JPS606717B2 - Oxidation decomposition equipment - Google Patents

Oxidation decomposition equipment

Info

Publication number
JPS606717B2
JPS606717B2 JP6079581A JP6079581A JPS606717B2 JP S606717 B2 JPS606717 B2 JP S606717B2 JP 6079581 A JP6079581 A JP 6079581A JP 6079581 A JP6079581 A JP 6079581A JP S606717 B2 JPS606717 B2 JP S606717B2
Authority
JP
Japan
Prior art keywords
anode
main
manganese dioxide
electrolytic cell
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6079581A
Other languages
Japanese (ja)
Other versions
JPS57177388A (en
Inventor
弘 永井
義則 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanao Kogyo Co Ltd
Original Assignee
Nanao Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanao Kogyo Co Ltd filed Critical Nanao Kogyo Co Ltd
Priority to JP6079581A priority Critical patent/JPS606717B2/en
Publication of JPS57177388A publication Critical patent/JPS57177388A/en
Publication of JPS606717B2 publication Critical patent/JPS606717B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 本発明は河川水、産業廃水、生活排水等の各種被処理液
中に含有される汚染物質を酸化分解して処理する酸化分
解装置に関し、特に酸化分解速度が極めて迅速な装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxidative decomposition device that treats pollutants contained in various liquids to be treated such as river water, industrial wastewater, and domestic wastewater by oxidizing and decomposing them. related to equipment.

河川水、産業廃水、生活排水等の各種被処理液中に含有
する汚染物質の酸化分解装置ととして従来、チタン素材
にPb02を霞折してなるPO02電極を陽極として用
いた装置が知られているが、この装薄では、例えば第2
図中Aで示すようにCOD13000(側)の化学鋼メ
ッキ廃液を処理液量10〆、常温、10V−2Aの条件
下で循環処理した湯合、COD値がほゞ零近くの値に低
下するまでに要する時間は約70独特間であり、COD
分解速度が非常に遅いという欠点を有するものである。
Conventionally, as an oxidative decomposition device for pollutants contained in various liquids to be treated such as river water, industrial wastewater, domestic wastewater, etc., a device using a PO02 electrode made of a titanium material with Pb02 as an anode has been known. However, in this thin case, for example, the second
As shown by A in the figure, when chemical steel plating waste liquid with a COD of 13000 (side) is circulated and treated under conditions of a treatment liquid volume of 10㎆, room temperature, and 10V-2A, the COD value decreases to a value close to zero. It takes approximately 70 minutes to complete the COD
It has the disadvantage that the decomposition rate is very slow.

本発明の目的は各種被処理液中の汚染物質を酸化分解す
る際に酸化分解速度が極めて迅速であって、前述の公知
技術に存する欠点を改良した酸化分解装置を提供するこ
とにある。前述の目的を達成するため、本発明によれば
、電解槽内に主陽極と主陰極を配置して構成され、この
電解槽内に河川水、産業廃水、生活排水等の各種被処理
液を装填して前記主陽極および主陰極間に電流を通電し
、これによって前記被処理液中に含有する汚染物質を酸
化分解して処理する酸化分解装置において、前記電解槽
内の前記主陽極と相対する位置に隔膜を配置して前記主
陽極とともに陽極室を形成し、この陽極室内に粉状ない
いま粒状二酸化マンガンを装填することを特徴とし、前
記粉状ないいま粒状二酸化マンガンは電気絶縁性粉状物
質と混合して前記陽極室内に装填することを特徴とする
It is an object of the present invention to provide an oxidative decomposition apparatus which has an extremely rapid oxidative decomposition rate when oxidatively decomposing contaminants in various liquids to be treated, and which improves the drawbacks of the above-mentioned known techniques. In order to achieve the above-mentioned object, according to the present invention, a main anode and a main cathode are arranged in an electrolytic cell, and various liquids to be treated such as river water, industrial wastewater, domestic wastewater, etc. are placed in the electrolytic cell. In an oxidative decomposition apparatus that is loaded and conducts a current between the main anode and the main cathode, thereby oxidizing and decomposing contaminants contained in the liquid to be treated, the main anode in the electrolytic cell is A diaphragm is arranged at a position to form an anode chamber together with the main anode, and powdery or granular manganese dioxide is loaded into the anode chamber, and the powdery or granular manganese dioxide is electrically insulating powder. The method is characterized in that the anode is mixed with a similar substance and loaded into the anode chamber.

