by the engine 1 in the hydraulic oil supply system S2, and the suction port of the pump 9 is connected to the filter 1.
The discharge port of the pump 9 passes through the oil passage 12 to the injector body 16.
It is connected to the hydraulic oil inlet 14 (hydraulic power source). A pressure regulating valve 15 is arranged in parallel with the pump 9, so that the oil pressure in the oil passage 12 is maintained at a constant level of 111LK. Also oil road 12
An accumulator 15 is connected to the oil passage 12, or a part of the oil passage 12 forms a collecting pipe that functions as an accumulator.

燃料油供給システムS、a内にはエンジン1で駆動され
る燃料供給ポンプ9aがあシ、ポンプ9aの吸込口はフ
ィルター108を経て燃料タンク11aVc接続し、ポ
ンプ9aの吐出口は油路12aを経てインジェクターボ
ディ16の燃料流入口14aに接続している。ポンプ9
aに並列に圧力調整弁15aが配置され、これにより燃
料油路12aの燃料油圧が一定値に保持される。又燃料
油路12a Vcはアキュムレータ15aが接続される
か又は油路12aの一部がアキュムレータ機能を発揮す
る集合管を形成している。
There is a fuel supply pump 9a driven by the engine 1 in the fuel oil supply system S, a, the suction port of the pump 9a is connected to the fuel tank 11aVc via the filter 108, and the discharge port of the pump 9a is connected to the oil path 12a. It is connected to the fuel inlet 14a of the injector body 16 through the injector body 16. pump 9
A pressure regulating valve 15a is arranged in parallel with the fuel oil passage 12a, thereby maintaining the fuel oil pressure in the fuel oil passage 12a at a constant value. Further, the fuel oil passage 12a Vc is connected to an accumulator 15a, or a part of the oil passage 12a forms a collecting pipe that functions as an accumulator.

インジェクターボディ16内において、作動油流入口1
4には第1油路17(一部を17′とする)と切換弁室
19が共に下向きに開口しており、又切換弁室19と同
窓の円錐弁座20と第6浦路21が共に上向きに開口し
ている。第1油路17.17′はスプール弁室26を介
して切換弁室19の上端に接続し、流入口14と連通し
ない位置の第2油路18(一部を18′とする)は、サ
ーボピストン室46を切換弁室19と流出口24をへて
排出油路25に接続している。第2油路18.18′は
切換弁41の外周溝48により開閉される。
Inside the injector body 16, the hydraulic oil inlet 1
4 has a first oil passage 17 (part of which is designated as 17') and a switching valve chamber 19 that both open downward, and a conical valve seat 20 and a sixth oil passage 21 that share the same window as the switching valve chamber 19. Both have upward openings. The first oil passage 17, 17' is connected to the upper end of the switching valve chamber 19 via the spool valve chamber 26, and the second oil passage 18 (partly designated as 18') at a position that does not communicate with the inlet 14 is, The servo piston chamber 46 is connected to the discharge oil passage 25 via the switching valve chamber 19 and the outlet 24. The second oil passage 18, 18' is opened and closed by the outer circumferential groove 48 of the switching valve 41.

スプール弁室26にはスプール弁26が昇降自在に嵌合
し、スプール弁室26の底面とスプール弁z6の間に縮
設したソレノイドスプリング27によシ上方へ付勢され
、ソレノイドコイIv8Vc囲捷れたアクティブコア2
8に当j妾してコア28をソレノイドパルブスブリング
290弾力に抗して上端部1はに保持していゐ、スプー
ル弁26の中向尚さ部分[設けた外周溝60は第11路
17′を流出口61に接、睨している。又スプール弁2
6の下方のばね室62は/i11路66全66てスプー
ル弁室26の上端部に接続し、史てボディ16内の孔6
4とコア室65と、コア28内の孔66をへてコア室6
5の上端部に連通している。スプリング29けストッパ
ーを兼ねるアジャストボルト67の上端部外周に嵌めて
あり、アジャストボルト67はボディ16の上端部に螺
合し、ナツト68によりロックされている。アジャスト
ボルト67の中央の孔69はコア室65の上端部を排出
油路25に接続している。
A spool valve 26 is fitted into the spool valve chamber 26 so as to be able to rise and fall freely, and is biased upward by a solenoid spring 27 contracted between the bottom surface of the spool valve chamber 26 and the spool valve z6, and the solenoid coil Iv8Vc surrounding active core 2
8, the core 28 is held in the upper end part 1 against the elasticity of the solenoid valve spring 290, and the inner slanted part of the spool valve 26 [the provided outer circumferential groove 60 is the 11th passage 17 ' is in contact with the outlet 61 and is staring at it. Also spool valve 2
The lower spring chamber 62 of the spool valve chamber 26 is connected to the upper end of the spool valve chamber 26 through the /i11 passage 66 and is connected to the upper end of the spool valve chamber 26 and
4, the core chamber 65, and the core chamber 6 through the hole 66 in the core 28.
It communicates with the upper end of 5. The spring 29 is fitted onto the outer periphery of the upper end of an adjustment bolt 67 which also serves as a stopper, and the adjustment bolt 67 is screwed into the upper end of the body 16 and locked by a nut 68. A hole 69 in the center of the adjustment bolt 67 connects the upper end of the core chamber 65 to the discharge oil passage 25.

