JPS6066890A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6066890A
JPS6066890A JP17536883A JP17536883A JPS6066890A JP S6066890 A JPS6066890 A JP S6066890A JP 17536883 A JP17536883 A JP 17536883A JP 17536883 A JP17536883 A JP 17536883A JP S6066890 A JPS6066890 A JP S6066890A
Authority
JP
Japan
Prior art keywords
layer
cladding layer
conductivity type
laser
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17536883A
Other languages
Japanese (ja)
Other versions
JPS641952B2 (en
Inventor
Naohiro Shimada
島田 直弘
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17536883A priority Critical patent/JPS6066890A/en
Publication of JPS6066890A publication Critical patent/JPS6066890A/en
Publication of JPS641952B2 publication Critical patent/JPS641952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Abstract

PURPOSE:To contrive to reduce the bad influences of return noises, without losing the characteristic of small astigmatism, by a method wherein the thickness of a clad layer is varied along the direction of a groove stripe. CONSTITUTION:A clad layer 12 of n-conductivity type and, an active layer 13 and a clad layer 14 of p-conductivity type are successively grown on a semiconductor substrate 11 of n-conductivity type, resulting in the formation of a double hetero junction. Besides, a current block layer 15 of n-conductivity type grown and formed on the clad layer 14 provided with a stripe groove 16 reaching the layer 14, and a coat layer 17 of p-conductivity type grown and formed on the layer 15 by including the groove 16 are furnished. The layer 14 is formed so as to have at least two kinds of thicknesses to the direction of the stripe.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、利得導波路構造及び屈折率導波路構造の双方
の特長を備えた半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor laser device having the features of both a gain waveguide structure and a refractive index waveguide structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、に a AtA lL系等のIII −V族化合
物中心体材料を用いた半導体レーザは、I)Al) (
デ・fジタル・オーディオ・fイスク)を始めとして光
デイスク・ファイル等の情報処理機器への応用が進めら
れている。光デイスク用の半導体レーザにおいては、レ
ーザ光のビームを・」・塙く絞り込む必要があり、光学
系を簡単にすると云う点から基本横モード発振で非点収
差が小さいことが要求される。寸だ、光ディスクに応用
する点から次のような問題点のあることがIJJらかに
なっている。すなわち、光ディスク・ファイル等におい
てill、ディクタVこ当てた光の反射光の強度を検出
して情報をu;l:み出1と云う機構土、反射光の一部
が半々1“体レーザに戻っていくことは避けらノ1.な
い。このiこめ、上記半導体レーザは該レーザの両端1
iIiが1′する共振器の他に、レーザ端面とう′4ス
ク面とで形by、 へれる共振器も存在することになり
、2里共振器を持つレーザとなる。そして、−y=□f
スク山1が回転中に振動するど、後者の共振器長か液化
することになり、ス架りトル′り・光出力晴に斐す(1
1が生じ、7りh渭戻り元)・1ズがうb勺=する。
In recent years, semiconductor lasers using III-V group compound central body materials such as a AtAl) have been developed.
Applications to information processing equipment such as optical disk files and digital audio disks are being advanced. In semiconductor lasers for optical disks, it is necessary to narrow down the laser beam to a great extent, and in order to simplify the optical system, fundamental transverse mode oscillation and small astigmatism are required. The IJJ has clarified that there are the following problems when applied to optical discs. That is, in an optical disk file, etc., a mechanism called u;l: protrusion 1 detects the intensity of the reflected light of the light that hits the dicta V and outputs information, and a part of the reflected light is converted into a 1" body laser. It is unavoidable that the semiconductor laser will return at both ends 1.
In addition to the resonator in which iIi is 1', there is also a resonator in which the laser end face and the disk face are separated by the shape of by, resulting in a laser having a 2-ri resonator. And -y=□f
When the mount 1 vibrates during rotation, the latter's resonator length becomes liquefied, which affects the suspension torque and light output (1).
1 is generated, 7 is returned to the original) and 1 is returned.