以下、本発明を添付図面を用いて詳述する。Hereinafter, the present invention will be explained in detail using the accompanying drawings.

第蔓図は本発明にかかる装置の一具体例を示す。1は電
解槽である。
Figure 1 shows a specific example of the device according to the invention. 1 is an electrolytic cell.

この電解槽亀内の例えば相対面する両側壁にはそれぞれ
主陽極5および主陰極6(これらは例えばグラフアィト
からなる。)が配置される。これらの相対面する主陽極
5および主陰極6の間であて前記電解槽1内の主陽極5
と相対する位置に隔膜2を配置して主陽極5とともに陽
極室4を形成し「陽極室4内に粉状ないいま粒状の二酸
化マンガンと後述の電気絶縁性粒状物質の混合体3を充
填し、これによって二酸化マンンは電解槽亀内に主陽極
と接触するように装填される。
A main anode 5 and a main cathode 6 (made of graphite, for example) are disposed, for example, on opposite side walls of the electrolytic cell. The main anode 5 in the electrolytic cell 1 is placed between the main anode 5 and the main cathode 6 facing each other.
A diaphragm 2 is placed in a position facing the main anode 5 to form an anode chamber 4, and a mixture 3 of powdery or granular manganese dioxide and an electrically insulating granular material to be described later is filled into the anode chamber 4. , whereby mann dioxide is loaded into the electrolytic cell so as to be in contact with the main anode.

そして上記混合粒状物質群の配列については〜二酸化マ
ンガン(電気伝導性粒状物質)群の主電極板5,6から
の連なりに長短を作り対極の方向に距離が長く連なるも
の程電気抵抗値が増大されるようにtまた二酸化マンガ
ン(電気伝導性粒状物質)間相互の接触が完全に断れな
いように「二酸化マンガンと電気絶縁性粒状物質とを混
合し「配列し、この配列により電極反応面を拡大し、し
かも各電気伝導性粒状物質(二酸化マンガン)の表面が
バィポーラ−現象を起すことなく主電極板馬,6と同一
の極性として反応に関与できる。このような利点を達成
するためには電気伝導性粒状物質と電気絶縁性粒状物質
の大きさや、分量比率、又は材質等を、電解液の特性や
その他の条件に応じて最適条件に定めればよい。B高膜
2としては通常の電解用隔膜「イオン交換膜、粉状ない
いま粒状二酸化マンガン3が通過しない程度の紬孔が多
数あいた合成樹脂板「セラミック板「素焼板、合成繊細
布、梅木等の木板「 ネット等を使用することができる
Regarding the arrangement of the above mixed particulate matter group, there are lengths and shorts in the series of the manganese dioxide (electrically conductive particulate matter) group from the main electrode plates 5 and 6, and the longer the distance in the direction of the opposite electrode, the higher the electrical resistance value. In addition, manganese dioxide (electrically conductive particulate matter) is mixed with electrically insulating particulate matter and arranged in such a way that the contact between manganese dioxide (electrically conductive particulate matter) is not completely broken, and this arrangement forms the electrode reaction surface. Moreover, the surface of each electrically conductive particulate material (manganese dioxide) can participate in the reaction with the same polarity as the main electrode Itama, 6 without causing a bipolar phenomenon.In order to achieve such advantages, The size, proportion, materials, etc. of the electrically conductive particulate matter and the electrically insulating particulate material may be determined to optimal conditions according to the characteristics of the electrolytic solution and other conditions. Electrolytic diaphragm: ion exchange membrane, synthetic resin plate with many pongee holes that do not allow powdery or granular manganese dioxide 3 to pass through, ceramic plate, terracotta plate, synthetic delicate cloth, wooden board such as plum wood, etc. Use nets, etc. be able to.

また、前述の粉状ないしは粒状二酸化マンガン3は平均
粒径が3〜5側程度のものが好ましいが、本発明ではこ
の粒径に限定されるものではなく「いかなる粒径のもの
であることができる。
Further, the powdery or granular manganese dioxide 3 described above preferably has an average particle size of about 3 to 5, but the present invention is not limited to this particle size, and "any particle size may be used." can.

