JP2009039705A - Air cell type waste water treatment apparatus - Google Patents

Air cell type waste water treatment apparatus Download PDF

Info

Publication number
JP2009039705A
JP2009039705A JP2007309787A JP2007309787A JP2009039705A JP 2009039705 A JP2009039705 A JP 2009039705A JP 2007309787 A JP2007309787 A JP 2007309787A JP 2007309787 A JP2007309787 A JP 2007309787A JP 2009039705 A JP2009039705 A JP 2009039705A
Authority
JP
Japan
Prior art keywords
air battery
graphite
treatment
cathode
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007309787A
Other languages
Japanese (ja)
Inventor
Shunji Nishi
舜司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BLUE AQUA INDUSTRY KK
Original Assignee
BLUE AQUA INDUSTRY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BLUE AQUA INDUSTRY KK filed Critical BLUE AQUA INDUSTRY KK
Priority to JP2007309787A priority Critical patent/JP2009039705A/en
Publication of JP2009039705A publication Critical patent/JP2009039705A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2826Anaerobic digestion processes using anaerobic filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus capable of both removing phosphorus by an electrochemical reaction means and decomposing organic matter by a biochemical reaction means over a long period of time in treatment of organic electrolyte waste water containing phosphate ions and phosphate compounds, while only phosphorus removal has been carried out conventionally by an electrochemical reaction means having a cell function. <P>SOLUTION: The waste water treatment apparatus comprises an air cell having a metal anode and a cathode of a carbon material such as black coal, hard charcoal, graphite or the like, which functions as both an electrochemical reaction means and a biochemical reaction means with the charcoal cathode serving as an organism carrier for an aerobic biological treatment tank in the treatment of organic electrolyte waste water containing phosphate ions or phosphorus compounds. The apparatus is also provided with a dissolved oxygen feeding means and a stirring means for efficiently continuing the electrochemical reaction and biochemical reaction, and a solid-liquid separating means for post treatment of the electrochemical reaction and biochemical reaction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リン酸イオン、リン酸体リン又はリン化合物含有の有機性廃水処理において、好気性生物処理機能と電気化学反応機能を有する、酸素供給手段、攪拌手段及び金属製アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池を備えた好気性生物処理槽を有する有機性電解質廃水処理装置に関し、必要に応じて加熱手段を併設していて、さらに必要に応じて、空気電池発電による電力と太陽電池発電による電力を統合するようにした有機性電解質の空気電池式廃水処理装置に関する。   The present invention relates to an organic aerobic biological treatment function and an electrochemical reaction function in the treatment of phosphate ion, phosphorous phosphorus or phosphorus compound-containing organic wastewater, and an oxygen supply means, a stirring means, a metal anode, black coal, and white coal. In addition, the present invention relates to an organic electrolyte wastewater treatment apparatus having an aerobic biological treatment tank equipped with an air battery as a carbonaceous cathode such as graphite or graphite, and is provided with a heating means if necessary, and further, if necessary, air The present invention relates to an organic electrolyte air battery type wastewater treatment apparatus that integrates electric power generated by battery power generation and electric power generated by solar battery power generation.

リンを含有する有機性電解質廃水を、電源を設けた電気分解によった電気化学反応手段で処理していた(例えば、特許文献1。)。
また、電源を設けた電気分解において有機性電解質廃水を加熱して処理する方法が開示されている(例えば、特許文献2。)。
また、異種金属電極で構成した一次電池による電気化学反応手段で処理する知見が開示されている(例えば、特許文献3。)。
また、電気分解による廃水処理を加熱して処理する装置が開示されている。(例えば、特許文献4。)。
また、電解質の一次電池発電装置の知見も開示されている(例えば、特許文献5。)。
また、曝気攪拌している電解質廃水と異種金属により一次電池を構成してリンを除去する知見及び発電する知見も開示されている(例えば、特許文献6。)。
また、金属製アノードと半導体性木炭製カソードとした空気電池の知見も開示されている。(例えば、特許文献7。)。
また、木炭は1g当たりの内外部の微細孔表面積が広く、高い吸着性、透水性、通気性を有し、微生物の増殖の快適な場となる知見も開示されている。(例えば、特許文献8)
また、炭素質粉抹を用いて高強度の多孔質炭素成形体の製造方法と利用方法を開示している。(例えば、特許文献9。)。
また、減極剤およびアルミニウムイオン伝導体を用いてアルミニウム空気電池の寿命を長くすることが開示されている。(例えば、特許文献10。)。
そしてまた、電気化学的手法または薬剤添加により次亜塩素酸またはオゾン若しくは活性酸素で有機物、アンモニア等を酸化分解する方法が開示されている。(例えば、特許文献11。)。
しかし、金属アノードと半導体性炭素質カソードとした空気電池を用いて効率よくした有機性電解質廃水処理装置は見当たらない。又、廃水中の有機物を好気性生物処理すると共にリン除去する機能を有する空気電池と太陽電池を統合した発電装置は見当たらない。
特開2001−252668 特開平10−323672 特開2001−252668 特開平10−323672 特開2001−252668 特開2004−66223 特開2005−85719 特開2000−61452 特開平10−45483(多孔質炭素成型体) 特開2006−147442。 特開2004−330182。
Organic electrolyte wastewater containing phosphorus has been treated by electrochemical reaction means based on electrolysis provided with a power source (for example, Patent Document 1).
Moreover, the method of heating and processing organic electrolyte wastewater in the electrolysis which provided the power supply is disclosed (for example, patent document 2).
Moreover, the knowledge which processes by the electrochemical reaction means by the primary battery comprised by the dissimilar metal electrode is disclosed (for example, patent document 3).
Moreover, the apparatus which heats and processes the wastewater process by electrolysis is disclosed. (For example, Patent Document 4).
Moreover, the knowledge of the primary battery power generation device of electrolyte is also disclosed (for example, patent document 5).
Moreover, the knowledge which comprises a primary battery with the electrolyte waste water and the dissimilar metal which are agitated and agitated and removes phosphorus, and the knowledge to generate electric power are also disclosed (for example, patent document 6).
In addition, the knowledge of air batteries using metal anodes and semiconducting charcoal cathodes is also disclosed. (For example, Patent Document 7).
In addition, the knowledge that charcoal has a wide surface area of micropores per gram per gram, has high adsorptivity, water permeability, and air permeability, and is a comfortable place for microbial growth is disclosed. (For example, Patent Document 8)
Moreover, the manufacturing method and utilization method of a high intensity | strength porous carbon molded object are disclosed using carbonaceous powder. (For example, patent document 9).
Further, it is disclosed that the life of an aluminum air battery is extended by using a depolarizer and an aluminum ion conductor. (For example, patent document 10).
Also disclosed is a method of oxidatively decomposing organic matter, ammonia, etc. with hypochlorous acid, ozone or active oxygen by electrochemical method or chemical addition. (For example, patent document 11).
However, there is no organic electrolyte wastewater treatment device that is made efficient by using an air battery having a metal anode and a semiconducting carbonaceous cathode. Moreover, there is no power generation device that integrates an air battery and a solar battery, which have the functions of aerobic biological treatment of organic matter in wastewater and phosphorus removal.
JP 2001-252668 A JP 10-323672 A JP 2001-252668 A JP 10-323672 A JP 2001-252668 A JP 2004-66223 A JP 2005-85719 A JP 2000-61452 A JP-A-10-45483 (Porous carbon molding) JP2006-147442. JP2004-330182A.

従来の金属をアノードとした一次電池法による電気化学反応手段を用いたリン除去に係る電解質廃水処理装置においては、水温が約10℃以下の低温では電気化学反応速度が遅くて、実用的でなく、リン酸イオン及びリン化合物を効果的に除去する手段が開示されていなかった。   In electrolyte wastewater treatment equipment for phosphorus removal using electrochemical reaction means by a primary battery method with a metal as an anode, the electrochemical reaction rate is slow at a low water temperature of about 10 ° C or less, which is not practical. No means for effectively removing phosphate ions and phosphorus compounds has been disclosed.

そして、従来の金属をアノードとした一次電池法に異種金属一次電池による電気化学反応手段においては有機性廃水中のリン酸イオン、リン酸体リン又はリン化合物を除去する共に前記異種金属一次電池によって有機物を好気性生物分解処理する手段が開示されていなかった。   And, in the electrochemical reaction means by the different metal primary battery in the primary battery method using the conventional metal as the anode, the phosphate ion, the phosphorous phosphorus or the phosphorus compound in the organic waste water is removed and the different metal primary battery is used. No means for aerobic biodegradation treatment of organic matter has been disclosed.

また、室温近傍でのリン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、温度が上昇することにより電気化学反応速度と生物化学反応速度は増大するが、従来の金属をアノードは温度上昇が上昇すると導電率が低下するが、温度が上昇することにより導電率が増大する半導体性炭素体を空気電池のカソードとすると共に該半導体性炭素体を有機性廃水処理における生物担体とする手段が開示されていなかった。   In addition, in the treatment of organic electrolyte wastewater containing phosphate ions, phosphorous phosphorus, or phosphorus compounds near room temperature, the electrochemical reaction rate and biochemical reaction rate increase as the temperature rises. The conductivity of the anode decreases as the temperature rises, but the semiconducting carbon body whose conductivity increases as the temperature rises is used as the cathode of the air battery, and the semiconducting carbon body is used as a biological carrier in organic wastewater treatment. No means has been disclosed.

また、異種金属をアノードとカソードとした一次電池廃水処理法においては、低pH域においては反応速度も速く、又反応の持続性も良好であるが、中性近傍での反応速度は遅く、また反応の持続性が短い問題があった。   In addition, in the primary battery wastewater treatment method using different metals as anode and cathode, the reaction rate is high in the low pH range and the reaction persists well, but the reaction rate in the vicinity of neutrality is slow. There was a problem of short duration of reaction.

また、金属をカソードとした一次電池廃水処理法においては、電流密度が小さい問題があった。   In addition, the primary battery wastewater treatment method using a metal as a cathode has a problem of low current density.

また、電源を有する電気分解法では、電気設備費と電力費が必要である問題があった。   In addition, the electrolysis method having a power source has a problem that it requires electric equipment costs and electric power costs.

本発明は、リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、電源を必要とせず、しかも効率良くリン除去のための電気化学反応を長期間に亘り継続することを第一の課題とする。また、電極材の機能として、リンを除去する機能だけでなく有機物の分解除去能に深く関与する機能を有することを第二の課題とする。また、冬季における水温の低下に伴って電気化学反応速度の低下及び生物化学反応速度の低下を阻止して、より一層の効率良い電気化学反応と生物化学反応とすることを第三の課題とする。そしてまた、第四の課題として、電気設備費と電力費をほとんど必要としないばかりでなく、リンを除去すると共に有機物を分解処理しながら電力を生産することを目的としている。   In the treatment of organic electrolyte wastewater containing phosphate ions, phosphate phosphorus or phosphorus compounds, the present invention does not require a power source and efficiently continues the electrochemical reaction for removing phosphorus over a long period of time. Let it be the first issue. Further, as a function of the electrode material, a second problem is to have not only a function of removing phosphorus but also a function deeply related to the ability to decompose and remove organic substances. In addition, the third issue is to make the electrochemical reaction and the biochemical reaction more efficient by preventing the decrease in the electrochemical reaction rate and the biochemical reaction rate with the decrease in water temperature in winter. . As a fourth problem, not only the electric equipment cost and the electric power cost are hardly required, but also an object is to produce electric power while removing phosphorus and decomposing the organic matter.