ヒこ(、尺り)°(、)・1ズを抑制すると云う観点刀
・し半導体レーザ゛の4Iン皮路(1°4j青を、、M
、i白してみる。
From the viewpoint of suppressing the 1° (1°) angle, the 4I surface of the semiconductor laser (1° 4j blue, , M
, i try whitening.

′11″′)rt、II、レーレ゛qへ・、・、曹及路
(1°4造は、一般に利得へ)!・波)Wi +i’+
造と屈折率>、17.波路41イ造との2つに大別され
4)oこれらの41゛j造に、1.・いて、非点状7J
:を小さくすることと戻りyl−ノ1ズを少なくす2)
こととは1・1ノード・オノの1莫1廿々にある。ずな
わち、力J(折率77′I波b’6 +4造V←おいて
は、非点収差rJ: 5 [ttm ]以II−と小さ
く)〆L士−ドがグ定しtいるために縦モードも単一モ
ー1゛で発振づ“/)が、ス被りトル線幅が狭いために
戻り光ノ4ズによる出力変動量は1「)〔63以上と太
さい。一方、利111専波v11構造においては、縦モ
ードが多モード化しスーぐクトル線幅が広いために戻り
ブCノイズによる出力変動鼠(はJ〔%〕以下となるが
、非点収差Qま20〔μm1以上と大きくなる6したが
って、非点収差と戻り光ノイズの71h性乏:回+1j
rに満足させるためには、屈折率導波路イ″(;構造と
A’ll イij力波路Ail造との双方の性質を兼ね
備え/こものでなければならない。
'11''') rt, II, to Lere q..., Cao and Lu (1°4 construction generally goes to gain)! Wave) Wi +i'+
structure and refractive index>, 17. Wave paths are roughly divided into two types: 41-I structures and 4) o These 41-J structures include: 1.・Astigmatism 7J
: to reduce the return yl-no1z2)
The thing is 1.1 node ono 1 mo 1 廿. That is, the force J (refractive index 77'I wave b'6 + 4 V←, the astigmatism rJ: 5 [ttm] is small as II-) is determined by L. Therefore, the longitudinal mode also oscillates in a single mode of 1"/), but because the line width of the sheath line is narrow, the amount of output fluctuation due to the return light nozzle is as large as 1") [63 or more. In the 111 harmonic V11 structure, the longitudinal mode becomes multi-mode and the linewidth is wide, so the output fluctuation due to return noise is less than J [%], but the astigmatism Q is less than 20 [μm1 6 Therefore, the astigmatism and the return light noise are 71h poor: times + 1j
In order to satisfy r, it must have the properties of both the refractive index waveguide structure and the force waveguide structure.

ところで、利得分布に関係する市’、 !jii’、狭
窄イ1り造と作りイ」け屈折率導波路構造とが自動的に
形成されるような構造のレーリ゛企自已繁合〕%す、 
l・−ザと云うが、特に′電流狭窄4’f# ;’+’
Lが11゛1晶表面に出ていないものは内部ストうづプ
目己轄介型1/−ザと云う。この型のレーザは、製造l
ロセスが容易で高歩留り及び高生産性が期待さノすると
同時に、活性層を結晶内部に持つ−Cくろことができる
ため、ffV極表面からの欠陥の影響を受けにくいこと
、マウントに起因する劣化の影Wを少なくできるとと、
全ii’i7電杉として1%触ill; Jノ’t’を
減少さぜることによって亜鉛拡散等のフ’r+士スを省
けること、さらに表面を平ガ1にできるためマウントに
有利である等の利点を有する。
By the way, the city', which is related to the gain distribution! jii', the Rayleigh design of a structure in which the constriction structure and the refractive index waveguide structure are automatically formed;
Although it is called l・-za, especially 'current confinement 4'f#;'+'
Those in which L does not appear on the surface of the 11゛1 crystal are called internal stroke type 1/-za. This type of laser is manufactured by
The process is easy, and high yield and productivity are expected. At the same time, since the active layer can be formed inside the crystal, it is less susceptible to defects from the FFV surface, and is less susceptible to deterioration caused by mounting. If we can reduce the shadow W of
1% ill as all ii'i7 electric cedar; By reducing Jnot', it is possible to eliminate the need for zinc diffusion, etc., and the surface can be made flat, which is advantageous for mounting. It has certain advantages.

