JPS6067666A - Thin film forming method - Google Patents

Thin film forming method

Info

Publication number
JPS6067666A
JPS6067666A JP58173181A JP17318183A JPS6067666A JP S6067666 A JPS6067666 A JP S6067666A JP 58173181 A JP58173181 A JP 58173181A JP 17318183 A JP17318183 A JP 17318183A JP S6067666 A JPS6067666 A JP S6067666A
Authority
JP
Japan
Prior art keywords
auxiliary electrode
thin film
electron beam
evaporation source
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58173181A
Other languages
Japanese (ja)
Other versions
JPH0573827B2 (en
Inventor
Masahiro Nishikawa
雅博 西川
Takao Toda
任田 隆夫
Yosuke Fujita
洋介 藤田
Tomizo Matsuoka
富造 松岡
Atsushi Abe
阿部 惇
Koji Nitta
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58173181A priority Critical patent/JPS6067666A/en
Publication of JPS6067666A publication Critical patent/JPS6067666A/en
Publication of JPH0573827B2 publication Critical patent/JPH0573827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Abstract

PURPOSE:To easily form a thin film having good characteristics, in performing the vapor deposition of a sublimable substance by using an electron beam vapor deposition process, by using an auxiliary electrode. CONSTITUTION:In electron beam vacuum vapor deposition using a sublimable substance, for example, zinc sulfide containing a light emitting active substance as an evaporation source, an auxiliary electrode 4 is provided betwen the evaporation source 6 and a substrate 8. The auxiliary electrode 4 is formed in a ring like, a grid like or a stripe like shape and voltage 1/10-1.5 times the filament potential of electron beam is applied to said electrode from an external DC high voltage power source 5. In this state, DC voltage is applied to an electron gun filament 10 from an electron gun power source 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子ビーム真空蒸着を用いる薄膜の形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of forming a thin film using electron beam vacuum evaporation.

(従来例の構成とその問題点) 発光活性物質を含む硫化亜鉛などの昇華性物質6aau
イk14d、/7’+IrFIヨヨイ4−ndtイaS
;〒ミオhnx−v’Wz−ノし:として利用きれてお
り、産業上重要な位置を占めている。従来、このような
薄膜を形成するt(ホスバッタ蒸着や電子ビーム真空蒸
着などが用いられておシ、とくに電子ビーム真空蒸着は
蒸着速度が大きいこと、不純物によるγり染の少ないこ
となどの利点を有するため多く利用−11t−Cいる。
(Structure of conventional example and its problems) Sublimable substance such as zinc sulfide containing luminescent active substance 6aau
ik14d, /7'+IrFIyoyoi4-ndtiaS
; 〒Miohnx-v'Wz-noshi:〒It is fully utilized and occupies an important position in industry. Conventionally, methods such as phosphor deposition and electron beam vacuum evaporation have been used to form such thin films, but electron beam vacuum evaporation has advantages such as high deposition rate and less gamma staining due to impurities. It is often used because it has -11t-C.

ところア:電子ビーム真空蒸着を用いて列華性物賀を蒸
発させ薄膜を形成する場合には、IR,”l−のよう4
問題があった。
Tokoro A: When forming a thin film by evaporating a ray-like material using electron beam vacuum evaporation, 4
There was a problem.

電子ビーム真空蒸着で昇華性物質を蒸発源として蒸発さ
せると、昇華性物質は電子ビーノ、により加熱され表面
よシ順次昇華蒸発してゆくが、−Ili J+華性物質
のように固溶状態にはならないため、蒸発源からの析出
物は粒状となって蒸発源に残留−)−る。妊らに電子ビ
ームによりフィラノン1と同極性でほぼ同電位に帯電し
た粒状析出物紹電気的斥力により蒸発源から飛散し、そ
のうちあるものは基板に刺着する。
When a sublimable substance is evaporated by electron beam vacuum evaporation as an evaporation source, the sublimable substance is heated by the electron beam and sublimates and evaporates sequentially from the surface, but it becomes a solid solution state like -Ili J+ sublimable substance. Therefore, the precipitates from the evaporation source remain in the evaporation source in the form of particles. The electron beam causes granular precipitates charged to the same polarity and almost the same potential as Filanon 1 to be scattered from the evaporation source due to electrical repulsion, and some of them stick to the substrate.

このような粒状付着物は、形成した薄膜の方観を損ねる
ばかシでなく、さらにその−1,: K多の薄膜を積層
し、デバイスとして構成したときに、絶縁破壊などの不
良を発生する原因となる。
Such granular deposits not only impair the appearance of the formed thin film, but also cause defects such as dielectric breakdown when a device is constructed by laminating K multilayer thin films. Cause.