本発明は、上記目的を達成するため、以下に記載されるような技術構成とする。即ち、リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池を構成すると共に前記黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードを好気性生物処理反応槽の生物担体としていて、電気化学反応及び生物化学反応を効率良く継続するために溶存酸素供給手段、攪拌手段を配設した電気化学反応手段及び生物化学反応手段とする。尚、好気性生物処理反応槽においては、空気または酸素を水中散気曝気または機械表面曝気により溶存酸素供給手段及び攪拌手段を具備することが一般的であるので兼用出来る。また、炭素質粉体にバインダーを混合加圧成型し、再焼成して成る半導体性セラミック質の板状多孔質白炭粉成型再焼成体をカソードとして構成することも出来る。また、前記リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理には、リン酸イオン、リン酸体リン又はリン化合物含有の海水又は湖沼水処理も包含したものである。金属アノードとしては、有機性廃水処理の性格上、処理放流水に有害重金属及び有害金属化合物を含有することは好ましくないので、アルミニューム又はアルミニューム合金、マグネシューム又はマグネシューム合金、鉄又は鉄合金等が好ましく、中でも電気化学反応速度はイオン化傾向が最も大きなマグネシューム又はマグネシューム合金であって、次にアルミニューム又はアルミニューム合金、鉄又は鉄合金と続く。しかし、廃水の種類は多く、また廃水に含有する溶質もアルミニューム又はアルミニューム合金、鉄又は鉄合金等をアノードとするこれら金属それぞれに対して、電気化学反応を促進する溶質、或いは抑制もしくは妨害する溶質となるかは、前記アルミニューム又はアルミニューム合金、鉄又は鉄合金それぞれに対して同じである場合と違う場合があるので確認作業を要することもある。   In order to achieve the above object, the present invention has a technical configuration as described below. That is, in the treatment of organic electrolyte wastewater containing phosphate ions, phosphorous phosphorus, or phosphorus compounds, an air battery comprising a metal anode and a carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite and the black charcoal, white charcoal, Electrochemical reaction means using a carbonaceous cathode such as graphite or graphite as a biological carrier for an aerobic biological treatment reaction tank, and provided with dissolved oxygen supply means and stirring means in order to continue electrochemical reaction and biochemical reaction efficiently And biochemical reaction means. In an aerobic biological treatment reaction tank, since it is common to provide dissolved oxygen supply means and stirring means by air aeration or oxygen aeration in water or mechanical surface aeration, they can be used together. Alternatively, a semiconducting ceramic plate-like porous white charcoal powder re-fired body obtained by mixing and pressure-molding a binder with carbonaceous powder and re-firing can be configured as a cathode. The organic electrolyte wastewater treatment containing phosphate ion, phosphate phosphorus or phosphorus compound includes treatment of seawater or lake water containing phosphate ion, phosphate phosphorus or phosphorus compound. As the metal anode, it is not preferable to contain harmful heavy metals and harmful metal compounds in the treated effluent due to the nature of organic wastewater treatment, so aluminum or aluminum alloy, magnesium or magnesium alloy, iron or iron alloy, etc. Preferably, the electrochemical reaction rate is the magnesium or magnesium alloy having the greatest ionization tendency, followed by aluminum or aluminum alloy, iron or iron alloy. However, there are many types of wastewater, and the solutes contained in the wastewater are solutes that suppress the electrochemical reaction or inhibit or interfere with each of these metals having anodes such as aluminum or aluminum alloys, iron or iron alloys, etc. Since it may be different from the case where it becomes the solute which becomes the same with respect to each of the said aluminum or aluminum alloy, iron, or an iron alloy, confirmation work may be required.

また、水に難溶性のリン酸金属塩及び水酸化金属として固液分離するリン酸イオン、リン酸体リン又はリン化合物含有の有機性廃水処理において、空気電池による電気化学反応を効率良く継続するために溶存酸素供給手段及び攪拌手段を配設した電気化学反応手段および黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードを好気性生物処理反応槽の生物担体としたものである。   In addition, in the treatment of organic wastewater containing phosphate ions, phosphoric acid phosphorus or phosphorus compounds that are solid-liquid separated as metal phosphates and metal hydroxides that are sparingly soluble in water, the electrochemical reaction by the air battery is continued efficiently. Therefore, an electrochemical reaction means provided with a dissolved oxygen supply means and a stirring means and a carbonaceous cathode such as black coal, white coal, graphite or graphite are used as a biological carrier for an aerobic biological treatment reaction tank.

また、室温近傍においては、半導体性炭素体の電気伝導特性は、金属の電気伝導度が温度上昇と共に減少する金属性電気伝導特性を有しているのとは異なり、温度上昇と共に電気伝導度は増大し、一方電気化学反応速度と生物化学反応速度も温度上昇と共に増大するので、工場廃熱等の低級な熱源による加熱手段で好気性生物処理反応槽の被処理水を加熱するようにしたものである。しかしながら、好気性生物の適温は30℃前後にあるので、加熱し過ぎることは好ましくない。   In addition, near the room temperature, the electrical conductivity of the semiconducting carbon body is different from the electrical conductivity of the metal in which the electrical conductivity of the metal decreases with increasing temperature. On the other hand, the electrochemical reaction rate and the biochemical reaction rate also increase with the temperature rise, so that the water to be treated in the aerobic biological treatment reaction tank is heated by heating means with a low-temperature heat source such as factory waste heat. It is. However, since the optimal temperature for aerobic organisms is around 30 ° C., it is not preferable to overheat.

また、リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水を好気性生物処理反応槽に金属製アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池モジュールを構成すると共に前記炭素質カソードを好気性生物処理反応槽の生物担体としていて、各空気電池モジュールを直並列接続して空気電池ストリングスとする。そしてまた、空気電池による電気化学反応によって、難溶性のリン酸金属塩及び凝集性の良い水酸化金属粒子を生成すると共に発電し、また、必要ならば前記空気電池モジュール系統に電圧調整手段を付加接続し前記複数の空気電池ストリングスと複数の太陽電池ストリングスを接続統合する配線統合手段と充放電コントローラ及びパワ−コンディショナを配設する。また、必要ならば蓄電手段も配設する。尚、前記好気性生物処理反応槽には天然曝気資源である海域及び湖沼も包含する。   Also, an air battery module that uses phosphate electrolyte, phosphoric acid phosphorus, or phosphorus compound-containing organic electrolyte wastewater as an aerobic biological treatment reactor with a metal anode and a carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite In addition, the carbonaceous cathode is used as a biological carrier for the aerobic biological treatment reaction tank, and the air battery modules are connected in series and parallel to form an air battery string. In addition, an electrochemical reaction by an air battery generates a poorly soluble metal phosphate salt and a highly cohesive metal hydroxide particle, and generates electric power. If necessary, voltage adjusting means is added to the air battery module system. Wiring integration means for connecting and integrating the plurality of air cell strings and the plurality of solar cell strings, a charge / discharge controller, and a power conditioner are disposed. Further, a power storage means is provided if necessary. The aerobic biological treatment reaction tank also includes sea areas and lakes that are natural aeration resources.

また、多孔質炭素体にカソード機能および微生物担体機能と共に散気装置機能を持たせることにより前記多孔質炭素体の内部微細孔にまで酸素を有効に供給するようにしたものである。   In addition, oxygen is effectively supplied to the internal micropores of the porous carbon body by providing the porous carbon body with a diffuser function as well as a cathode function and a microorganism carrier function.

また、有機性電解質廃水処理において、金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池だけでは、電圧と電流が小さくて有機性電解質廃水中における電気化学反応が不十分であるか、またはさらに強力な電気化学反応を必要とする場合に前記有機性電解質廃水よりも強電解質と電極で形成した空気電池を直列又は並列に接続する。   In addition, in the treatment of organic electrolyte wastewater, only an air battery using a metal anode and a carbonaceous cathode such as black coal, white coal, graphite or graphite has a low voltage and current, and an electrochemical reaction in the organic electrolyte wastewater is insufficient. When there is a need for a stronger electrochemical reaction, an air battery formed of a stronger electrolyte and an electrode than the organic electrolyte waste water is connected in series or in parallel.

また、電解液接液手段と空気又は酸素ガス接触手段とを共に有する黒炭、白炭、黒鉛またはグラファイト等の炭素質カソードとした空気電池を有機性電解質よりも強電解質と電極で形成した空気電池をリン酸イオン、リン酸体リンまたはリン化合物含有の有機性電解質廃水処理における好気性生物処理反応槽、酸素供給手段、攪拌手段及び金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池に直列または並列に接続する。   Also, an air battery in which an air battery made of a carbonaceous cathode such as black coal, white coal, graphite or graphite having both an electrolyte solution contacting means and air or oxygen gas contact means is formed by a stronger electrolyte and an electrode than an organic electrolyte is used. An aerobic biological treatment reaction tank, oxygen supply means, stirring means and metal anode and carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite in the treatment of organic electrolyte wastewater containing phosphate ion, phosphorous phosphorus or phosphorus compound Connect in series or parallel to the air battery.

また、減極剤を炭素質カソードに当接または担持する。前記減極剤としては二酸化マンガンが好ましく、マンガンノジュール、過酸化水素等を排除するものではない。
また、アルミニウムアノードにアルミニウムイオン伝導体を当接する。前記アルミニウムイオン伝導体としてはセラミックス固体電解質、ポリマーイオン伝導体等が適用出来る。
そしてまた、電気化学反応機能によっては水に難溶性のリン酸金属塩及び水酸化金属粒子を生成すると共に生物化学反応機能によっては有機物を好気性生物分解処理する前記空気電池を直並列接続して構成した空気電池発電手段により発電した電源により不溶性アノードと水を水素ガスに還元する能力を有するカソードで構成する電極対に通電すると共に固形物濾過前処理済み塩素イオン含有有機性廃水に浸漬して生成する次亜塩素酸、オゾン若しくは活性酸素で有機物、アンモニア等を酸化分解する
上記第一の課題解決手段による作用は次のようである。すなわち、溶存酸素供給手段と攪拌手段においてはブロワ−で供給した空気を散気装置から散気して曝気する方式が最も一般的で手軽な方法であるが、表面曝気方式の機械曝気とすることや、酸素ガスを散気装置から散気することも可能であって、経済性以外に何ら制約するものはない。さらに、湖沼、河川または海における自然曝気としてもよい。曝気攪拌することによって空気電池の電気化学反応に必要な溶存酸素を供給すると共に電極での電気二重層または電気二重層近傍における反応生成物質と反応物質を速やかに交換する作用を奏する。尚、有機性生物処理における曝気槽等に空気電池を配設する場合においては、一般的に曝気槽等には溶存酸素供給手段と攪拌手段は配設されるものであるため、空気電池のために別の溶存酸素供給手段と攪拌手段を配設する必要はない。
Further, the depolarizer is brought into contact with or carried on the carbonaceous cathode. As the depolarizer, manganese dioxide is preferable and does not exclude manganese nodules, hydrogen peroxide, and the like.
An aluminum ion conductor is brought into contact with the aluminum anode. As the aluminum ion conductor, a ceramic solid electrolyte, a polymer ion conductor, or the like can be applied.
In addition, depending on the electrochemical reaction function, water phosphates and metal hydroxide particles that are hardly soluble in water are produced, and depending on the biochemical reaction function, the air cells for aerobic biodegradation treatment of organic substances are connected in series and parallel. The power source generated by the constructed air battery power generation means energizes the electrode pair consisting of an insoluble anode and a cathode capable of reducing water to hydrogen gas, and is immersed in an organic wastewater containing chloride ions pretreated by solid filtration. The action of the first problem solving means for oxidizing and decomposing organic matter, ammonia, etc. with the generated hypochlorous acid, ozone or active oxygen is as follows. That is, in the dissolved oxygen supply means and the stirring means, the method of aeration by aeration of the air supplied by the blower from the aeration device is the most common and easy method, but the mechanical aeration of the surface aeration method should be used It is also possible to diffuse oxygen gas from the diffuser, and there is no restriction other than economic efficiency. Furthermore, natural aeration in a lake, river or sea may be used. By aeration and agitation, dissolved oxygen necessary for the electrochemical reaction of the air battery is supplied and the reaction product and the reaction material in the electric double layer or in the vicinity of the electric double layer in the electrode are quickly exchanged. In the case of disposing an air battery in an aeration tank or the like in organic biological treatment, the dissolved oxygen supply means and the stirring means are generally disposed in the aeration tank or the like. It is not necessary to provide separate dissolved oxygen supply means and stirring means.