切換弁室19内には上開きカップ状の差動型切換弁41
が摺動自在に嵌合し、切換弁室19の上端面と切換弁4
1の間に縮設したスプリング42により下方へ付勢され
ている。切換弁41は下半部の外径が圧力肩部46を境
に減少し、更にF端近傍の円錐形フェース部44で下方
にゆくにつれて縮径し、その下方に小径の絞り部45が
形成されている。フェース部44は円錐弁座2QVcM
座する部分であり、絞り部45は弁座20とサーボピス
トン室46をつなぐ孔47Vc僅かな隙間をへたて\嵌
合する部分である。切換弁41の外周溝48は第1図の
状態(後述する第2切換位置)において第2浦路18.
18′を遮断している。
Inside the switching valve chamber 19 is a cup-shaped differential switching valve 41 that opens upward.
are slidably fitted, and the upper end surface of the switching valve chamber 19 and the switching valve 4
1 is biased downward by a spring 42 compressed between the two. The outer diameter of the lower half of the switching valve 41 decreases at the pressure shoulder section 46, and further decreases in diameter as it goes downward at the conical face section 44 near the F end, and a small-diameter throttle section 45 is formed below the conical face section 44. has been done. The face part 44 is a conical valve seat 2QVcM
This is the part where the valve seat 20 and the servo piston chamber 46 are seated, and the throttle part 45 is a part that fits into the hole 47Vc connecting the valve seat 20 and the servo piston chamber 46 with a slight gap left. The outer circumferential groove 48 of the switching valve 41 is in the second groove 18 in the state shown in FIG. 1 (second switching position to be described later).
18' is blocked.

サーボピストン室46内のサーボピストン50には、プ
ランジャ室51内のプランジャ52が接続(当接又は固
着)されている、サーボピストン室46の下端部は流出
口56(il−へて排出油路25aに接続する。
A plunger 52 in a plunger chamber 51 is connected (abutted or fixed) to a servo piston 50 in a servo piston chamber 46. The lower end of the servo piston chamber 46 is connected to an outlet 56 (il- to a discharge oil passage). Connect to 25a.

プランジャ室51の下端は燃料油路54をへてノズル5
5のノズル曲溜室56に接続し、又プランジャ室51と
並列のサプライバルブ室57の下端にも接続している。
The lower end of the plunger chamber 51 passes through the fuel oil passage 54 and is connected to the nozzle 5.
5, and also connected to the lower end of a supply valve chamber 57 parallel to the plunger chamber 51.

バルブ室57は上端が第4浦路22を介して燃料流入口
14aに接続し、室57内には上端に円錐形フェース部
58を有する下開きカップ状のサプライバルブ59が(
f5.合し圧縮スプリング60により」二方へ付勢され
、フェース部58が第4油路22の下端の弁座に着座し
て第4浦路22を閉塞している。室57の上端部はサプ
ライバルブ59内の孔61を介して¥57の下端部に連
通している。
The upper end of the valve chamber 57 is connected to the fuel inlet 14a via the fourth channel 22, and a downwardly opening cup-shaped supply valve 59 having a conical face portion 58 at the upper end is installed in the chamber 57 (
f5. The face portion 58 is biased in both directions by the compression spring 60, and the face portion 58 is seated on the valve seat at the lower end of the fourth oil passage 22, thereby closing the fourth oil passage 22. The upper end of the chamber 57 communicates with the lower end of the chamber 57 via a hole 61 in the supply valve 59.