(発明の目的) 本発明は、」二記のように、電子ビーム真空蒸着を用い
て昇華性物質を蒸発略せ、薄膜を形成する方法において
問題とな・っていた蒸発源からの基板への粒状付着物を
減少させ、電気的特性が良好な薄膜を形成する方法を提
供することである。
(Objective of the Invention) As described in Section 2, the present invention uses electron beam vacuum evaporation to omit the evaporation of sublimable substances, thereby preventing the evaporation from the evaporation source from reaching the substrate, which has been a problem in methods for forming thin films. An object of the present invention is to provide a method of reducing particulate deposits and forming a thin film with good electrical properties.

(発明の構成) 本発明は、上記の目的を達成するため、以下のような構
成で薄膜を形成することを特徴とする。
(Structure of the Invention) In order to achieve the above object, the present invention is characterized in that a thin film is formed with the following structure.

従来の電子ビーム真空蒸着を用いた薄膜の形成方法で問
題であった蒸発源からの飛散粒子の基板への付着を防止
するために、電子銃フィラメントの電位と同極性でl/
10〜15倍の電位を有する補助電極を基板と蒸発源と
の間に設ける。したがって、飛散してくる粒子の帯電電
荷と前記補助電極とは同極性の電位であるので、飛散粒
子は電気的斥力によって蒸発源側に排斥きれる。この効
果は補助電極の電位が高い程太きく、逆にフィラメント
電位の1710程度以下になるとほとんど効果はなくな
る。また、この電位をあまり高くしても電瞭装置の費用
との関係で有効ではなく、実゛際上は形成した薄膜が付
着粒子により実用上影響を受けない点で決まる。本発明
者等の実験では、この補助電極の電位はフィラメント電
位のV10〜15倍の間が効果的であった。
In order to prevent particles scattered from the evaporation source from adhering to the substrate, which was a problem with the conventional method of forming thin films using electron beam vacuum evaporation, the l/
An auxiliary electrode with a potential 10-15 times higher is provided between the substrate and the evaporation source. Therefore, since the electrical charges of the flying particles and the auxiliary electrode are at the same polar potential, the flying particles are completely repelled to the evaporation source side by electrical repulsion. This effect becomes stronger as the potential of the auxiliary electrode becomes higher, and on the other hand, it becomes almost ineffective when the potential of the filament is about 1710 or less. Moreover, increasing this potential too high is not effective in terms of the cost of the electrophotographic device, and in reality it is determined by the point that the formed thin film is not practically affected by the attached particles. In experiments conducted by the present inventors, it was found that the effective potential of this auxiliary electrode was between 10 and 15 times the filament potential.

補助電極の形状については、蒸着速度を犬きく減じない
限シなるべく密な構造であることが望ましいが、どのよ
うな形状でも本発明の主旨の効果が得られないことはな
い。リング状、格子状、あるいはストライプ状の補助電
極が製作も容易であり、効果も太きい。補助電極のIJ
料についても、とくに限定されるものではない。
As for the shape of the auxiliary electrode, it is desirable that the structure be as dense as possible as long as it does not significantly reduce the deposition rate, but the effects of the present invention will not be obtained no matter what shape. Ring-shaped, grid-shaped, or striped auxiliary electrodes are easy to manufacture and highly effective. Auxiliary electrode IJ
The fees are also not particularly limited.

補助電極を設置する位置については、蒸発源と基板との
間で、できる限り蒸発源に近い方が効果は太きい。寸法
については、蒸発源と基板とを結ぶ包絡線を、補助電極
を設置する位置で水平に切断したときにで゛きる切断面
より大きい面積を有することが望ましいが、小きくでも
そjlなりの効果は得ることができる。
Regarding the position where the auxiliary electrode is installed between the evaporation source and the substrate, the effect will be greater if it is placed as close to the evaporation source as possible. Regarding the dimensions, it is desirable to have a larger area than the cut surface that can be obtained when the envelope connecting the evaporation source and the substrate is cut horizontally at the position where the auxiliary electrode is installed, but You can get the effect.

(実施例の説明) 以下図面を用いて本発明の詳細な説明する。(Explanation of Examples) The present invention will be described in detail below using the drawings.