一般的に、オルトリン酸イオン含有の電解質廃水をマグネシューム、アルミニウムまたは鉄等の金属をアノードとし、黒炭、白炭、黒鉛又はグラファイト等の炭素質材をカソードとした空気電池を構成して電気化学反応処理手段で処理すると、例えばアルミニウムアノードでは、炭素質材微細孔壁に吸着した酸素分子は酸素原子に解離して、カソードを経由してアルミニウムの溶解反応で電離した電子を水分子と共に受け取り、水酸イオンとして溶解する。   In general, electrolyte reaction water containing orthophosphoric acid ions is composed of magnesium, aluminum or iron as an anode, and a carbon cell such as black charcoal, white charcoal, graphite or graphite is used as a cathode, and an electrochemical reaction treatment is performed. For example, in the case of an aluminum anode, oxygen molecules adsorbed on the microporous wall of the carbonaceous material are dissociated into oxygen atoms, and the electrons ionized by the aluminum dissolution reaction are received together with water molecules via the cathode. Dissolves as ions.

Figure 2009039705
Figure 2009039705

アノードでは、アルミニウム原子が3個の電子を金属に残し、電解液に3価のアルミニウムイオンとして溶解し、3個の前記電子はアノードとカソードを電線で接続した外部回路を通してアノードからカソードへ移動する結果として、電流は電線で接続した外部回路を通してカソードからアノードへ流れることになる。 At the anode, aluminum atoms leave three electrons in the metal and dissolve in the electrolyte as trivalent aluminum ions, and the three electrons move from the anode to the cathode through an external circuit in which the anode and the cathode are connected by a wire. As a result, current flows from the cathode to the anode through an external circuit connected by electric wires.

Figure 2009039705
Figure 2009039705

そして、水中へ溶解した3価のアルミニウムイオンと水酸イオン及びオルトリン酸イオンと反応して、以下の反応式で示す難溶解性で沈降性の良い水酸化アルミニウムおよびリン酸アルミニウムを生成する。   And it reacts with the trivalent aluminum ion melt | dissolved in water, a hydroxide ion, and an orthophosphate ion, and produces | generates the aluminum hydroxide and aluminum phosphate which are the hardly soluble and have good sedimentation shown by the following Reaction Formula.

Figure 2009039705
Figure 2009039705

Figure 2009039705
Figure 2009039705

さらに、水酸化アルミニウムは脱水反応によりアルミナを生成する。 Furthermore, aluminum hydroxide produces alumina by a dehydration reaction.

Figure 2009039705
Figure 2009039705

Figure 2009039705
Figure 2009039705

また、第二の課題を解決する手段の作用は、冬季の低水温環境において、電気化学反応速度は極端に低下するので、必要に応じて被処理廃水を加熱することにより、80℃未満の水温であれば高い程、電気化学反応速度は大きくなり、反応生成粒子形は大きくなると共に廃水の粘度も小さくなるので、電気化学反応が促進され沈降性の良好な粒子を生成する。   In addition, the action of the means for solving the second problem is that the electrochemical reaction rate is extremely lowered in a low water temperature environment in winter. Therefore, by heating the wastewater to be treated as necessary, a water temperature of less than 80 ° C. If it is higher, the electrochemical reaction rate becomes larger, the reaction product particle shape becomes larger and the viscosity of the waste water becomes smaller, so that the electrochemical reaction is promoted and particles having good sedimentation properties are produced.

また、好気性生物処理における水温は30℃前後が好ましいが、一般的には廃水の水温は15℃前後以上であることが多いので、加熱源は低級な廃熱で十分である場合が多い。   In addition, the water temperature in the aerobic biological treatment is preferably around 30 ° C., but generally the waste water temperature is often around 15 ° C. or more, and therefore, a low waste heat is often sufficient as a heating source.

従って、水温が低く良好な処理水とする必要性があれば、加熱手段で被処理水を加熱することは、電気化学反応と生物化学反応に有効に作用する。   Therefore, if there is a need for good treated water having a low water temperature, heating the treated water with the heating means effectively acts on the electrochemical reaction and the biochemical reaction.

また、本発明に用いる半導体性炭素体においては、温度上昇と共に伝導帯に励起される自由電子密度と価電子帯に電子の抜け殻として生成される自由ホール密度が増大するため、温度上昇と共に導電率が指数関数的に増大する。さらに、半導体性炭素体は好気性生物担体としての機能も有し、一般的に好気性生物は30℃前後にして至適温度を有する。従って、半導体性炭素体をカソードとした空気電池においては、工場廃熱等で被処理水を加熱することにより、空気電池のカソードとして有用になる。   Further, in the semiconducting carbon body used in the present invention, the free electron density excited in the conduction band and the free hole density generated as an electron shell in the valence band increase as the temperature rises. Increases exponentially. Further, the semiconducting carbon body also has a function as an aerobic biological carrier. Generally, an aerobic organism has an optimum temperature around 30 ° C. Therefore, an air battery using a semiconducting carbon body as a cathode is useful as a cathode of an air battery by heating water to be treated with factory waste heat or the like.

また、第三の課題解決手段による作用は、単体空気電池の開放電圧はせいぜい0.6V程度で、電流も数mmA〜数十mmA程度しかない使用目的に適した電圧と電流が得られるように、好気性生物処理反応槽を複数の流通孔を有する仕切り板で区画すると共に各区画槽に複数の単位空気電池を配設し、該単位空気電池を並列に接続して電流量を増大した一次電池モジュ−ルとする。そして、必要に応じて太陽電池と同様の手法で電圧調整、逆流防止、直流交流変換等が組み込まれる。例えば必要に応じて複数の空気電池モジュールを並列接続したものと逆流防止ダイオードを直列接続して空気電池ストリングスとする。そしまた、必要に応じて該空気電池ストリングスと太陽電池ストリングスを並列接続しても支障が生じないようにするために、前記空気電池ストリングス及び太陽電池ストリングスの出力側に自動昇圧ユニットを接続して電圧調整することも出来る。勿論、前記太陽電池ストリングスは各々に各モジュール、及び逆流防止ダイオードとバイパスダイオード、それにアレイ回路を直並列に組合せる電線で構成される。さらに、前記一次電池ストリングス及び太陽電池ストリングスの出力側を、直流電力を交流電力への変換手段及び系統連係保護手段を内蔵したパワ−コンディショナの入力側に接続すると共に該パワ−コンディショナの出力側を分電盤の入力側に接続する。該分電盤の入力側には商用電源を接続する。このように配線することにより一次電池による発電電力を太陽電池による発電電力と同一の発電電力として扱うことができる。なお、ここでは空気電池を備える好気性生物処理槽を仕切り板で区画して空気電池としたが、複数の区画を並列接続して空気電池モジュ−ルとすることも、また、複数の区画を直列接続して空気電池モジュ−ルとすることも出来る。また、蓄電池を付加して自立運転することも、また、商用と自家発電とを切り替え方式とすることも、又、商用電源と連係しない独立システムとすることも出来る。即ち、太陽電池ストリングス単独で従来から行われている発電システムと、充放電システムと、電力変換システムと、保護システム及び配線工事については、移動性以外は全て適用出来る。   Also, the third problem solving means is that the open voltage of the single air battery is about 0.6 V and the current is only several mmA to several tens of mmA, so that a voltage and current suitable for the purpose of use can be obtained. The aerobic biological treatment reaction tank is partitioned by a partition plate having a plurality of flow holes, and a plurality of unit air batteries are arranged in each partition tank, and the unit air batteries are connected in parallel to increase the amount of current. Battery module. And if necessary, voltage adjustment, backflow prevention, DC / AC conversion, and the like are incorporated in the same manner as the solar cell. For example, if necessary, a plurality of air battery modules connected in parallel and a backflow prevention diode are connected in series to form an air battery string. In addition, an automatic booster unit is connected to the output side of the air cell strings and the solar cell strings so as not to cause any trouble even if the air cell strings and the solar cell strings are connected in parallel as necessary. The voltage can be adjusted. Of course, each of the solar cell strings is composed of each module, a backflow prevention diode and a bypass diode, and an electric wire combining an array circuit in series and parallel. Furthermore, the output side of the primary battery strings and the solar cell strings is connected to the input side of a power conditioner incorporating DC power conversion means and system linkage protection means, and the output of the power conditioner Connect the side to the input side of the distribution board. A commercial power supply is connected to the input side of the distribution board. By wiring in this way, the power generated by the primary battery can be handled as the same power generated by the solar battery. In addition, although the aerobic biological treatment tank provided with an air battery was divided with a partition plate to make an air battery here, a plurality of compartments may be connected in parallel to form an air battery module. An air battery module may be connected in series. In addition, it is possible to perform a self-sustained operation by adding a storage battery, to switch between commercial and private power generation, or to be an independent system not linked to a commercial power source. In other words, all of the power generation systems, charge / discharge systems, power conversion systems, protection systems, and wiring works that have been conventionally performed by solar cell strings alone can be applied except for mobility.

また、多孔質の炭素体にカソード機能および生物担体機能と共に散気装置機能を持たせることにより前記多孔質炭素体の細孔内部にまで酸素が浸透する。   In addition, oxygen is infiltrated into the pores of the porous carbon body by providing the porous carbon body with a diffuser function as well as a cathode function and a biological carrier function.