従来の内部ストラーIf自己整合型【/−ザとしてu2
、+4℃流阻止層にV r:rt 奮設けfc VS]
、S (V −L″b++叶clcd 5ubqLrn
Le I nner S tripc )レーザが知ら
れており、とのレーザはモード制御されており戻り光特
性も良いことが判っている。(−かし、VSISレーザ
には、LPE法に比して大面積で均一性の良い結晶成長
;う唇iJ能なM(J −CVD iムでi−を製造で
きないと云う間:11tかある。この間’+1’+x 
Itよ、光デイスク用レーデとL〜で大;+4.生st
 n、”1代を迎えた半心体し−デ製漬IC、!:、−
い′C致命的な欠点となる。
Conventional internal stringer If self-aligned [/- the u2 as
, V r:rt is applied to the +4°C flow prevention layer fc VS]
, S (V −L″b++ Kano clcd 5ubqLrn
A Le Inner Strip laser is known, and it is known that the laser is mode controlled and has good return light characteristics. (- However, the VSIS laser has crystal growth with good uniformity over a large area compared to the LPE method; Yes. During this time '+1'+x
It's big for optical disk led and L ~; +4. raw st
n, “Half-heart body-de-made pickled IC that has reached its first generation!:,-
This is a fatal flaw.

そこで最J!上、’ν10− CVI)法で製j青でき
る同種の内部ストライプ自己整合型レーザとして、第1
図に示す如く清1生層上部に内部ストライプ構造を11
する半導体レーザが提案された。なお、図中1はN −
GaAs 、’7t−板、2はN −GaAtAsクラ
ッド層、3はG−aAtAs活性層、4 、F;l J
)−GaAlAsクラ。
The most J there! The first example of a similar internal stripe self-aligned laser that can be manufactured using the 'v10-CVI) method is shown above.
As shown in the figure, an internal stripe structure is formed on the upper part of the Sei 1 biolayer.
A semiconductor laser was proposed. In addition, 1 in the figure is N −
GaAs, '7t-plate, 2 is N-GaAtAs cladding layer, 3 is GaAtAs active layer, 4, F; l J
)-GaAlAs Kura.

ド層、514 N −GaAs 電!5ii: 閉止ノ
i’j;l、t; 1.J、 ストライブ状の溝部、7
はl’ −GaAtAs #覆Ae、81j(P −G
aAs r yタフl一層、9.10は金属几、梗を示
している。?Cの構造では、ストう1プ状の海部6が形
成された電流阻止層5によって、活性層3へのkI、流
注入がストン・1グ状に限定されると共に、活性層3に
導波されたつ′(、がり−/ッ1゛層4及び化1流阻止
層5に1でしみ出し、その結果ストライプ直下部分に導
波されたモードが形成されることになる。このため、シ
1リイiJ 37′7波路+1′1f造及び屈4〕を率
jj)波路構造が同時に実現される。
layer, 514 N-GaAs electricity! 5ii: Closure i'j; l, t; 1. J, striped groove, 7
is l' -GaAtAs #substituteAe, 81j(P -G
aAs ry tough layer, 9.10 indicates metal shell, stem. ? In the structure of C, the current blocking layer 5 in which the strip-shaped sea part 6 is formed limits the injection of kI and current into the active layer 3 to a stone-shaped shape, and the waveguide in the active layer 3 is 1 seeps into the layer 4 and the chemical current blocking layer 5, and as a result, a guided mode is formed directly below the stripe. The wavepath structure is realized simultaneously.