なお、この二酸化マンガン3はガラスビーズ、シリカゲ
ル、合成樹脂粒もイオン交換樹脂粒、セラミック粒等の
電気絶縁性粒状物質と例えば1三1の比率で混合して使
用する。上記のような本発明の酸化分解装置を用いて「
電極反応を遂行するには、主電極59 6間に、外部電
源により電位差を与えながら処理したい溶液をバッチ式
または連続式に前記粒状物質が配置されている空間に導
いて通過させればよい。
The manganese dioxide 3 is used by mixing it with electrically insulating particulate materials such as glass beads, silica gel, synthetic resin particles, ion exchange resin particles, ceramic particles, etc. in a ratio of 1:1, for example. Using the oxidative decomposition apparatus of the present invention as described above,
In order to carry out the electrode reaction, a potential difference is applied between the main electrodes 596 by an external power source, and the solution to be treated is introduced into the space where the particulate material is placed in a batchwise or continuous manner and allowed to pass therethrough.

このように通過させれば、陽極室4では酸化反応が効果
的に遂行される。これにより作用を受ける反応系は多数
あるが「例えば、陽極反応ではX‐+40H‐−鉾→×
○ミ十2H++日20X05十日20−を→XO牢十2
H+(式中×はハロゲン元素を示す。
By passing it in this way, the oxidation reaction is effectively carried out in the anode chamber 4. There are many reaction systems affected by this, but ``For example, in the anodic reaction,
○ Mi 12H++ day 20X05 10th 20-→XO prison 12
H+ (in the formula, x represents a halogen element.

)る戊‐一左→S20零− Mn。) Ruu - Ichisa → S20 Zero - Mn.

重一−e→Mn。亨次よ+十母日20日食→Xrの十十
18日十Pが十一次〜pb4十Mn2十一次→Mn4f OXy鞍n CarrierとしてV5十母 Mn2十
8 Ce4十,Cず十などを用いる有機化合物の酸化「
コルべ反応「有機物のハロゲン化シアン化合物の分解
、およびその他である。
Seiichi-e→Mn. Hyōjiyo + 10th mother's day 20th solar eclipse → Xr's 1118th 10P is the 11th ~ pb40 Mn2 11th → Mn4f OXy saddle n Carrier as V5 10th mother Mn218 Ce40, Czu10, etc. Oxidation of organic compounds using
Kolbe reaction: decomposition of organic cyanide halides, and others.

なお「 ここでただ単に電気伝導性粒状物質群(二酸化
マンガン)を主電極板に接触させてト電極面積の増大を
計るとt対極に近い側の電気伝導性粒状物質は内部の電
気伝導性粒状物質より極端に高く分極され「結果として
反応は「対極に近い電気伝導性粒状物質上で激しく「高
電流密度になり〜著しく電極面積を増したことにはなら
ない。
In addition, if we measure the increase in electrode area by simply bringing a group of electrically conductive particulate matter (manganese dioxide) into contact with the main electrode plate, the electrically conductive particulate matter on the side closer to the counter electrode will be smaller than the internal electrically conductive particulate matter. The material is extremely highly polarized and as a result, the reaction is intense on the electrically conductive particulate material near the counter electrode, resulting in a high current density - without significantly increasing the electrode area.