また、有機性電解質廃水処理において、金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池だけでは、電圧と電流が小さくて有機性電解質廃水中における電気化学反応が不十分であるか又はさらに強力な電気化学反応を必要とする場合に前記有機性電解質廃水よりも強電解質と電極で形成した一次電池を直列に接続すると、電気回路の電圧と電流が大きくなり前記有機性電解質廃水中の電気化学反応がより強くなる。前記有機性電解質廃水以外の電解質は強電解質である程良い。
また、電解液接液手段と空気又は酸素ガス接触手段とを共に有する黒炭、白炭、黒鉛またはグラファイト等の炭素質カソードとした空気電池を有機性電解質よりも強電解質と電極で形成した空気電池をリン酸イオン、リン酸体リンまたはリン化合物含有の有機性電解質廃水処理における好気性生物反応槽、酸素供給手段、攪拌手段及び金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池に直列または並列に接続すると、有機性電解質よりも強電解質の液中においては、好気性生物は一部を除いて、生存出来ないかまたは生存活動が抑制されるので、液中の溶存酸素摂取は空気電池のみによるか、または好気性生物によるものも含まれるとしても、その量は僅かである。従って、多孔性炭素質カソードの一部を空気中または酸素ガス中に露出して配設することにより、空気電池の電気化学反応により消費される酸素量を多少越える程度であれば、補給出来る。
また、アノードから流れてきた電子と水素イオンが結びつき電極反応の進行を妨げるが、二酸化マンガン、過酸化水素、二クロム酸カリウム等の酸化剤を炭素質カソードに当接または担持すると、電極反応生成物の水素を酸化して電極反応の低下を抑制する。
また、アルミニウムアノードにアルミニウムイオン伝導体を当接すると、アルミニウムの酸化により生成するアルミニウムイオンが前記アルミニウムアノードの表面にある前記アルミニウムイオンと水酸イオンが結合して生成する水酸化アルミニウムはアノードの酸化反応による放電を阻害するが、アルミニウムイオン伝導体を前記アルミニウムアノードに当接すると、前記アルミニウムイオン伝導体中でアルミニウムイオンと水酸イオンが結合し、その結果水酸化アルミニウムが前記アルミニウムイオン伝導体中に分散して生成する。このようなメカニズムによって、従来課題となっていた水酸化アルミニウムが前記アルミニウムアノード表面に付着することによる放電阻害を抑制していると推測されていて、前記水酸化アルミニウムによる放電阻害を抑制する。
In addition, in the treatment of organic electrolyte wastewater, only an air battery using a metal anode and a carbonaceous cathode such as black coal, white coal, graphite or graphite has a low voltage and current, and an electrochemical reaction in the organic electrolyte wastewater is insufficient. When a primary battery formed of a stronger electrolyte and an electrode than the organic electrolyte wastewater is connected in series when there is a more or more powerful electrochemical reaction, the voltage and current of the electric circuit increase and the organic electrolyte The electrochemical reaction in the wastewater becomes stronger. The electrolyte other than the organic electrolyte waste water is preferably a strong electrolyte.
Also, an air battery in which an air battery made of a carbonaceous cathode such as black coal, white coal, graphite or graphite having both an electrolyte solution contacting means and air or oxygen gas contact means is formed by a stronger electrolyte and an electrode than an organic electrolyte is used. Aerobic bioreactor, oxygen supply means, agitation means and metal anode and carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite in the treatment of organic electrolyte wastewater containing phosphate ion, phosphorous phosphorus or phosphorus compound If the battery is connected in series or in parallel, the aerobic organisms will not be able to survive or the survival activity will be suppressed in liquids of strong electrolytes rather than organic electrolytes. Ingestion is insignificant, whether by air batteries alone or by aerobic organisms. Accordingly, by disposing a part of the porous carbonaceous cathode exposed in the air or oxygen gas, it can be replenished as long as it exceeds the amount of oxygen consumed by the electrochemical reaction of the air battery.
Electrons flowing from the anode and hydrogen ions combine to prevent the progress of the electrode reaction. However, when an oxidizing agent such as manganese dioxide, hydrogen peroxide, or potassium dichromate is in contact with or supported on the carbonaceous cathode, an electrode reaction is generated. Oxidizes the hydrogen of the product to suppress the decrease in electrode reaction.
In addition, when an aluminum ion conductor is brought into contact with the aluminum anode, aluminum ions generated by oxidation of aluminum are combined with the aluminum ions and hydroxide ions on the surface of the aluminum anode to form aluminum hydroxide. Although discharge by reaction is inhibited, when an aluminum ion conductor is brought into contact with the aluminum anode, aluminum ions and hydroxide ions are combined in the aluminum ion conductor, so that aluminum hydroxide is contained in the aluminum ion conductor. Generated in a distributed manner. Due to such a mechanism, it is presumed that aluminum hydroxide, which has been a problem in the past, suppresses discharge inhibition due to adhesion to the surface of the aluminum anode, and suppresses discharge inhibition due to the aluminum hydroxide.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。   Since the present invention is configured as described above, the following effects can be obtained.

リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水を好気性生物処理反応槽に、金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素材カソードとした空気電池を構成すると共に前記黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードを好気性生物処理反応槽の生物担体としていて、さらに電気化学反応及び生物化学反応を効率良く継続するために溶存酸素供給手段、攪拌手段を配設した電気化学反応手段及び生物化学反応手段とすると共に該電気化学反応手段及び生物化学反応の後処理として固液分離手段を後置することにより、電気分解法のように電力源を必要とせず、リンを除去すると共に、前記黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードが生物担体としての機能も兼用するので、設置面積を小さくすることが出来ると共に設備費を低く抑える効果がある。前記黒炭、白炭、黒鉛又はグラファイト等の炭素体は、1g当たり100~400平方メートルの微細孔表面積を持つ極めて多孔質の材料で、高い吸着性、透水性、通気性を有し、微生物の快適な増殖の場となり、且つ溶出するミネラル分が微生物の好栄養源となるので処理効率を高くする効果がある。そして、空気電池のアノ−ド及びカソ−ドによる酸化還元によりリン酸金属塩、水酸化金属及び酸化金属を生成するがこれらは難溶性で沈降性もよいので固液分離を容易にする効果もある。   Constructing an air battery comprising an organic electrolyte wastewater containing phosphate ions, phosphorous phosphorus or phosphorus compounds in an aerobic biological treatment reaction tank and using a metal anode and a carbon material cathode such as black coal, white coal, graphite or graphite A carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite is used as a biological carrier for the aerobic biological treatment reaction tank, and dissolved oxygen supply means and stirring means are installed to continue the electrochemical reaction and biochemical reaction efficiently. By using the electrochemical reaction means and the biochemical reaction means as well as post-processing the solid-liquid separation means as a post-treatment of the electrochemical reaction means and the biochemical reaction, a power source is not required as in the electrolysis method, While removing phosphorus, the carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite also serves as a biological carrier, so the installation area can be reduced. There is a low effect of suppressing the cost of equipment it is possible to fence. Carbon body such as black charcoal, white charcoal, graphite or graphite is an extremely porous material having a fine pore surface area of 100 to 400 square meters per gram, and has high adsorptivity, water permeability and air permeability, and is comfortable for microorganisms. Since the mineral content to be eluted becomes a eutrophic source of microorganisms, it has an effect of increasing the processing efficiency. Then, metal phosphates, metal hydroxides and metal oxides are produced by oxidation / reduction with anodes and cathodes of air batteries, but these are hardly soluble and have good sedimentation, so that they also have the effect of facilitating solid-liquid separation. is there.

半導体性の木炭は、種々の木材を製材するときに生じた鋸挽き屑即ち大鋸屑を用いていて、該大鋸屑を乾燥後、粉体から硬質のバルク形状に圧縮加工後焼成して製造される。また、廃水処理に利用済みの半導体性木炭は、塩素滅菌処理及び乾燥処理を加えて燃料として利用することが出来る。従って、無利用資源を有効に活用することが出来るので、地球温暖化防止効果、省エネルギー効果及び廃水処理費削減効果を奏する。   Semiconducting charcoal is produced by using sawdust or large sawdust generated when sawing various kinds of wood, drying the large sawdust, compressing it from powder to a hard bulk shape, and firing it. Moreover, the semiconducting charcoal used for the wastewater treatment can be used as a fuel by adding a chlorine sterilization treatment and a drying treatment. Therefore, since unused resources can be used effectively, the effect of preventing global warming, the effect of energy saving, and the effect of reducing wastewater treatment costs are exhibited.

冬季等の水温が低い時期には電気化学反応速度及び生物化学反応速度が遅いと共に半導体性炭素質の導電率が減少するので、加熱して水温を上昇させると、電気化学反応速度及び生物化学反応速度が上昇すると共に半導体性炭素質の導電率が増大して、リン除去効率及びBOD除去効率が向上する効果がある。さらに、水温が上昇すると粘度が低下して、粒子の沈降分離又は濾過分離がしやすくなる効果がある。   When the water temperature is low, such as in winter, the electrochemical reaction rate and the biochemical reaction rate are slow and the conductivity of the semiconducting carbonaceous material decreases, so when the water temperature is raised by heating, the electrochemical reaction rate and the biochemical reaction As the speed increases, the conductivity of the semiconducting carbonaceous material increases, and the phosphorus removal efficiency and the BOD removal efficiency are improved. Further, when the water temperature rises, the viscosity is lowered, and there is an effect that the particles are easily separated or separated by filtration.

リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池を構成すると共に電流密度の大きい前記黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードを好気性生物処理反応槽の生物担体としていて、さらに電気化学反応及び生物化学反応を効率良く継続するために溶存酸素供給手段、攪拌手段を配設した電気化学反応手段及び生物化学反応手段を有する廃水処理とする共に発電した電力を利用することが出来るので、地球温暖化防止効果、化石燃料発電及び原子力発電削減効果及び経済性向上効果がある。   In the treatment of organic electrolyte wastewater containing phosphate ion, phosphorous phosphorus or phosphorus compound, the black charcoal having a large current density while constituting an air battery with a metal anode and a carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite, Electricity provided with carbonaceous cathodes such as white coal, graphite or graphite as the biological carrier of the aerobic biological treatment reaction tank, and further provided with dissolved oxygen supply means and stirring means in order to continue the electrochemical reaction and biochemical reaction efficiently. Since the wastewater treatment having chemical reaction means and biochemical reaction means can be used together with the generated electric power, there are effects of preventing global warming, reducing fossil fuel power generation and nuclear power, and improving economic efficiency.

リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水中に、金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池を配設すると共に太陽電池を併設して配線統合手段で統合することにより、パワーコンデショナー、自動電圧調整装置、送受変電設備等の電気設備を共用出来るので発電コストを低減出来る効果が有る。   In the organic electrolyte wastewater containing phosphate ion, phosphate phosphorus or phosphorus compound, an air battery with a metal anode and a carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite is disposed and a solar cell is also provided. By integrating with the wiring integration means, it is possible to share electric equipment such as a power conditioner, automatic voltage regulator, transmission / reception substation equipment, etc., so there is an effect of reducing power generation cost.

また、多孔質の炭素体にカソード機能および微生物担体機能と共に散気装置機能を持たせることにより前記多孔質炭素体の細孔内部にまで酸素が送気されるので、高電流密度で電気化学反応が持続できる。   In addition, oxygen is supplied into the pores of the porous carbon body by providing the porous carbon body with the cathode function and the microbial carrier function as well as the diffuser function, so that the electrochemical reaction at a high current density. Can be sustained.

また、有機性電解質廃水処理において、金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池だけでは、電圧と電流が小さくて有機性電解質廃水中における電気化学反応が不十分であるか又はさらに強力な電気化学反応を必要とする場合に前記有機性電解質廃水よりも強電解質と電極で形成した一次電池を直列に接続すると、前記有機性電解質廃水中の電気化学反応速度が大きくなるので難溶性のリン酸塩生成速度が大きくなり、リン除去が促進される。また、電気回路の電圧と電流が大きくなるので発電電力量が多くなる。   In addition, in the treatment of organic electrolyte wastewater, only an air battery using a metal anode and a carbonaceous cathode such as black coal, white coal, graphite or graphite has a low voltage and current, and an electrochemical reaction in the organic electrolyte wastewater is insufficient. If a primary battery formed of a strong electrolyte and an electrode is connected in series to the organic electrolyte wastewater when there is or a stronger electrochemical reaction is required, the electrochemical reaction rate in the organic electrolyte wastewater is increased. As a result, the rate of formation of poorly soluble phosphate is increased, and phosphorus removal is promoted. Moreover, since the voltage and current of the electric circuit increase, the amount of generated power increases.