第1図は、本発明にかかる薄膜の形成方法の一実施例に
おける補助電極を示したものである。1は直径が0.1
6關のカンタル線の線条電極であり、5順のステンレス
角柱で組みあげた内側寸法5ON×200IIIIの支
持枠2にピッチ5間でストライプ状に配列設置している
。3は補助電極に電位を与えるだめの供給電線であり、
支持枠2に固定されている1第2図は、本発明にかかる
薄膜の形成力法の一実施例における電子ビーム真空蒸着
装置の概略を示したものである。補助電極4は外部の直
流高圧電源5により0〜−20kVの電圧が印加される
。蒸発源としてマンノノン賦活硫化亜鉛6を配置したハ
ース7と、ガラス基板8を七ノトシた基板ホルダ9との
距離1l−L500%”であり、ハース7と補助電極4
との距離は50 ”である。いま電子銃フィラメン1−
10に電子銃電源11により一7kVの直流電圧を印加
し・電子ビームをマンガン賦活硫化亜鉛6に照射すると
、マンガン賦活硫化亜鉛6は蒸発し、基板ホルダ9に設
置されたガラス基板8上に付着し、薄膜を形成する。・
このとき基板8」二の1枦イ立1111積に付着した直
径が10μm以下の粒状付着物の数Nを補助電極4に印
加した直流電圧をノ夫うメータとして測定した結果が第
一3図のAである(縦軸Nの目盛は任意)。電子銃フィ
ラメント10の印力11電圧が一7kVのときには、N
は補助電極電圧VC。
FIG. 1 shows an auxiliary electrode in an embodiment of the thin film forming method according to the present invention. 1 has a diameter of 0.1
The electrodes are made of six Kanthal wires and are arranged in stripes at a pitch of 5 on a support frame 2 with inner dimensions of 5ON x 200III made up of 5 stainless steel prisms. 3 is a supply wire for applying potential to the auxiliary electrode;
1 fixed to the support frame 2. FIG. 2 schematically shows an electron beam vacuum evaporation apparatus in an embodiment of the thin film forming force method according to the present invention. A voltage of 0 to -20 kV is applied to the auxiliary electrode 4 by an external DC high voltage power supply 5. The distance between the hearth 7 in which the mannonone-activated zinc sulfide 6 is arranged as an evaporation source and the substrate holder 9 on which the glass substrate 8 is placed is 1l-L500%, and the distance between the hearth 7 and the auxiliary electrode 4 is
The distance between the electron gun filament 1-
When a DC voltage of -7 kV is applied to the electron gun power supply 11 and the electron beam is irradiated to the manganese-activated zinc sulfide 6, the manganese-activated zinc sulfide 6 evaporates and adheres to the glass substrate 8 placed on the substrate holder 9. and form a thin film.・
At this time, the number N of granular deposits with a diameter of 10 μm or less adhering to the substrate 8' 2/1 square 1111 product was measured using a meter that measured the DC voltage applied to the auxiliary electrode 4, and the result was A in Figure 13. (The scale of the vertical axis N is arbitrary). When the voltage applied to the electron gun filament 10 is 17 kV, N
is the auxiliary electrode voltage VC.

の増加とともに減少するが、voが一700■以トでは
ほとんど効果がみられなかった。
It decreases with increase in VO, but almost no effect was observed when VO was 1700 or higher.

第2図で示した補助電極のパターン形状はストライプ状
であったが、さらにこのストライブと直交するように同
じピッチの配列間かくで線条電極を設けて、格子状の電
極を形成して使j41−4−ると、本発明の効果は一層
大きくなる。第:う図の13で/leした曲線は格子状
の補助電極の効果を示したものである。
The pattern shape of the auxiliary electrodes shown in Figure 2 was striped, but we also provided striped electrodes at the same pitch so as to be perpendicular to the stripes to form a lattice-shaped electrode. If used, the effects of the present invention will be even greater. The curve marked /le in Figure 13 shows the effect of the grid-like auxiliary electrode.

以上のような方法で形成したマンカン賦活硫化亜鉛薄膜
はEL素子の発光層として使用した場合粒状付着物を原
因とする絶縁破壊がなく、安定に発光した。
When the mankan-activated zinc sulfide thin film formed by the above method was used as a light-emitting layer of an EL device, there was no dielectric breakdown caused by particulate deposits, and the film stably emitted light.

(発明の効果) 以上のように、本発明によれば、電イビーム真空蒸着を
用いて昇華性物質を蒸着する際に、補助電極を使用する
ことにより、特性の良い薄膜を容易に形成することがで
きる。
(Effects of the Invention) As described above, according to the present invention, a thin film with good characteristics can be easily formed by using an auxiliary electrode when depositing a sublimable substance using electron beam vacuum evaporation. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は、本発明の一実施例に用いる補助電極の
平面図、第1図(b)は、そのA−A断面図、第2図は
、本発明の一実施例に用いる電イビーム真空蒸着装置の
概略図、第3図は、本発明の詳細な説明するだめの図で
おる。 1 ・・・・・・・・・線条電極、 2・・・・・・・
・支持枠、3・・・・・・・ 電圧供給電線。 特許出願人 松F電器産業株人会社 第1図 第2図 第3図 Vo(kv)
FIG. 1(a) is a plan view of an auxiliary electrode used in an embodiment of the present invention, FIG. 1(b) is a sectional view taken along line AA, and FIG. 2 is a plan view of an auxiliary electrode used in an embodiment of the present invention. FIG. 3, a schematic diagram of an electron beam vacuum evaporation apparatus, is a diagram for explaining the present invention in detail. 1......Striated electrode, 2......
・Support frame, 3...Voltage supply wire. Patent applicant Matsu F Electric Industry Co., Ltd. Figure 1 Figure 2 Figure 3 Vo (kv)