しかしながら、この釉のレーザレし不すクーしは次のよ
うな問題かあった。1′なわち、lb: bee、 1
511止層5のストライブ状r:”I Bl〜6の幅−
(711111分布及び屈折率分布の幅が一為的に決;
1っでしまい、各分布の幅は等しいものとなる。このl
b台、屈折率差が十分大きくついてし′よい、イ1」得
専波路の11゛4徴はでてこない。したかっ−c1光デ
・]ススフシレーとし−Cは、モード制側j幼呆は十分
−Cちるか、戻り光特性に関(−でC二十分満足できる
結果を得ることはできなかった。
However, the glaze's lack of laser abrasion caused the following problems. 1′, lb: bee, 1
511 Striped r of stop layer 5: "I Bl ~ Width of 6 -
(The widths of the 711111 distribution and refractive index distribution are temporarily determined;
1, and the width of each distribution is equal. This l
On the order of b, the refractive index difference is sufficiently large, and the 11゛4 characteristic of the 11'' special wave path does not appear. It was not possible to obtain a satisfactory result with respect to the return light characteristics (-).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ノ11・本横モード発振で非点収差が
小さいと云う特長を失うことなく、戻シ光ノイズによる
悪影響を十分小さくすることができ、尤ディスク用つ°
C源として極めて有用な半導体レーザ装b:1.’ Y
f 13,1供することにある。
The object of the present invention is to: (11) be able to sufficiently reduce the adverse effects of return light noise without losing the feature of small astigmatism in transverse mode oscillation;
Semiconductor laser device b extremely useful as a C source: 1. 'Y
f 13.1.

〔発明の概少〕[Summary of the invention]

本発明の骨子は、屈折率導波路構造と利得導波路構造と
の双方の特長を兼ね(Iiiiえた構造を実現すること
にある。
The gist of the present invention is to realize a structure that combines the features of both a refractive index waveguide structure and a gain waveguide structure.

前記第1図に)Jテずイ、′ヤ造のレーザにおいては、
電υIL阻止層5が光音吸収することによって層方向の
民力IIJ力率差奮つk)ると云う屈折率力波路の効果
が生じる。−力、上記1/−ザにおい−C、クラッド層
4の厚Jfを厚くずれは、活性ノヴ13からl釉み出し
た光が11テυ1し阻止層5による複JFil折率差を
感じないようにすることができる。この場合、上記レー
ザ′は利イ()導波路の効果が優先する。っまり、非点
収差は小ざいが戻t)−itノイズによる出力変動すi
が大きくなる。
(See Figure 1 above) In the laser of J.
When the electromagnetic wave IL blocking layer 5 absorbs light and sound, an effect of a refractive index power wave path occurs, which increases the power factor difference in the layer direction. -Force, above 1/-The smell-C, If the thickness Jf of the cladding layer 4 is made thicker, the light emitted from the active knob 13 will be 11teυ1, and the difference in the refractive index of the double JFil due to the blocking layer 5 will not be felt. You can do it like this. In this case, the effect of the laser waveguide takes priority in the laser. In other words, the astigmatism is small, but the output fluctuation due to noise is
becomes larger.

したがって、上記2 f′lliのレーザを1本の共振
器中に実現できれば、ノt1折率2.り波路第14造及
び利得導波路構造の双方の特長を、、Iljね(j!f
iえたレーザが得られることになる。この点に着目して
本発明者等が鋭意研究を重ねた結果、前記クラッド層4
の厚みを溝ストライプ方向に沿って可変すればよいこと
が判明した。
Therefore, if the above 2 f'lli laser can be realized in one resonator, the t1 refractive index will be 2. The features of both the gain waveguide structure and the gain waveguide structure are expressed as ,Iljne(j!f
This means that a laser beam with high brightness can be obtained. Focusing on this point, the inventors of the present invention conducted extensive research, and found that the cladding layer 4
It has been found that the thickness of the groove can be varied along the groove stripe direction.

すなわち本発明は、第1導電型の半導体基板と、この基
板上に少なくとも第1導1E型の第1クラツド層、活性
層及び第2導霜:型の第2クラッド層をJtEi次成長
して形成された夕゛ズルへテロ接合部と、上記第2クラ
、ド層上に成長形成され、かつ第2クラッド層1で全る
ストライプ状の溝451(が形成された第17.1′?
−電型の電び(4阻止層と、上記溝部を含み上記電流1
利止層上に成長形成された第2導電型の被覆層とf:其
備した半導体l/−ザ装置において、前記第2クラ、ド
層’< i;i1記ストライプ方向に対して少なくとも
2神の厚み金持つよう形成するようにしたものである。
That is, the present invention includes a semiconductor substrate of a first conductivity type, and at least a first cladding layer of a first conductivity type 1E, an active layer, and a second cladding layer of a second conductivity type, which are grown on this substrate in a JtEi step. A striped groove 451 (17.1'?) is grown on the formed Twisted heterojunction and the second cladding layer 1, and is formed entirely on the second cladding layer 1.
- an electric current of the electric type (including the four blocking layers and the groove part)
In the semiconductor device including a covering layer of a second conductivity type grown on the stopping layer and f: the second conductive layer '<i; It was formed to have the thickness of God.