また、有機性電解質廃水以外の飽和食塩水、飽和食塩水と硫酸アンモニューム、強酸性水、強アルカリ性水等を電解液とした炭素質カソード空気電池での溶存酸素消費の内訳は、好気性生物による消費は無いか在っても僅かであって、空気電池による溶存酸素消費は自然補給で十分であるので、空気または酸素を散気する必要がなく省エネルギーである。   In addition, the breakdown of dissolved oxygen consumption in carbonaceous cathode air cells using saturated saline, saturated saline and ammonium sulfate, strong acidic water, strong alkaline water, etc. as the electrolyte other than organic electrolyte wastewater is the aerobic organism. There is little or no consumption due to air, and since dissolved oxygen consumption by the air battery is sufficient for natural replenishment, there is no need to diffuse air or oxygen, thus saving energy.

また、二酸化マンガン、過酸化水素、二クロム酸カリウム等の酸化剤を炭素質カソードに当接または担持すると、電極反応生成物の水素を酸化して電極反応の低下を抑制するので、起電力及び電流密度低下を抑制する効果がある。   Further, when an oxidizing agent such as manganese dioxide, hydrogen peroxide, potassium dichromate or the like is brought into contact with or supported on the carbonaceous cathode, hydrogen of the electrode reaction product is oxidized to suppress a decrease in the electrode reaction. There is an effect of suppressing a decrease in current density.

また、アルミニウムイオン伝導体を前記アルミニウムアノードに当接すると、水酸化アルミニウムによる放電阻害を抑制するので、起電力及び電流密度低下を抑制する効果がある。   Further, when the aluminum ion conductor is brought into contact with the aluminum anode, discharge inhibition due to aluminum hydroxide is suppressed, so that there is an effect of suppressing electromotive force and current density reduction.

また、空気電池発電手段により発電した電源により不溶性アノードと水を水素ガスに還元する能力を有するカソードで構成する電極対に通電して電気分解する共に固形物濾過前処理済み塩素イオン含有有機性廃水に浸漬して生成する次亜塩素酸、オゾン若しくは活性酸素で有機物、アンモニア等を酸化分解する空気電池による電気化学反応機能によって水に難溶性のリン酸金属塩としてリンを除去するだけでは、せっかく利用可能な電気を無駄に捨てることに比較すると、資源の有効活用となり、電源を有する電気分解に比較すると、省エネルギーとなる。   In addition, an insoluble anode and an electrode pair composed of a cathode having the ability to reduce water to hydrogen gas by a power source generated by an air battery power generation means are electrolyzed and are subjected to solid matter filtration pretreatment chlorine ion-containing organic waste water. By removing the phosphorus as a metal phosphate that is hardly soluble in water by the electrochemical reaction function of the air battery that oxidizes and decomposes organic substances, ammonia, etc. with hypochlorous acid, ozone or active oxygen generated by immersion in water. Compared to wasted use of available electricity, it is an effective use of resources, and it is energy saving compared to electrolysis with a power source.

そしてまた、電気分解における電流量は電気化学反応量とだけに限っては比例関係にはないが、空気電池等の一次電池における電流は電気化学反応量の結果としての現象物理量であるため、電流を測定監視することにより、空気電池の電気化学反応の状態を監視出来るので、電流を廃水処理状態の管理指標として利用できる。   In addition, the amount of current in electrolysis is not proportional to the amount of electrochemical reaction alone, but the current in a primary battery such as an air battery is a phenomenon physical quantity as a result of the amount of electrochemical reaction. Since the state of the electrochemical reaction of the air battery can be monitored by measuring and monitoring the current, the current can be used as a management index of the wastewater treatment state.

実施例について図面を参照して説明する。図1、図2、図3、図4及び図5に示した第一の発明に係る第一の実施例において、リン酸イオン、リン酸体リン又はリン化合物を少なくとも含有する有機性電解質廃水を好気性生物処理する接触酸化反応槽1における接触材床2の上部であって前記有機性電解質廃水中に平板状のアルミニウムアノ−ド3と平板状の木炭カソ−ド4で電気絶縁性メッシュ材5を挟んで近接して前記平板状のアルミニウムアノ−ド3と前記平板状の木炭カソ−ド4を電気導体6で電気的に接続して単位空気電池7を構成すると共に42台の該単位空気電池7を支持枠8で支持して構成した空気電池式廃水処理装置9としている。散気装置10は好気性生物および空気電池の酸化反応に必要な酸素を供給するためと酸化反応を促進するために空気を供給して散気攪拌している。そして、前記支持枠8は出来るだけ流動水の妨げとならないように、部材を細くした格子状の流通孔8aが多数配設されている。また、前記接触酸化反応槽1に後置した沈澱槽11に処理水を移流して前記接触酸化反応槽1で生成した水に難溶性のリン酸アルミニウム、水酸化金属、アルミナ、生物性固形物及びその他沈降性固形物を沈澱分離して清澄水を排出している。尚、前記有機性電解質廃水処理には、海水又は湖沼水処理も包含したものであって、勿論のことではあるが、以下に記載するリン酸イオンまたはリン化合物を少なくとも含有する有機性電解質廃水処理にも適用する。尚、本実施例では、平板状の前記アルミニウムアノ−ド3と平板状の木炭カソ−ド4を電気絶縁性メッシュ材5を挟んで近接して浸漬しているが、平板状のアルミニウムアノ−ド3と平板状の木炭カソ−ド4は10cm前後までの離隔でも、電気化学反応は実用上で支障なく十分に生起する。本実施例(以降の他の実施例においても同様)では空気電池式廃水処理装置を接触材床2と併設しているが、標準活性汚泥法、担体流動生物濾過法および長時間曝気法等の他の好気性生物処理と併設することも、単独に配設することも出来る。   Embodiments will be described with reference to the drawings. In the first embodiment according to the first invention shown in FIG. 1, FIG. 2, FIG. 3, FIG. 4 and FIG. 5, organic electrolyte wastewater containing at least phosphate ions, phosphorous phosphorus or phosphorus compounds is used. An electrically insulating mesh material comprising a flat aluminum anode 3 and a flat charcoal cathode 4 in the organic electrolyte waste water at the upper part of the contact material bed 2 in the catalytic oxidation reaction tank 1 for aerobic biological treatment. The flat aluminum anode 3 and the flat charcoal cathode 4 are electrically connected by an electric conductor 6 in the vicinity of 5 to form a unit air cell 7 and 42 units. The air battery type waste water treatment apparatus 9 is configured by supporting the air battery 7 with a support frame 8. The air diffuser 10 supplies air for aerobic organisms and oxygen necessary for the oxidation reaction of the air battery and diffuses and agitates to promote the oxidation reaction. The support frame 8 is provided with a large number of lattice-shaped flow holes 8a each having a thin member so as not to obstruct the flowing water as much as possible. In addition, the treated water is transferred to a precipitation tank 11 placed after the catalytic oxidation reaction tank 1 to form a water-insoluble aluminum phosphate, metal hydroxide, alumina, biological solids in the catalytic oxidation reaction tank 1. And other settled solids are separated by precipitation to discharge clear water. The organic electrolyte wastewater treatment includes seawater or lake water treatment, and of course, organic electrolyte wastewater treatment containing at least phosphate ions or phosphorus compounds described below. Also apply to. In this embodiment, the flat aluminum anode 3 and the flat charcoal cathode 4 are immersed in close proximity with the electrically insulating mesh material 5 interposed therebetween. Even when the door 3 and the plate-like charcoal cathode 4 are separated by up to about 10 cm, the electrochemical reaction occurs sufficiently without any practical problem. In this example (the same applies to the other examples below), an air battery type wastewater treatment device is provided together with the contact material bed 2, but the standard activated sludge method, the carrier fluidized biological filtration method, the long-time aeration method, etc. It can be installed together with other aerobic biological treatments, or can be provided alone.

図6に示した第一の発明に係る第二の実施例において、夾雑物除去槽12,嫌気性濾床槽13、担体流動生物濾過槽14、処理水槽15及び消毒槽16の順序で被処理水の流れ方向に配列して配設した担体流動生物濾過方式合併処理浄化槽17の前記担体流動生物濾過槽14にアルミニウムアノ−ド3と木炭カソ−ド4を電気絶縁性メッシュ材5を挟んで近接して浸漬すると共に前記平板状のアルミニウムアノ−ド3と前記平板状の木炭カソ−ド4を電気導体6で電気的に接続した複数の単位空気電池7を支持枠8で支持構成した空気電池ユニット9を配設している。
図7に示した第一の発明に係る第三の実施例においては、図6に示した担体流動生物濾過方式合併処理浄化槽17の循環装置18の循環配管19の途中に配設した空気電池ユニット収納槽20に空気電池ユニット9を配設している。そして、前記循環装置18にはエアーリフトポンプ21を配設している。
In the second embodiment according to the first invention shown in FIG. 6, the contaminant removal tank 12, the anaerobic filter bed tank 13, the carrier fluid biological filtration tank 14, the treated water tank 15, and the disinfection tank 16 are processed in this order. The carrier fluid biological filtration tank 14 of the carrier fluid biological filtration system arranged in the water flow direction is disposed in the carrier fluid biological filtration tank 14 with the aluminum anode 3 and the charcoal cathode 4 sandwiched between the electrically insulating mesh material 5. Air in which a plurality of unit air cells 7 that are immersed in close proximity and electrically connected to each other by the electric conductor 6 and the flat aluminum anode 3 and the flat charcoal cathode 4 are supported by a support frame 8. A battery unit 9 is provided.
In the third embodiment according to the first invention shown in FIG. 7, the air battery unit disposed in the middle of the circulation pipe 19 of the circulation device 18 of the carrier flow biological filtration system combined treatment purification tank 17 shown in FIG. An air battery unit 9 is disposed in the storage tank 20. The circulation device 18 is provided with an air lift pump 21.