ノズ/L155内のニードル弁66の上端部はばね室6
4内に突出し、ばね室64内の圧縮スプリング65によ
り下方へ付勢されている。ばね室64は第6/111路
21に接続り、”cイル。
The upper end of the needle valve 66 in the nozzle/L155 is the spring chamber 6
4 and is biased downward by a compression spring 65 within a spring chamber 64. The spring chamber 64 is connected to the 6th/111th passage 21 and is connected to the 6th/111th passage 21.

次に作動を説明する。第1図はソレノイドコイ付径 /L/ 8への電流通電時(燃料噴射養蛙)を示してお
り、エンジン10回転中Vcgける所定タイミングにマ
イクロコンピュータ5の出力端子6から信号路7をへて
コイ/L/ 8に信号が送られ、コイル8に所定時間通
電される。コイル8に対する通電時間により噴射量が次
のように定まる。即ちエンジン1の運転中には作動油供
給システムS2の作動により、作動油流入口14に常時
所定圧の作動油が供給されており、その状態においてコ
イ/I/8に通電され、アクティブコア28がスプリン
グ29(0弾力に抗して矢印方向に第1図の上死点位置
迄上昇すると、スプール弁26もソレノイドスプリング
27の弾力によりアクティブコア28に追従して上昇し
、これによりスプール弁26は第1油路17を第1図の
如く遮断すると共に。
Next, the operation will be explained. Figure 1 shows when current is applied to the solenoid with diameter /L/8 (fuel injection feeding), and the signal path 7 is connected from the output terminal 6 of the microcomputer 5 to the signal path 7 at a predetermined timing when Vcg is applied during 10 revolutions of the engine. A signal is sent to the coil/L/8, and the coil 8 is energized for a predetermined time. The injection amount is determined by the energization time to the coil 8 as follows. That is, while the engine 1 is operating, hydraulic oil at a predetermined pressure is constantly supplied to the hydraulic oil inlet 14 by the operation of the hydraulic oil supply system S2, and in this state, the coil/I/8 is energized and the active core 28 When the spool valve 26 rises to the top dead center position in FIG. 1 against the zero elasticity of the spring 29, the spool valve 26 also rises following the active core 28 due to the elasticity of the solenoid spring 27. At the same time as blocking the first oil passage 17 as shown in FIG.

第1油路17′を外周溝60を介して流出口61に接続
する。これにより切換弁室19内の油圧は消滅するため
差動型切換弁41が流入口14内の油圧によりスプリン
グ42の弾力に抗して上昇し、切換弁41が第2油路1
8.18′を遮断すると同時に円錐弁座20を開放する
(第2切換位@)、これにより流入口14内の作動油は
孔47をへてサーボピストン室46へ流入し、サーボピ
ストン50を介してプランジャ52を押し下げる。プラ
ンジャ室51内の燃料油は油路54をへてノズル油溜室
56に供給され、ニードル弁66をスプリング65の弾
力に抗して押し上げ、ノズル55から噴出する。その間
サプライバルブ59はスプリング600弾力及び燃料油
の圧力により第4油路22を閉塞状態に保つ。
The first oil passage 17' is connected to the outlet 61 via the outer circumferential groove 60. As a result, the hydraulic pressure in the switching valve chamber 19 disappears, and the differential switching valve 41 rises against the elasticity of the spring 42 due to the hydraulic pressure in the inlet port 14.
8. At the same time as 18' is shut off, the conical valve seat 20 is opened (second switching position @). As a result, the hydraulic oil in the inlet 14 flows into the servo piston chamber 46 through the hole 47, and the servo piston 50 is activated. The plunger 52 is pushed down through the opening. The fuel oil in the plunger chamber 51 is supplied to the nozzle oil reservoir chamber 56 through the oil passage 54, pushes up the needle valve 66 against the elasticity of the spring 65, and is ejected from the nozzle 55. During this time, the supply valve 59 keeps the fourth oil passage 22 closed due to the elasticity of the spring 600 and the pressure of the fuel oil.