(発明の効果〕 本発明によil、d′、;t’+、 2クラッド層が厚
い部分(一般には中央fXB )で利イ4+導波路構造
を形成でき、第2クラ、ド層が薄い部分(一般には共振
2にψl′h目5B近傍)で屈折苫ぺ導波路構造を形成
することができる4、そ(〜で、力1(折率尋波路部分
の実効屈折率差及び利得導波路構造における利得分布ζ
!トを決定するtl・″・漬〕!ラメータを全て独立に
選ぶことができる。さらに、共振器長の中におけるJa
il jJr率導波路i’lt分と利得等波路部分との
割合を1’+−意に変えることができる。以上のことか
ら、ル↓り光ノイズ特性に対する2つの導波路構造の依
存性を見ることができた。したがって、2つの;’;’
7+波路部分の割合及び各ルhの構造・Vンメータをi
商当に設定−ノノ、ことによって、光ディスク用1/−
ザに好適するfljr (4g、すなわち基本横モード
発振で非点収差が十分小さく、かつj7iり光ノイスに
よる出力変動1.:も十分小さい%性をイUるこさがで
き/1 本発明者等の実験によれば、GaAtAs ’fr:材
料とし活性層のAtの割合XAt= 0.15、第2ク
ラッド層のxAl = 0.4.5.11主流阻t1 
%1 f GaAsとし、屈折率ガイド部分の第2クラ
ッド層)+7み(イ):15〔μm〕、利得ガイド部分
のεf52クラ、ドJr=けユJみを0.5〔μm〕、
電流ストライブのrj’j、ll’bXを、う]二μm
〕、さらに共振器長の中の端面τ111の屈折率メツ′
イ1゛部分の割合を5〜45〔幻としたところ、非点収
差は5〜10〔μm〕、縦モードは51: rnW ]
−まで多モード、戻り光ノイズによる出力変動量はJ〔
係〕以下と云う結果が得られた1、この’141′l身
よ光デイスク用レーザとして極めて好適するイ)のであ
る6、 〔発明の実施例〕 第2図(a) 〜(C) iqJ、それぞれ本発明の−
′−13ノ(li )flに係わる半導体レーザの概略
措’t:’、?(示−4もので第2図(a) kj共振
器方向にW> ッfc [(〕1而1ノl 、 第21
!−1(I+)は同図(、)の矢視A−A断面図、ご1
〜2図(C)η」、同[シj(a)の矢視B−13断面
図である47図中71 &y[N −GaAs基板で、
この基板JJ上にH,N −GaAtAsりラッ ド層
(第1クラツ ド層)12、G a AAA 8活性層
13及びP−GnAtAsクラッド層(2iT 2クラ
ッド層)14全11!+’1次績ノ・3してなるダブル
へテロ接合部が形成さitでいる。ここで、上記第2ク
ラッド層14は任シ1Σするストライブ方向に対し中央
部が厚く、j)i2!2部傍が勢く形成さ11でいる。
(Effects of the Invention) According to the present invention, an advantageous 4+ waveguide structure can be formed in the part where the second cladding layer is thick (generally at the center fXB), and the second cladding layer is thin. A refraction Tomape waveguide structure can be formed at the refraction section (generally near the resonance 2 and the ψl'h-th 5B). Gain distribution ζ in wave path structure
! It is possible to select all the parameters independently.Furthermore, the Ja
The ratio between the il j Jr index waveguide i'lt and the equal gain waveguide part can be changed arbitrarily by 1'+-. From the above, we were able to see the dependence of the two waveguide structures on the optical noise characteristics. Therefore, two ;';'
7 + The proportion of the wave path portion and the structure and V meter of each
Commercially set - Nono, possibly 1/- for optical discs
The fljr (4g, that is, the fundamental transverse mode oscillation, the astigmatism is sufficiently small, and the output fluctuation due to optical noise is also sufficiently small) can be achieved by the present inventors. According to the experiment, GaAtAs 'fr: Proportion of At in active layer as material
%1 f GaAs, the second cladding layer of the refractive index guide part) + 7 (a): 15 [μm], εf52 of the gain guide part, 0.5 [μm],
rj'j, ll'bX of the current stripe]2 μm
], and the refractive index of the end face τ111 in the cavity length is
The ratio of the A1 part is 5 to 45 [as an illusion, astigmatism is 5 to 10 [μm], longitudinal mode is 51: rnW]
The amount of output fluctuation due to multi-mode and return light noise is J [
1) This '141'l body is extremely suitable as a laser for optical disks 6. [Embodiments of the invention] Figures 2 (a) to (C) iqJ , respectively of the present invention -
General measures of semiconductor lasers related to '-13(li)fl 't:', ? (In Fig. 2 (a) kj in the direction of the resonator, W
! -1 (I+) is a sectional view taken along arrow A-A in the same figure (,).
2 (C) η'', 71 &y[N-GaAs substrate,
On this substrate JJ are an H,N-GaAtAs cladding layer (first cladding layer) 12, a Ga AAA 8 active layer 13, and a P-GnAtAs cladding layer (2iT 2 cladding layer) 14, all 11! A double heterojunction formed by +'1 and 3 is formed. Here, the second cladding layer 14 is thick at the center with respect to the striping direction of arbitrary 1Σ, and is thicker near the i2!2 portion.