図4、図5、図8、図9、図10、図11および図12に示した第一の発明に係る第四の実施例においては、リン酸イオン、リン酸体リン又はリン化合物を少なくとも含有する閉鎖性湖沼水中に図4および図5に示す複数の単位空気電池7を支持枠8に配設して空気電池ユニット9としていて、該支持枠8を一部水中に浸漬し残部を水上に出した状態でフロート22によって水上に浮かべた浮体槽式浄化装置23の接触材床2上部に配設している。そして、該浮体槽式浄化装置23の槽外湖沼水を散気装置10で曝気すると共に循環水中ポンプ24で閉鎖性湖沼水を浮体式浄化装置23内に導水し下降流となるように吸水すると、前記空気電池ユニット9および接触材床2を通過して集水ホッパーおよび集水管を経て前記循環水中ポンプ24で湖沼へ排出される。この一連の操作を繰り返し行うことで前記閉鎖性湖沼水を浄化している。風と波浪に対する安定確保のためのウェイト25をそれぞれハンガー26で吊り下げた前記浮体槽式浄化装置23をアンカー27で係留している。本実施例では閉鎖性湖沼としたが、閉鎖性海域にも同様に適用出来る。そして、曝気方法においても、本実施例以外の表面機械曝気、深層曝気、自然曝気等も適用出来、どのような曝気方法も排除するものではない。   In the fourth embodiment according to the first invention shown in FIG. 4, FIG. 5, FIG. 8, FIG. 9, FIG. 11, FIG. A plurality of unit air cells 7 shown in FIG. 4 and FIG. 5 are arranged on the support frame 8 in the enclosed lake water to be used as the air cell unit 9, and the support frame 8 is partly immersed in water and the rest is on the water. The float 22 is placed above the contact material floor 2 of the floating tank purifier 23 floated on the water by the float 22. Then, when the outside lake water of the floating tank type purifying device 23 is aerated by the air diffuser 10 and the closed lake water is introduced into the floating type purifying device 23 by the circulating submersible pump 24 and is absorbed so as to be a downward flow. Then, the air passes through the air battery unit 9 and the contact material floor 2, passes through a water collecting hopper and a water collecting pipe, and is discharged to a lake by the circulating submersible pump 24. The closed lake water is purified by repeating this series of operations. The floating tank type purification device 23 in which weights 25 for securing stability against wind and waves are suspended by hangers 26 is moored by an anchor 27. In this embodiment, a closed lake is used, but the present invention can also be applied to a closed sea area. Also in the aeration method, surface mechanical aeration, deep layer aeration, natural aeration, etc. other than the present embodiment can be applied, and any aeration method is not excluded.

図13に示したものは、第一の発明に係る第一から第四の実施例における単位空気電池7の別の形態の一つであって、円筒状の木炭カソード4の円筒孔28にステンレス端子29を電導性樹脂30で固着した前記円筒状の木炭カソード4の外周に電気絶縁性メッシュ5を挟んで外周にアルミニウム端子31を電気的に接続して固着した丸棒円形リング状のアルミニウムアノード3を配設している。   FIG. 13 shows another embodiment of the unit air cell 7 in the first to fourth embodiments according to the first invention, in which the cylindrical hole 28 of the cylindrical charcoal cathode 4 is made of stainless steel. A round rod-shaped ring-shaped aluminum anode in which an aluminum terminal 31 is electrically connected and fixed to the outer periphery of the cylindrical charcoal cathode 4 to which the terminal 29 is fixed with a conductive resin 30 with an electrically insulating mesh 5 interposed therebetween. 3 is disposed.

図14に示したものは、第一の発明に係る第一から第四の実施例における単位空気電池7の別の形態の一つであって、円筒状の木炭カソード4の円筒孔28にステンレス端子29を電導性樹脂30で固着した前記円筒状の木炭カソード4の外周に電気絶縁性メッシュ5を挟んでアルミニウム端子31を電気的に接続して固着した円筒状のアルミニウムアノード3を配設している。   FIG. 14 shows another embodiment of the unit air battery 7 in the first to fourth embodiments according to the first invention, in which the cylindrical hole 28 of the cylindrical charcoal cathode 4 is made of stainless steel. A cylindrical aluminum anode 3 in which an aluminum terminal 31 is electrically connected and fixed to the outer periphery of the cylindrical charcoal cathode 4 to which a terminal 29 is fixed with a conductive resin 30 is sandwiched by an electrically insulating mesh 5 is disposed. ing.

図15に示したものは、第一の発明に係る第一から第四の実施例における単位空気電池7の別の形態の一つであって、円筒状の木炭カソード4の図示してない円筒孔28にストッパー部32及び雄ねじ部33付ステンレス端子29を挿入してステンレスナット34で締め付けている。   FIG. 15 shows another example of the unit air cell 7 in the first to fourth embodiments according to the first invention, in which the cylindrical charcoal cathode 4 is not shown. A stainless steel terminal 29 with a stopper portion 32 and a male screw portion 33 is inserted into the hole 28 and tightened with a stainless nut 34.

図16に示したものは、第一の発明に係る第一から第四の実施例における単位空気電池7の別の形態の一つであって、平板状のアルミニウムアノード3の両側に電気絶縁性メッシュ5を挟みこんだ2枚の平板状の黒鉛カソード35と前記アルミニウムアノード3を電気導体6で電気的に接続して構成した5組の単位空気電池7を支持枠8に収納している。   FIG. 16 shows another example of the unit air battery 7 in the first to fourth embodiments according to the first invention, in which both sides of the flat aluminum anode 3 are electrically insulated. Five sets of unit air cells 7 configured by electrically connecting two flat graphite cathodes 35 sandwiching the mesh 5 and the aluminum anode 3 through electric conductors 6 are accommodated in a support frame 8.

図17に示したものは、第一の発明に係る第一から第四の実施例における単位空気電池7の別の形態の一つであって、平板状のアルミニウムアノード3を内側に2枚の平板状の黒鉛カソード35を外側に離隔して配設すると共に電気導体6で電気的に接続して構成した5組の単位空気電池7を支持枠8に収納している。   What is shown in FIG. 17 is one of the other forms of the unit air cell 7 in the first to fourth embodiments according to the first invention, in which two flat plate-like aluminum anodes 3 are arranged on the inside. Five sets of unit air cells 7 configured by disposing flat graphite cathodes 35 apart from each other and being electrically connected by electric conductors 6 are accommodated in a support frame 8.

図18に示したものは、第一の発明に係る第一から第四の実施例における単位空気電池7の別の形態の一つであって、複数の円筒状の木炭カソード4の円筒孔28に炭素繊維紐36を通して電気的に接続すると共に炭素繊維布袋37に収納して木炭カソードユニット38を構成し、該木炭カソードユニット38の両側に電気絶縁性メッシュ5を挟みこんだ2枚の平板状のアルミニウムアノード3を電気導体6で電気的に接続して単位空気電池7構成している。前記炭素繊維紐36の代替としてはステンレス針金としても良い。   What is shown in FIG. 18 is one of the other forms of the unit air cell 7 in the first to fourth embodiments according to the first invention, and is a cylindrical hole 28 of a plurality of cylindrical charcoal cathodes 4. Are electrically connected to each other through a carbon fiber string 36 and housed in a carbon fiber cloth bag 37 to constitute a charcoal cathode unit 38, and two flat plate-like shapes having an electrically insulating mesh 5 sandwiched between both sides of the charcoal cathode unit 38. The unit air cell 7 is configured by electrically connecting the aluminum anodes 3 with electrical conductors 6. As an alternative to the carbon fiber string 36, a stainless steel wire may be used.

図19に示した第二の発明に係る第五の実施例においては、図1、図2、図3、図4及び図5における構成に加えて、接触酸化反応槽1の被処理水を低級な工場廃熱利用のヒータ39で過熱して電気化学反応を促進してリン除去効率を高めると共に生物化学反応を促進してBOD除去効率を高めている。又、前記接触酸化反応槽1に後置した沈澱槽11に処理水を移流して前記接触酸化反応槽1で生成した水に難溶性のリン酸アルミニウム、水酸化金属、アルミナ、生物性固形物及びその他沈降性固形物を沈澱分離して清澄水を排出している。   In the fifth embodiment according to the second invention shown in FIG. 19, in addition to the structures in FIGS. 1, 2, 3, 4 and 5, the water to be treated in the catalytic oxidation reaction tank 1 is lower. The heater 39, which uses waste heat from a factory, is heated to promote the electrochemical reaction to increase the phosphorus removal efficiency and the biochemical reaction to increase the BOD removal efficiency. In addition, the treated water is transferred to a precipitation tank 11 placed after the catalytic oxidation reaction tank 1 to form an aluminum phosphate, metal hydroxide, alumina, biological solid which is hardly soluble in the water generated in the catalytic oxidation reaction tank 1. And other settled solids are separated by precipitation to discharge clear water.

図20及び図21に示した第三発明に係わる第六の実施例において、リン酸イオン、リン酸体リンまたはリン化合物を含有する有機性電解質廃水を生物処理する接触酸化反応槽1を、イオン流通阻害機能を有する仕切壁40A及び仕切壁40Bで6区画数に区画して単位接触酸化反応槽1−1、1−2、−3及び1−4、1−5、1−6としている。そして、該6区画数の単位接触酸化反応槽1−1、1−2、1−3、1−4、1−5及び1−6の各槽には、図には説明のため一組の単位空気電池7しか図示していないが、10組の単位空気電池7を並列接続して構成した6組の空気電池モジュール41−1、41−2、41−3、41−4、41−5及び41−6を配設している。そして、6組の前記空気電池モジュール41−1、41−2、41−3、41−4、41−5及び41−6を電線42A、42Bで直列接続して空気電池ストリングス43を構成している。そしてまた、該空気電池ストリングス43の出力側及び太陽電池ストリングス44の出力側を前記接続箱45内で接続統合する共に該接続箱45の出力側を充放電コントローラ46、パワーコンディショナー47、分電盤48及び商用電源に順次、電線42A、42Bで接続して受電設備49を構成している。本実施例には図示してないが、複数の前記空気電池モジュール41−1、41−2、41−3、41−4、41−5及び41−6の内で、決められた基準起電力に達しない、該空気電池モジュール41−1、41−2、41−3、41−4、41−5及び41−6の何れかの出力側に、図示していない自動昇圧装置を接続することも出来る。   In the sixth embodiment according to the third invention shown in FIG. 20 and FIG. 21, the catalytic oxidation reaction tank 1 for biologically treating organic electrolyte wastewater containing phosphate ions, phosphate phosphorus or phosphorus compounds is ionized. The partition wall 40A and the partition wall 40B having a flow-inhibiting function are divided into six sections, which are unit contact oxidation reaction tanks 1-1, 1-2, -3 and 1-4, 1-5, 1-6. Each of the six-compartment unit catalytic oxidation reaction tanks 1-1, 1-2, 1-3, 1-4, 1-5, and 1-6 has a set of illustrations for explanation. Only the unit air battery 7 is shown, but six sets of air battery modules 41-1, 41-2, 41-3, 41-4, 41-5 configured by connecting 10 sets of unit air batteries 7 in parallel are shown. And 41-6. And six sets of the air battery modules 41-1, 41-2, 41-3, 41-4, 41-5 and 41-6 are connected in series with electric wires 42A, 42B to form an air battery string 43. Yes. Further, the output side of the air battery string 43 and the output side of the solar cell string 44 are connected and integrated in the connection box 45, and the output side of the connection box 45 is connected to the charge / discharge controller 46, the power conditioner 47, and the distribution board. 48 and a commercial power source are sequentially connected by electric wires 42A and 42B to constitute a power receiving facility 49. Although not shown in the present embodiment, the reference electromotive force determined among the plurality of air battery modules 41-1, 41-2, 41-3, 41-4, 41-5, and 41-6. An automatic booster (not shown) is connected to the output side of any of the air battery modules 41-1, 41-2, 41-3, 41-4, 41-5 and 41-6. You can also.