そこで本発明では、この接触させる電気伝導性粒状物質
群に電気絶縁性粒状物質群を適度に配合することにより
、電気伝導性粒状物質群の主電極からの連なりもこ長短
を作り対極の方向に距離が長く連なるもの程電気抵抗値
が増大されることになるように配慮し全電気電導性粒状
物質群上でほぼ均等に電気化学反応が進行するように工
夫し、著しく電極表面積「すなわち反応場を拡大するこ
とが出来る。ここで注意しなければならないのは、電気
伝導性粒状物質間相互の接触を完全に断つ程に多くの電
気絶縁性粒状物質群を配合、配列すると、電気伝導性粒
状物質は先に述べたバィポーラ−現象が誘発されt酸化
還元反応は同一粒状の両端で進行するようになってしま
う。このようにしてなる本発明装置は電解槽1内に処理
すべき各種彼処理液?を装填して主陽極5および主陰極
6間に例えば常温で「 かつ10V−2〜4Aの電流を
通電すると〜被処理液中に含有する汚染物質は迅速(例
えば40〜12斑時間)に酸化分解して処理される。
Therefore, in the present invention, by appropriately blending an electrically insulating particulate material group into the electrically conductive particulate material group to be brought into contact, the series of electrically conductive particulate materials from the main electrode is lengthened and shortened, and a distance is created in the direction of the opposite electrode. Considering that the electrical resistance value increases as the length of the electrical resistance increases, the electrochemical reaction proceeds almost evenly on the entire electrically conductive particulate material group. What must be noted here is that if a large number of electrically insulating particulate materials are mixed and arranged to the point where the contact between the electrically conductive particulate materials is completely cut off, the electrically conductive particulate materials The above-mentioned bipolar phenomenon is induced, and the oxidation-reduction reaction proceeds at both ends of the same particle.In the apparatus of the present invention constructed in this manner, various processing solutions to be processed are placed in the electrolytic cell 1. ? is loaded and a current of 10V-2 to 4A is applied between the main anode 5 and the main cathode 6 at room temperature, the contaminants contained in the liquid to be treated are quickly removed (for example, within 40 to 12 hours). Processed by oxidative decomposition.

なお、本発明装置において処理すべき彼処理液は河川水
もあるし、は産業廃水、例えば化学鋼メッキ廃液、化学
ニッケルメッキ廃液、パルプ廃液「石けん廃液ト魚貝類
の処理廃液等「 さらには生活排水等〜各種の排廃水で
あり、これらの彼処理液中に含有される汚染物質も金属
イオン、有機物質等、多種にわたる。
The liquid to be treated by the apparatus of the present invention may include river water, industrial wastewater such as chemical steel plating waste, chemical nickel plating waste, pulp waste, soap waste, fish and shellfish processing waste, etc. These are wastewater, etc., and various types of wastewater, and the pollutants contained in these treated liquids are diverse, such as metal ions and organic substances.

以下、本発明を実施例によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 第1図に示す装置を用い、陽極室4内に平桐粒径3〜5
側の粉状ないいま粒状の二酸化マンガンとガラスビーズ
との混合体(混合比1:1)を5kg主陽極5に接触す
るように装填した。
Example 1 Using the apparatus shown in FIG.
5 kg of a mixture of powdered or granular manganese dioxide and glass beads (mixing ratio 1:1) was loaded so as to be in contact with the main anode 5.

このような本発明装置の電解槽!内に被処理液7として
COD約12000(柳)の化学銅〆ツキ廃液を10そ
填充し、常温、電流10V−2Aの条件下で循環処理を
行ったところ、約4畑時間経過後にCOD値がほぼ零ま
で低下した。
Such an electrolytic cell of the device of the present invention! When 10 times of chemical copper coating waste liquid with a COD of approximately 12,000 (willow) was filled into the chamber as the liquid to be treated 7 and the circulation treatment was performed under the conditions of room temperature and current of 10V-2A, the COD value was determined after approximately 4 field hours. has fallen to almost zero.

(この状態を第2図においてB(破線)で示す。)この
処理時間の短縮は次の理由による。
(This state is indicated by B (broken line) in FIG. 2.) This reduction in processing time is due to the following reason.

すなわち、本発明では前述のとおり、二酸化マンガン(
電気伝導性粒状物質群)にガラスビーズ(電気絶縁性粒
状物質群)を1:1の混合比で混合して電気伝導性粒状
物質群の主電極からの連なりを形成するようにしたから
、全軍気伝導性粒状物質群上でほぼ均等に電気化学反応
が進行し、著しく電極表面積、すなわち反応場が拡大さ
れ、処理効率が向上する。比較のため、チタン素材のP
b02電極を陽極として用いた従来の装置により同様な
実験を行ったところ、第2図実線(曲線)Aで示すよう
な結果を得た。
That is, in the present invention, as mentioned above, manganese dioxide (
Since we mixed glass beads (electrically insulating particulate materials) with electrically conductive particulate materials at a mixing ratio of 1:1 to form a series of electrically conductive particulate materials from the main electrode, the total Electrochemical reactions proceed almost uniformly on the group of air-conducting particulate materials, significantly expanding the electrode surface area, that is, the reaction field, and improving processing efficiency. For comparison, titanium material P
When a similar experiment was conducted using a conventional device using the b02 electrode as an anode, the results shown by the solid line (curve) A in FIG. 2 were obtained.