所定の通電時間が経過するとコイ/l/8による上方へ
の吸引力が消え、アクティブコア28Viスプリング2
9の弾力てより第2図のように下降し、スプーV弁26
もアクティブコア28に押されて下降する(第1切換位
置)、そうすると第1油路17.17′は外周溝60を
介して連通し、切換弁室19には流入口14内の加圧作
動油が供給され、切換弁41に作用する作動油圧が相殺
され、スプリング42の弾力により切換弁41は下降し
てフェース部44が弁座2oに着座し、同時に第2浦路
18.18′は外周溝48を介して連通し、従ってサー
ボピストン室46内の加圧は消滅する。このため第4油
路22内の燃料油圧によりサプライバルブ59がスプリ
ング600弾力に抗して下降し、プランジャ室51内へ
燃料流入口14a内の加圧燃料油が充填される。このよ
うに第2図はソレノイドコイル8への電流遮断時(燃料
充」ガ行程)を示している。
After the predetermined energization time has elapsed, the upward suction force by the carp/l/8 disappears, and the active core 28Vi spring 2
The elastic lever 9 lowers the spout V valve 26 as shown in Figure 2.
is pushed down by the active core 28 (first switching position), and then the first oil passage 17, 17' communicates via the outer circumferential groove 60, and the switching valve chamber 19 receives pressurized pressure inside the inlet 14. Oil is supplied, the hydraulic pressure acting on the switching valve 41 is canceled out, the switching valve 41 is lowered by the elasticity of the spring 42, and the face portion 44 is seated on the valve seat 2o, and at the same time, the second valve 18, 18' is Communication occurs via the outer circumferential groove 48, and therefore the pressurization within the servo piston chamber 46 disappears. Therefore, the supply valve 59 is lowered by the fuel oil pressure in the fourth oil passage 22 against the elasticity of the spring 600, and the pressurized fuel oil in the fuel inlet 14a is filled into the plunger chamber 51. As described above, FIG. 2 shows the time when the current to the solenoid coil 8 is cut off (fuel charging stroke).

以F説明したように本発明においては、インジェクター
のプランジャ52作動用サーボピストン50と、サーボ
ピストン5oの嵌合したサーボピストン室46を作動面
油圧源(作動油流入口14)と作動油流出口24に択一
的に接続する切換弁機構(差動型切換弁41と、切換弁
室19を作動面油圧源と作動油流出ロ例択−的に接続す
るパイロット用スプー〜弁26)と、切換弁機構に連結
されたソレノイドアクティブコア28と、プランジャ室
51への燃料油供給機構(燃料油供給システムS、Ja
 )とを備え、ソレノイドへの電流通電と電流遮断によ
りサーボピストン50を作動油により動作させるように
構成してあり1次のような効果を期待することができる
As explained hereafter, in the present invention, the servo piston 50 for actuating the plunger 52 of the injector and the servo piston chamber 46 into which the servo piston 5o is fitted are connected to the hydraulic pressure source (hydraulic oil inlet 14) and the hydraulic oil outlet. 24 (a differential type switching valve 41 and a pilot spout to valve 26 that selectively connects the switching valve chamber 19 to the working surface hydraulic pressure source and the hydraulic oil outflow valve 24); A solenoid active core 28 connected to a switching valve mechanism and a fuel oil supply mechanism (fuel oil supply system S, Ja
), and is configured so that the servo piston 50 is operated by hydraulic oil by applying and interrupting current to the solenoid, and the following effects can be expected.

(1)燃料油に低重質油を使用した場合の、パイロット
バμブ(スプール弁26)ならびにメインバルブ(切換
弁41)の作動障害、即ち高粘度による作動抵抗穴、摩
耗増大、固着、燃料加熱によるソレノイド部昇温に起因
する作動特性の劣化等を防止することができる。
(1) Operation failure of the pilot valve (spool valve 26) and main valve (switching valve 41) when low-heavy oil is used as fuel oil, i.e., operation resistance holes due to high viscosity, increased wear, sticking, It is possible to prevent deterioration of operating characteristics due to temperature rise of the solenoid part due to fuel heating.