図22に示した第四の発明に係わる第一の実施例において、白炭粒状体にバインダーを混合加圧成型し、再焼成して成る半導体性セラミック質の多孔質白炭粒成型再焼成体50の孔50−aに給気管51を挿入して前記孔50−aと給気管51の隙間に接着材を充填固着すると共に電導体6を電気的に固着してカソード散気板52としている。そして、前記カソード散気板52とアルミニウムアノード3を電気導体6で電気的に接続して構成していて、カソード機能および微生物担体機能と共に散気装置機能を持たせることにより前記多孔質白炭粒成型再焼成体50の細孔内部にまで酸素が送気される。   In the first embodiment according to the fourth invention shown in FIG. 22, a semiconductive ceramic porous white charcoal grain shaped refired body 50 obtained by mixing and pressure forming a white coal granule with a binder and refiring it. The air supply pipe 51 is inserted into the hole 50-a, and an adhesive is filled and fixed in the gap between the hole 50-a and the air supply pipe 51, and the conductor 6 is electrically fixed to form the cathode diffuser plate 52. The cathode diffuser plate 52 and the aluminum anode 3 are electrically connected by an electric conductor 6 and have the diffuser function as well as the cathode function and the microorganism carrier function, thereby forming the porous white coal particle molding. Oxygen is supplied into the pores of the refired body 50.

図23に示した第五の発明に係わる第一の実施例において、リン含有の有機性電解質廃水を活性汚泥法で処理している曝気槽内水53にアルミニウムアノード3と、白炭粉体にバインダーを混合加圧成型し再焼成して成る半導体性セラミック質の板状多孔質白炭粉成型再焼成体カソード54で構成した空気電池55に、食塩飽和水56にマグネシウムアノード57と板状多孔質白炭粉成型再焼成体カソード54で構成したブースター空気電池58を電気的に直列接続している。本実施例では前記食塩飽和水56とマグネシウムアノード57と白炭粉体にバインダーを混合加圧成型し、再焼成して成る半導体性セラミック質の前記板状多孔質白炭粉成型再焼成体カソード54で構成したブースター空気電池58を電気的に直列接続しているが、前記ブースター空気電池58の代替としては、例えば、アルカリ溶液を電解液とし、アノードにアルミニウム、カソードに黒鉛、触媒として塩化物イオン等を使用することも出来る。尚、前記ブースター空気電池58の代替としては、リン含有の有機性電解質廃水処理装置の前記空気電池55よりも電圧及び電流特性が優れている限りにおいて、あらゆる一次電池も排除しない。   In the first embodiment according to the fifth invention shown in FIG. 23, the aluminum anode 3 is added to the aeration tank water 53 in which the organic electrolyte waste water containing phosphorus is treated by the activated sludge method, and the binder is added to the white coal powder. Are mixed and pressure-molded and re-fired to form an air battery 55 composed of a semiconducting ceramic plate-like porous white charcoal powder re-fired cathode 54, a salt saturated water 56, a magnesium anode 57 and plate-like porous white coal. A booster air battery 58 composed of a powder-molded refired cathode 54 is electrically connected in series. In the present embodiment, the plate-like porous white charcoal powder molded refired cathode 54 made of a semiconducting ceramic material is obtained by mixing and pressure molding a salt saturated water 56, a magnesium anode 57, and white charcoal powder, followed by refiring. The booster air battery 58 is electrically connected in series. As an alternative to the booster air battery 58, for example, an alkaline solution is used as the electrolyte, the anode is aluminum, the cathode is graphite, the catalyst is chloride ion, and the like. Can also be used. As an alternative to the booster air battery 58, any primary battery is not excluded as long as the voltage and current characteristics are superior to the air battery 55 of the phosphorus-containing organic electrolyte wastewater treatment device.

図24に示した第六の発明に係わる第一の実施例において、図示しない食塩飽和水と高吸水性ポリマーとを混和した電解ゲル59をアルミニウムアノード3に塗布し、ティーバッグ質袋60に収納したものの両面に二枚の板状多孔質白炭粉成型再焼成体カソード54を密着すると共に二枚の前記板状多孔質白炭粉成型再焼成体カソード54の他の面を空気中に曝して通気性収納箱61に収納している。   In the first embodiment according to the sixth invention shown in FIG. 24, an electrolytic gel 59 in which a salt saturated water (not shown) and a superabsorbent polymer (not shown) are mixed is applied to the aluminum anode 3 and stored in the tea bag quality bag 60. The two plate-like porous white charcoal powder molded refired cathodes 54 are in close contact with both sides, and the other surfaces of the two plate-like porous white charcoal powder shaped refired cathodes 54 are exposed to the air to vent. Stored in the storage box 61.

図25に示した第六の発明に係わる第二の実施例において、図24に示した半導体性白炭粉板状成型再焼成体57の代替として、空気中に曝す面に溝62aを六条設けて空気との接触面積を多くすることにより、板状多孔質白炭粉成型再焼成体62の細孔内部への酸素供給を多くしている。空気との接触面積を多くする形状としては、溝62aに限らず他にもなく抜き孔等種々考えられる。   In the second embodiment according to the sixth invention shown in FIG. 25, six grooves 62a are provided on the surface exposed to the air as an alternative to the semiconductive white charcoal powder plate-shaped refired body 57 shown in FIG. By increasing the contact area with air, the oxygen supply into the pores of the plate-like porous white coal powder refired body 62 is increased. The shape for increasing the contact area with the air is not limited to the groove 62a, and various other shapes such as a punched hole are conceivable.

図26に示した第七の発明に係わる第一の実施例において、減極剤の二酸化マンガン粒63を織布袋64に収納して板状多孔質白炭粉成型再焼成体カソード54に当接している。   In the first embodiment relating to the seventh invention shown in FIG. 26, manganese dioxide particles 63 as a depolarizer are accommodated in a woven bag 64 and brought into contact with a plate-like porous white charcoal powder molded refired cathode 54. Yes.

図27に示した第八の発明に係わる第一の実施例において、アルミニウムアノード3にアルミニウムイオン伝導体65を当接している。   In the first embodiment according to the eighth invention shown in FIG. 27, an aluminum ion conductor 65 is in contact with the aluminum anode 3.

第一実施例を示す廃水処理装置の概略縦断面図。The schematic longitudinal cross-sectional view of the waste water treatment apparatus which shows a 1st Example. 図1のA―A視図。AA view of FIG. 図2のB―B視図。BB view of FIG. 図1の単位空気電池の拡大図。The enlarged view of the unit air battery of FIG. 図4のC―C視図。CC view of FIG. 第一発明の第二実施例を示す廃水処理装置の概略縦断図。The schematic longitudinal cross-sectional view of the waste-water-treatment apparatus which shows the 2nd Example of 1st invention. 第一発明の第三実施例を示す廃水処理装置の概略縦断図。The schematic longitudinal cross-sectional view of the waste-water-treatment apparatus which shows the 3rd Example of 1st invention. 第一発明の第四実施例を示す廃水処理装置の概略縦断図。The schematic longitudinal cross-sectional view of the waste-water-treatment apparatus which shows 4th Example of 1st invention. 図8のD―D視図DD view of FIG. 図8のE―E視図EE view of FIG. 図8のF―F視図FF view of Fig. 8 図8のG―G視図GG view of FIG. 単位空気電池の別の形態を示す概略斜視図。The schematic perspective view which shows another form of a unit air battery. 単位空気電池の別の形態を示す概略斜視図。The schematic perspective view which shows another form of a unit air battery. 単位空気電池の別の形態を示す概略斜視図。The schematic perspective view which shows another form of a unit air battery. 単位空気電池の別の形態を示す概略斜視図。The schematic perspective view which shows another form of a unit air battery. 単位空気電池の別の形態を示す概略斜視図。The schematic perspective view which shows another form of a unit air battery. 単位空気電池の別の形態を示す概略斜視図。The schematic perspective view which shows another form of a unit air battery. 第二発明の第五実施例を示す廃水処理装置の概略縦断図。The schematic longitudinal cross-sectional view of the waste-water-treatment apparatus which shows 5th Example of 2nd invention. 第三発明の第六実施例を示す空気電池発電装置の概略系統図。The schematic system diagram of the air battery power generation device showing the sixth embodiment of the third invention. 図20のH―H視図。HH view of FIG. 第四発明の第七実施例の単位空気電池の形態を示す概略斜視図The schematic perspective view which shows the form of the unit air battery of 7th Example of 4th invention. 第五発明の第一実施例を示す廃水処理装置の概略系統図。The schematic system diagram of the wastewater treatment apparatus showing the first embodiment of the fifth invention. 第六発明の第一実施例を示す単位空気電池の形態を示す概略斜視図。The schematic perspective view which shows the form of the unit air battery which shows the 1st Example of 6th invention. 第六発明の第二実施例を示す単位空気電池の形態を示す概略斜視図The schematic perspective view which shows the form of the unit air battery which shows 2nd Example of 6th invention. 第七発明の第一実施例を示す減極剤の形態を示す概略説明図Schematic explanatory drawing which shows the form of the depolarizer which shows the 1st Example of 7th invention 第八発明の第一実施例のアルミニウムイオン伝導体の形態を示す概略説明図Schematic explanatory drawing which shows the form of the aluminum ion conductor of 1st Example of 8th invention

符号の説明Explanation of symbols

1 接触酸化反応槽
2 接触材床
1−1、1−2、1−3,1−4,1−5,1−6 単位接触酸化反応槽
3 アルミニウアノード
4 木炭カソード
5 電気絶縁性メッシュ
6 電気導体
7 単位空気電池
8 支持枠
8a 流通孔
9 空気電池式廃水処理装置
10 散気装置
11 沈殿槽
12 夾雑物除去槽
13 嫌気性濾床槽
14 担体流動生物濾過槽
15 処理水槽
16 消毒槽
17 担体流動生物濾過方式合併処理浄化槽
18 循環水装置
19 循環配管
20 空気電池ユニット収納槽
21 エアーリフトポンプ
22 フロート
23 浮体槽式浄化装置
24 循環水中ポンプ
25 ウェイト
26 ハンガー
27 アンカー
28 円筒孔
29 ステンレス端子
30 電導性樹脂
31 アルミニウム端子
32 ストッパー部
33 雄ねじ部
34 ステンレスナット
35 黒鉛カソード
36 炭素繊維紐
37 炭素繊維布袋
38 木炭カソードユニット
39 ヒータ
40A、40B 仕切壁
41−1、41−2,41−3,41−4,41−5,41−
6 空気電池モジュール
42A、42B 電線
43 空気電池ストリングス
44 太陽電池ストリングス
45 接続箱
46 充放電コントローラ
47 パワーコンディショナー
48 分電盤
49 受電設備
50 多孔質白炭粒成型再焼成体
50‐a 孔
51 給気管
52 カソード散気板52
53 曝気槽内水
54 板状多孔質白炭粉成型再焼成体カソード
55 空気電池
56 食塩飽和水
57 マグネシウムアノード
58 ブースター空気電池
59 電解質ゲル
60 ティーバッグ質袋
61 通気性収納箱
62a 溝
62 半導体性白炭粉板状成型再焼成体カソード
63 二酸化マンガン粒
64 織布袋
65 アルミニウムイオン伝導体



