すなわち、従来装置ではCOD値がほ)、零の値まで低
下するためには約700時間の処理時間を要した。第2
図から明白なとおり、本発明装置は従来の装置と比較し
て処理時間が非常に迅速である。
That is, in the conventional apparatus, it took approximately 700 hours of processing time to reduce the COD value to zero. Second
As is clear from the figure, the processing time of the apparatus of the present invention is much faster compared to the conventional apparatus.

実施例 2第1図の本発明装置を用い、陽極室4内に平
均粒径3〜5側の粉状ないいま粒状二酸化マンガンとガ
ラスビーズとの混合体(混合比i:1)を10k9主陽
極5に接触するように装填した。
Example 2 Using the apparatus of the present invention shown in FIG. 1, 10k9 of a mixture of powdered or granular manganese dioxide with an average particle size of 3 to 5 and glass beads (mixing ratio i:1) was placed in the anode chamber 4. It was loaded so as to be in contact with the anode 5.

隔膜2として紬孔を多数あげた合成樹脂板を用いた。こ
のような本発明装置の電解槽1内に彼処理液7としてま
ず、CODIOOOO(肌)の化学鋼メッキ廃液を20
0〆填充し「常温「電流10V−40Aの条件下で処理
を行ったところ、わずかに約4脚音間経過後にCOD値
がほゞ零の値に低下した。(この状態を第3図に示す。
)さらに、COD50000(血)の化学ニッケルメッ
キ廃液を前述と同じ装置および条件下で処理を行ったと
ころ、わずかに12餌時間でCOD値がほ)、零に低下
した。
As the diaphragm 2, a synthetic resin plate with many pongee holes was used. First, 20% of CODIOOOO (skin) chemical steel plating waste liquid was added as the treatment liquid 7 into the electrolytic bath 1 of the apparatus of the present invention.
When the treatment was carried out under the conditions of "normal temperature" and a current of 10 V and 40 A, the COD value decreased to almost zero after only about 4 steps had passed. (This state is shown in Figure 3. show.
) Furthermore, when chemical nickel plating waste liquid with a COD of 50,000 (blood) was treated using the same equipment and conditions as described above, the COD value decreased to zero after only 12 feeding hours.

(第3図参照)この理由は実施例1と同機である。以上
のとおり、本発明装置は各種彼処理液中の汚染物質をき
わめて迅速に処理することができ、実用上極めて有用で
ある。
(See FIG. 3) The reason for this is the same as in Example 1. As described above, the apparatus of the present invention can treat contaminants in various types of treatment liquids extremely quickly, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一具体例を示し、第2図は本発明
装置と従来装置によるCOD処理の比較実験データのグ
ラフを示し「第3図は本発明装置によるCOD処理の実
験データのグラフを示す。 1…・・・電解槽、2・・・・・・隔腰、3・・・・・
・粉状ないしは粒状二酸化マンガンと電気絶縁性粒状物
質との混合体、4・・・・・・陽極室、5……主陽極、
6・…。 ・半陰極、7・・・・・・彼処理液。滋1図 後2図 多2図
Fig. 1 shows a specific example of the apparatus of the present invention, and Fig. 2 shows a graph of comparative experimental data of COD processing using the apparatus of the present invention and a conventional apparatus. The graph is shown. 1... Electrolytic cell, 2... Separate, 3...
・Mixture of powdered or granular manganese dioxide and electrically insulating granular material, 4... anode chamber, 5... main anode,
6... - Half cathode, 7... He treatment solution. Shigeru 1 drawing, 2 drawings, 2 drawings

Claims (1)