Claims (1)

【特許請求の範囲】[Claims] (1) 昇華性物質を蒸発源とする電子ビーム真空−蒸
着において、前記蒸発源と基板との間に、電子ビームの
フィラメント電位のV10〜1.5倍の電位を有するリ
ング状、格子状あるいはストライブ状の補助電極を設け
て蒸着することを特徴とする薄膜の形成方法。 (2〕 前記昇華性物質が発光活性物質を含む硫化亜鉛
からなることを特徴とする特許請求の範囲第(1)項記
載の薄膜の形成方法。
(1) In electron beam vacuum evaporation using a sublimable substance as an evaporation source, a ring-shaped, lattice-shaped, or A method for forming a thin film characterized by vapor deposition with a striped auxiliary electrode. (2) The method for forming a thin film according to claim (1), wherein the sublimable substance is made of zinc sulfide containing a luminescent active substance.
JP58173181A 1983-09-21 1983-09-21 Thin film forming method Granted JPS6067666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173181A JPS6067666A (en) 1983-09-21 1983-09-21 Thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173181A JPS6067666A (en) 1983-09-21 1983-09-21 Thin film forming method

Publications (2)

Publication Number Publication Date
JPS6067666A true JPS6067666A (en) 1985-04-18
JPH0573827B2 JPH0573827B2 (en) 1993-10-15

Family

ID=15955588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173181A Granted JPS6067666A (en) 1983-09-21 1983-09-21 Thin film forming method

Country Status (1)

Country Link
JP (1) JPS6067666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190164A (en) * 1987-02-03 1988-08-05 Nissan Motor Co Ltd Vacuum deposition method
US4976988A (en) * 1987-02-03 1990-12-11 Nissan Motor Co., Ltd. Vacuum evaporation method for zinc sulfide
DE112017003226T5 (en) 2016-06-28 2019-03-21 Yamaha Corp. Sound adjustment device, electronic musical instrument system and sound adjustment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310953A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Filp-flop circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310953A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Filp-flop circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190164A (en) * 1987-02-03 1988-08-05 Nissan Motor Co Ltd Vacuum deposition method
US4976988A (en) * 1987-02-03 1990-12-11 Nissan Motor Co., Ltd. Vacuum evaporation method for zinc sulfide
DE112017003226T5 (en) 2016-06-28 2019-03-21 Yamaha Corp. Sound adjustment device, electronic musical instrument system and sound adjustment method

Also Published As

Publication number Publication date
JPH0573827B2 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US3913520A (en) High vacuum deposition apparatus
US4170662A (en) Plasma plating
US3472751A (en) Method and apparatus for forming deposits on a substrate by cathode sputtering using a focussed ion beam
US2682478A (en) Method of forming television screens
KR960025999A (en) Field emission device and method of manufacturing the same, and flat panel field emission display
US2586304A (en) Protection of phosphors from attack by alkali vapors
GB2204991A (en) Vacuum electronic device
JPH09503335A (en) Thin panel image display device
US3729575A (en) High voltage insulator having a thick film resistive coating
JPS6067666A (en) Thin film forming method
US3693582A (en) Apparatus for applying a metal coating to an elongated metal article
US5254229A (en) Electrified object neutralizing method and neutralizing device
JPS6093742A (en) Display device
DE19850218C1 (en) Device and method for coating substrates in a vacuum
JPH0440836B2 (en)
RU2601903C2 (en) Method for deposition of thin-film coatings on surface of semiconductor heteroepitaxial structures by magnetron sputtering
US20030129415A1 (en) Method for binding phosphor particles in a field emission display device
JPH05205660A (en) Cathode-ray tube and manufacture of cathode- ray tube
JPH04120277A (en) Plasma cvd device
JP3587339B2 (en) Reflective flat tube and method of manufacturing the same
KR100291919B1 (en) Image display apparatus employing coating film for neutralizing electronic charges
US20070261603A1 (en) Phosphors spray and method for spraying the same
JPH0583633B2 (en)
US3873869A (en) Non-chargeable electrodes for use in contaminated environment containing organic contaminants
JPS6134890A (en) Method of forming electric field light emitting thin film