DESCRIPTION OF SYMBOLS 1 Contact oxidation reaction tank 2 Contact material bed 1-1, 1-2, 1-3, 1-4, 1-5, 1-6 Unit contact oxidation reaction tank 3 Arminium anode 4 Charcoal cathode 5 Electric insulation mesh 6 Electricity Conductor 7 Unit air battery 8 Support frame 8a Flow hole 9 Air battery type wastewater treatment device 10 Aeration device 11 Precipitation tank 12 Contaminant removal tank 13 Anaerobic filter bed tank 14 Carrier fluid biological filtration tank 15 Treatment water tank 16 Disinfection tank 17 Carrier Fluidized biological filtration system combined treatment purification tank 18 Circulating water device 19 Circulating piping 20 Air battery unit storage tank 21 Air lift pump 22 Float 23 Floating tank type purification device 24 Circulating submersible pump 25 Weight 26 Hanger 27 Anchor 28 Cylindrical hole 29 Stainless steel terminal 30 Conduction Resin 31 Aluminum Terminal 32 Stopper 33 Male Thread 34 Stainless Nut 35 Graphite cathode 36 Carbon fiber string 37 Carbon fiber cloth bag 38 Charcoal cathode unit 39 Heater 40A, 40B Partition wall
41-1, 41-2, 41-3, 41-4, 41-5, 41-
6 Air battery module 42A, 42B Electric wire
43 Air cell strings 44 Solar cell strings 45 Junction box 46 Charge / discharge controller 47 Power conditioner 48 Power distribution panel 49 Power receiving equipment 50 Porous white charcoal grain re-fired body 50-a hole
51 Air supply pipe 52 Cathode diffuser plate 52
53 Water in the aeration tank 54 Plate-like porous white coal powder refired cathode 55 Air battery 56 Salt saturated water 57 Magnesium anode 58 Booster air battery 59 Electrolyte gel 60 Tea bag quality bag 61 Breathable storage box 62a Groove
62 Semiconducting white charcoal powder plate-shaped refired cathode 63 Manganese dioxide grains 64 Woven fabric bag 65 Aluminum ion conductor



























Claims (8)

リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、酸素供給手段、攪拌手段及び金属製アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池を配設することによって、電気化学反応機能によっては水に難溶性のリン酸金属塩及び水酸化金属粒子を生成すると共に生物化学反応機能によっては有機物を好気性生物分解処理することを特徴とする空気電池式廃水処理装置。
In the treatment of organic electrolyte wastewater containing phosphate ion, phosphate phosphorus or phosphorus compound, oxygen supply means, stirring means and metal anode and air battery made of carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite Air battery type characterized in that depending on the electrochemical reaction function, metal phosphate and metal hydroxide particles that are sparingly soluble in water are generated and organic matter is aerobically biodegraded depending on the biochemical reaction function. Waste water treatment equipment.
リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、酸素供給手段、攪拌手段、必要に応じた加熱手段及び金属製アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池を配設することによって、電気化学反応機能によっては水に難溶性のリン酸金属塩及び水酸化金属粒子を生成すると共に生物化学反応機能によっては有機物を好気性生物分解処理することを特徴とする請求項1記載の空気電池式廃水処理装置。   In the treatment of organic electrolyte wastewater containing phosphate ion, phosphorous phosphate or phosphorus compound, oxygen supply means, stirring means, heating means as required, and metal anode and carbonaceous cathode such as black charcoal, white charcoal, graphite or graphite By forming an air battery, it is possible to generate metal phosphates and metal hydroxide particles that are sparingly soluble in water depending on the electrochemical reaction function, and aerobic biodegradation treatment of organic matter depending on the biochemical reaction function The air battery type waste water treatment apparatus according to claim 1. リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、酸素供給手段、攪拌手段、必要に応じた加熱手段及び金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池を配設することによって、電気化学反応機能によっては水に難溶性のリン酸金属塩及び水酸化金属粒子を生成すると共に生物化学反応機能によっては有機物を好気性生物分解処理すると共に、必要に応じて複数の同種または異種空気電池の直並列接続手段、逆流防止手段、電圧自動昇圧手段を付加接続した前記空気電池と太陽電池を配線統合手段で接続して構成した電池アレイと、必要に応じてパワーコンディショナーを配設していて、また必要に応じて蓄電手段を配設することを特徴とする請求項1または2記載の空気電池式廃水処理装置。   In the treatment of organic electrolyte wastewater containing phosphate ion, phosphorous phosphorus or phosphorus compound, oxygen supply means, stirring means, heating means as necessary, and metal anode and carbonaceous cathode such as black coal, white coal, graphite or graphite By disposing an air battery, an electrochemical reaction function generates a metal phosphate and metal hydroxide particles that are sparingly soluble in water and an aerobic biodegradation treatment of organic matter depending on the biochemical reaction function, A battery array configured by connecting the air cells and solar cells, which are additionally connected with series-parallel connection means, backflow prevention means, and automatic voltage boosting means for a plurality of the same or different types of air batteries as necessary, by wiring integration means, and necessary The power conditioner is arranged according to the condition, and the power storage means is arranged as necessary. Gas-powered waste water treatment equipment. 多孔質の炭素体にカソード機能および微生物担体機能と共に散気装置機能を持たせることにより前記多孔質の炭素体の内部微細孔にまで酸素を有効に供給するようにしたことを特徴とする請求項1、2または3記載の空気電池式廃水処理装置。   The oxygen is effectively supplied to the internal micropores of the porous carbon body by providing the porous carbon body with a diffuser function as well as a cathode function and a microorganism carrier function. The air battery type wastewater treatment apparatus according to 1, 2 or 3. リン酸イオン、リン酸体リン又はリン化合物含有の有機性電解質廃水処理において、酸素供給手段、攪拌手段、必要に応じた加熱手段及び金属アノードと黒炭、白炭、黒鉛又はグラファイト等の炭素質カソードとした空気電池に直列または並列に有機性電解質よりも強電解質と電極で形成した空気電池を接続したことを特徴とする請求項1、2または3記載の空気電池式廃水処理装置。   In the treatment of organic electrolyte wastewater containing phosphate ion, phosphorous phosphorus or phosphorus compound, oxygen supply means, stirring means, heating means as necessary, and metal anode and carbonaceous cathode such as black coal, white coal, graphite or graphite The air battery type wastewater treatment apparatus according to claim 1, 2 or 3, wherein an air battery formed of an electrode and a stronger electrolyte than an organic electrolyte is connected in series or in parallel with the air battery. 電解液接液手段と空気又は酸素ガス接触手段とを共に有する黒炭、白炭、黒鉛またはグラファイト等の炭素質カソードと金属アノードを有機性電解質よりも強電解質に接液する電極としたことを特徴とする請求項5記載の空気電池式廃水処理装置。   It is characterized in that a carbonaceous cathode such as black coal, white coal, graphite or graphite and a metal anode having both an electrolyte solution contacting means and air or oxygen gas contacting means are used as electrodes in contact with a stronger electrolyte than an organic electrolyte. The air battery type wastewater treatment apparatus according to claim 5. 減極剤を炭素質カソードに当接または担持したことを特徴とする請求項1、2、3または4記載の空気電池式廃水処理装置。   5. The air battery type wastewater treatment apparatus according to claim 1, wherein the depolarizer is in contact with or carried on the carbonaceous cathode. アルミニウムアノードにアルミニウムイオン伝導体を当接したことを特徴とする請求項1、2、3または4記載の空気電池式廃水処理装置。











































5. An air battery type wastewater treatment apparatus according to claim 1, wherein an aluminum ion conductor is brought into contact with the aluminum anode.











































JP2007309787A 2007-07-19 2007-11-30 Air cell type waste water treatment apparatus Withdrawn JP2009039705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309787A JP2009039705A (en) 2007-07-19 2007-11-30 Air cell type waste water treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007188296 2007-07-19
JP2007309787A JP2009039705A (en) 2007-07-19 2007-11-30 Air cell type waste water treatment apparatus

Publications (1)

Publication Number Publication Date
JP2009039705A true JP2009039705A (en) 2009-02-26

Family

ID=40441045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309787A Withdrawn JP2009039705A (en) 2007-07-19 2007-11-30 Air cell type waste water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2009039705A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126388A1 (en) * 2010-04-07 2011-10-13 MATOGA, Łukasz A diffuser for saturation of water with gas
JP2017148776A (en) * 2016-02-26 2017-08-31 パナソニック株式会社 Water treatment equipment
CN111056710A (en) * 2019-12-28 2020-04-24 西安建筑科技大学 Sewage advanced treatment and resource recovery system and method for anaerobic ectopic electric release iron membrane bioreactor
CN113582329A (en) * 2021-08-03 2021-11-02 俞桂连 Sewage treatment plant of environmental protection
CN116477721A (en) * 2023-06-25 2023-07-25 中铁建工集团有限公司 Negative pressure electric floating sewage treatment device and process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011126388A1 (en) * 2010-04-07 2011-10-13 MATOGA, Łukasz A diffuser for saturation of water with gas
JP2013523444A (en) * 2010-04-07 2013-06-17 カクゾー,マレック Diffuser for saturating water with gas
US8985558B2 (en) 2010-04-07 2015-03-24 Lukasz MATOGA Diffuser for saturation of water with gas
JP2017148776A (en) * 2016-02-26 2017-08-31 パナソニック株式会社 Water treatment equipment
CN111056710A (en) * 2019-12-28 2020-04-24 西安建筑科技大学 Sewage advanced treatment and resource recovery system and method for anaerobic ectopic electric release iron membrane bioreactor
CN113582329A (en) * 2021-08-03 2021-11-02 俞桂连 Sewage treatment plant of environmental protection
CN116477721A (en) * 2023-06-25 2023-07-25 中铁建工集团有限公司 Negative pressure electric floating sewage treatment device and process
CN116477721B (en) * 2023-06-25 2023-10-20 中铁建工集团有限公司 Negative pressure electric floating sewage treatment device and process

Similar Documents

Publication Publication Date Title
CN107117690B (en) Device and method for treating refractory pollutants through electrocatalytic oxidation
US3793173A (en) Wastewater treatment using electrolysis with activated carbon cathode
Cho et al. Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater
CN102070230A (en) Method for removing organic matters in water by utilizing three-dimensional electrode electro-fenton and device thereof
CN101423266A (en) Wastewater treatment device of horizontal polar plate multi-electrodes electrocatalysis reactor
US3635764A (en) Combined wastewater treatment and power generation
JP2004330182A (en) Treating method of water to be treated containing organic material and nitrogen compound
JP2009039705A (en) Air cell type waste water treatment apparatus
CN104891733A (en) Treatment method of landfill leachate
CN207861965U (en) A kind of multistage out-phase three-dimensional electrochemical reaction unit for waste water treatment
JP2007105673A (en) Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
JP5114612B2 (en) Microbial battery for sludge treatment and sludge purification apparatus using the same
CN104860397A (en) Electrochemical-biological fluidized bed reactor and wastewater treatment method
KR20200081001A (en) Sewage disposal system having hydrogen generation ability
Ma et al. Electrochemical membrane bioreactors for sustainable wastewater treatment: principles and challenges
JP2008264659A (en) Waste water treatment device
CN111333235A (en) Landfill leachate treatment system and process
JP2007061681A (en) Nitrate nitrogen-containing wastewater treatment method and apparatus, and electrolytic cell for wastewater treatment
JP2002346566A (en) Apparatus and method for water treatment
JP2010047835A (en) Air cell type metal hydroxide production method and air cell type reactor
CN207210198U (en) Multidimensional is electrolysed MBR sewage disposal devices
JP2005296922A (en) Sterilizing system of rainwater
CN104773883A (en) Method for purifying persistent organic pollutants in water employing photoelectric air floatation combination
CN104341026A (en) Three-dimensional electrode electrocatalytic oxidation sewage treatment equipment
CN114604943B (en) Wastewater treatment device and wastewater treatment method by cathode electro-Fenton coupling anodic oxidation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201