(2) パイロット弁としてスプール弁26を採用する
と、弁開閉時の油圧荷重がポペット弁に比較して小さい
、又スプール弁2乙の移動ストロークを小さく設定でき
るので、パイロット弁(スプール弁26)の速度も増大
する。スプール弁26の流出入口面積がポペット弁と比
較して大きく設定できるので、メインバルブ(1/l換
弁41)並びにサーボピストン50の応答性が速い、更
にソレノイド(コイル8)の昇温が少ないので、昇温対
策が容易になる。又実施例図面の如く、アジャストボル
ト67を採用すると、スプール弁26のストロークの設
定が容易になる。又スプール弁26の両端が油路36に
よし連通しているため、スプール弁26の作動がスムー
ズになる。スプール弁26部分からの漏油がソレノイド
内をt l’Wfす・るので、ソレノイド運動部の耐摩
耗と冷却に有効である。
(2) When the spool valve 26 is used as the pilot valve, the hydraulic load when opening and closing the valve is smaller than that of a poppet valve, and the movement stroke of the spool valve 2 can be set small, so the pilot valve (spool valve 26) The speed also increases. Since the inlet/outlet area of the spool valve 26 can be set larger than that of a poppet valve, the response of the main valve (1/l switching valve 41) and servo piston 50 is fast, and the temperature rise of the solenoid (coil 8) is small. , it becomes easy to take countermeasures against temperature rise. Furthermore, if an adjustment bolt 67 is used as shown in the drawings of the embodiment, the stroke of the spool valve 26 can be easily set. Further, since both ends of the spool valve 26 are in communication with the oil passage 36, the operation of the spool valve 26 becomes smooth. Since the oil leaking from the spool valve 26 moves inside the solenoid, it is effective in preventing wear and cooling the solenoid moving parts.

第6図、第4図は第1図、第2図中のソレノイドアクテ
ィブコア28がコイル8へ通電時上昇するのに対し、通
電時下降する形式を採用した場合の別の実施例であり、
第6図はソレノイドへ[’fAE通電時通電材噴射行程
)、第4図はソレノイドへの電流遮断時(燃料充填行程
)を示して′i6シ、第1、第2図中の符号と同一符号
は対応部分である。
6 and 4 show another embodiment in which the solenoid active core 28 in FIGS. 1 and 2 rises when the coil 8 is energized, but descends when the coil 8 is energized.
Figure 6 shows the current-carrying material injection stroke when AE is energized to the solenoid, and Figure 4 shows the state when current is cut off to the solenoid (fuel filling stroke). Symbols indicate corresponding parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図rま本発明による電子油圧制御燃料噴射装置の構
造略図(ソレノイドへの電流通電時)であシ、第2図は
ソレノイドへの電流遮断時におけるインジェクターの縦
断面図、第6図、第4図は別の実施例を示すだめの第1
、第2図に対応する図面である。8・・・コイ/I/(
ソレノイド)、19・・・・・・切換弁室、24・・・
作動油流出口、26.41・・・スプール弁、作動型切
換弁(切換弁機構)、28・・・アクティブコア、46
・・・サーボピストン室、50・・・サーボピストン、
52・−・プランジャ、礼・・・作動油供給システム、
S、l・・・燃料油供給システムbS9・・・インジェ
クター 特許出願人  ヤンマーディーゼル株式会社代理人 #
埋土  大 森 忠 孝j」・、);11.、’l’、
::: !。 t′j 第2図 jδ′ =71 II 4区 −350−
Fig. 1 is a schematic structural diagram of the electro-hydraulic control fuel injection system according to the present invention (when current is applied to the solenoid), Fig. 2 is a vertical sectional view of the injector when current is cut off to the solenoid, and Fig. 6 is FIG. 4 shows another embodiment of the first embodiment.
, a drawing corresponding to FIG. 2. 8...Carp/I/(
solenoid), 19... switching valve chamber, 24...
Hydraulic oil outlet, 26. 41... Spool valve, actuated switching valve (switching valve mechanism), 28... Active core, 46
... Servo piston chamber, 50... Servo piston,
52.-- Plunger, courtesy... Hydraulic oil supply system,
S, l...Fuel oil supply system bS9...Injector Patent applicant Yanmar Diesel Co., Ltd. agent #
Buried soil Tadaka Omori ・, ); 11. ,'l',
::: ! . t'j Figure 2 jδ' = 71 II Section 4 -350-

Claims (2)