【特許請求の範囲】[Claims] 1 電解槽内に主陽極と主陰極を配置して構成され、こ
の電解槽内に河川水、産業廃水、生活排水等の各種被処
理液を装填して前記主陽極および主陰極間に電流を通電
し、これによって前記被処理液中に含有する汚染物質を
酸化分解して処理する酸化分解装置において、 前記電
解槽内の前記主陽極と相対する位置に隔膜を配置して前
記主陽極とともに陽極室を形成し、この陽極室内に粉状
ないしは粒状二酸化マンガンを装填することを特徴とし
、前記粉状ないしは粒状二酸化マンガンは電気絶縁性粉
状物質と混合して前記陽極室内に装填することを特徴と
する酸化分解装置。
1. Consists of a main anode and a main cathode arranged in an electrolytic cell. Various liquids to be treated such as river water, industrial wastewater, domestic wastewater, etc. are loaded into the electrolytic cell, and a current is applied between the main anode and the main cathode. In an oxidative decomposition device that oxidizes and decomposes contaminants contained in the liquid to be treated by applying electricity, a diaphragm is disposed in a position facing the main anode in the electrolytic cell, A chamber is formed, and powdered or granular manganese dioxide is charged into this anode chamber, and the powdered or granular manganese dioxide is mixed with an electrically insulating powdery substance and charged into the anode chamber. Oxidation decomposition equipment.
JP6079581A 1981-04-22 1981-04-22 Oxidation decomposition equipment Expired JPS606717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6079581A JPS606717B2 (en) 1981-04-22 1981-04-22 Oxidation decomposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6079581A JPS606717B2 (en) 1981-04-22 1981-04-22 Oxidation decomposition equipment

Publications (2)

Publication Number Publication Date
JPS57177388A JPS57177388A (en) 1982-11-01
JPS606717B2 true JPS606717B2 (en) 1985-02-20

Family

ID=13152593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6079581A Expired JPS606717B2 (en) 1981-04-22 1981-04-22 Oxidation decomposition equipment

Country Status (1)

Country Link
JP (1) JPS606717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585079A (en) * 2016-01-14 2016-05-18 济南大学 Electro-catalytic particle electrode for efficiently degrading ibuprofen and preparation method of electro-catalytic particle electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105585079A (en) * 2016-01-14 2016-05-18 济南大学 Electro-catalytic particle electrode for efficiently degrading ibuprofen and preparation method of electro-catalytic particle electrode

Also Published As

Publication number Publication date
JPS57177388A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
EP0071443B1 (en) Device for waste water treatment
Vasudevan et al. Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water
US3764499A (en) Process for removal of contaminants from wastes
US3793173A (en) Wastewater treatment using electrolysis with activated carbon cathode
US4310406A (en) Apparatus for removing metal ions and other pollutants from aqueous solutions and moist gaseous streams
DE3014867C2 (en) Electrolyzer
CA1257222A (en) Removal of arsenic from acids
KR100319022B1 (en) Wastewater Treatment System Using Electrolytic Injury Method
US4676878A (en) Apparatus and method for electronic decomposition of water into aqueous free radicals and free electrons
US4690741A (en) Electrolytic reactor and method for treating fluids
US4564432A (en) Apparatus for recovering metals dissolved in a solution
US4305806A (en) Electrolysis device
JPS606717B2 (en) Oxidation decomposition equipment
JP2009039705A (en) Air cell type waste water treatment apparatus
US4248684A (en) Electrolytic-cell and a method for electrolysis, using same
JPS6244995B2 (en)
FR2388597A1 (en) Electrolytic cell with no separator between the electrodes - partic. useful for eliminating pollutants from effluents
RU2060956C1 (en) Sewage purification from weighted substances method
US11535533B2 (en) Systems and methods for electrochemically enhanced water filtration
FR2237983A1 (en) Electrolytic cell having good electrolyte circulation - with non-conducting, porous layers and conducting particles between electrodes
SU882944A1 (en) Electrolyzer for water treatment
Tyrina et al. Electrochemical treatment of industrial wastewaters containing copper cyanide and thiocyanate complexes
Ruml et al. Destruction of Cyanides in Rinse Waters by Bipolar Electrolyzer
SU929743A1 (en) Apparatus for deionizing materials
JPS6125687A (en) Electrolytic apparatus of organic waste liquid