【特許請求の範囲】[Claims] (1)  インジェクターのプランジャ作動用サーボピ
ストンと、サーボピストンの嵌合したサーボピストン室
を作動油油圧源と作動油流出口に択一的に接続する切換
弁機構と、切換弁機構に連結したソレノイドアクティブ
コアと、プランジャ室への燃料油供給機構とを備え、ソ
レノイドへの電流通電と電流遮断によりサーボピストン
を作動油により動作させるようにしたことを特徴とする
燃料噴射装置。
(1) A servo piston for actuating the plunger of the injector, a switching valve mechanism that selectively connects the servo piston chamber in which the servo piston is fitted to a hydraulic oil pressure source and a hydraulic oil outlet, and a solenoid connected to the switching valve mechanism. A fuel injection device comprising an active core and a fuel oil supply mechanism to a plunger chamber, and a servo piston is operated by hydraulic oil by energizing and cutting off current to a solenoid.
(2)  切換弁機構がサーボピストン室を作動油油圧
源と作動油流出口に択一的に接続する差動型切換弁と、
切換弁室を作動油油圧源と作動油流出口に択一的に接続
するパイロット用スプール弁で構成され、スプール弁が
その外周溝で開閉される第1油路を介して作動油油圧源
と切換弁室を接続し、切換弁がその外周溝で開閉される
第2油路を介してサーボピストン室と作動油流出口を接
続し、第1油路開放時のみに切換弁が作動油油圧源とサ
ーボピストン室間を遮断し、第2油路が開放するように
した特許請求の範囲第1項記載の燃料噴射装置。
(2) a differential type switching valve in which the switching valve mechanism selectively connects the servo piston chamber to a hydraulic oil pressure source and a hydraulic oil outlet;
It consists of a pilot spool valve that selectively connects the switching valve chamber to a hydraulic oil pressure source and a hydraulic oil outlet, and the spool valve connects to the hydraulic oil hydraulic source through a first oil passage that is opened and closed in its outer groove. The switching valve chamber is connected, and the servo piston chamber and the hydraulic oil outlet are connected via a second oil passage that is opened and closed by the outer circumferential groove of the switching valve, and the switching valve opens the hydraulic oil pressure only when the first oil passage is opened. 2. The fuel injection device according to claim 1, wherein the source and the servo piston chamber are cut off and the second oil passage is opened.
JP15243482A 1982-08-31 1982-08-31 Fuel injection unit Granted JPS5941658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15243482A JPS5941658A (en) 1982-08-31 1982-08-31 Fuel injection unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15243482A JPS5941658A (en) 1982-08-31 1982-08-31 Fuel injection unit

Publications (2)

Publication Number Publication Date
JPS5941658A true JPS5941658A (en) 1984-03-07
JPS6314186B2 JPS6314186B2 (en) 1988-03-29

Family

ID=15540442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15243482A Granted JPS5941658A (en) 1982-08-31 1982-08-31 Fuel injection unit

Country Status (1)

Country Link
JP (1) JPS5941658A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125142U (en) * 1985-01-23 1986-08-06
US5497750A (en) * 1993-12-07 1996-03-12 Robert Bosch Gmbh Fuel injection device for internal combustion engines
CN109236523A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Intensified electric-controlled fuel injector peculiar to vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125142U (en) * 1985-01-23 1986-08-06
US5497750A (en) * 1993-12-07 1996-03-12 Robert Bosch Gmbh Fuel injection device for internal combustion engines
CN109236523A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Intensified electric-controlled fuel injector peculiar to vessel

Also Published As

Publication number Publication date
JPS6314186B2 (en) 1988-03-29

Similar Documents

Publication Publication Date Title
KR100634031B1 (en) Fuel supply system of an internal combustion engine
JP2645577B2 (en) Electronic unit injector
EP0050053B1 (en) Fuel injection pump for controlling the duration and timing of the injection
JPH07293394A (en) Fuel injection device used for internal combustion engine
JPS6193268A (en) Constantly opened type valve
US4538576A (en) Diesel fuel injector with double dump configuration
US4653448A (en) Fuel injection device
US4437444A (en) Fuel injection pump for a diesel engine
JPH0416631B2 (en)
JPH1089190A (en) Accumulator fuel injecting device
US6463914B2 (en) Regulating member for controlling an intensification of pressure of fuel for a fuel injector
JPH08921A (en) Edge filter for high pressured fluid pressure device
JPH01500843A (en) Fuel injection system for diesel internal combustion engines
US4467963A (en) Single dump single solenoid fuel injector
JPS5941658A (en) Fuel injection unit
JPS6120303Y2 (en)
US5282574A (en) Hydraulic flow shutoff device for a unit fuel pump/injector
EP0974750B1 (en) Fuel-injection pump having a vapor-prevention accumulator
JPH09170512A (en) Pressure control device in accumulator fuel injection device
JPS6314187B2 (en)
EP0821154B1 (en) Fuel pumping apparatus
JPH059498Y2 (en)
JPS6313023B2 (en)
JP3777708B2 (en) Injector
JPH0519573Y2 (en)