第2クラツドj曽14土にはN −G[1Al1箱、流
阻止層15(tCは第2クラッド層14に至る深さのス
トライプ状の溝fi1516が形成されている。そして
、この上にはp −GaA/−As Km fit層1
7及びP −GaAsコンタク!・層18が形成されて
いる。な訃、図中19.20id、それぞれ電4犯を示
している。
In the second cladding layer 14, a striped groove fi 1516 is formed with a flow prevention layer 15 (tC is the depth reaching the second cladding layer 14). p-GaA/-As Km fit layer 1
7 and P-GaAs contacts! - Layer 18 is formed. The numbers 19 and 20 in the figure indicate four criminals, respectively.

次に」二記楢バ+’ l/ −−リ“の製造工程につい
て第3図(a)〜(f)を参11i、(して説明する。
Next, the manufacturing process of ``Niki-Naraba+'l/--Li'' will be explained with reference to FIGS. 3(a) to 3(f).

まず、第3図(a)に73<すη11 < N −にu
As茫枳(S+ ドープ。
First, in Fig. 3(a), 73<sη11<N−, u
As 茫枳 (S+ dope.

n二J〜2XlOcm )IIJ二に第1クラッド層1
2としてN ’−Ga g、55A16.45A 11
層(n−1,XI O’%−3+厚み1.、5 z7m
 ) 、i占性ノ曽13としてアンドープGaO,85
AtO,1sAs層(jすみ(1,08μ+nLffi
zクラツドjp’H14としてP −Ga o、5sA
to、<5A81(i (n−1(118〜1.019
0η−3,厚み1.5μm)を順次成長形成[−/こ。
n2J~2XlOcm) IIJ2 first cladding layer 1
2 as N'-Ga g, 55A16.45A 11
Layer (n-1, XI O'%-3 + thickness 1., 5 z7m
), undoped GaO as i-occupancy no so 13, 85
AtO, 1sAs layer (j corner (1,08μ+nLffi
P-Ga o, 5sA as zclad jp'H14
to, <5A81(i (n-1(118~1.019
0η-3, thickness 1.5 μm) was sequentially grown and formed [-/ko.

このf′PjJ回目の結晶成長K (’J、 MO−C
VD法を用い、成4* 条件&’:J: 潟、 p’5
1750 [℃]、V/III = 2 o、コ\ヤリ
アソjス(H2)の流量〜] OLl/1ninl、J
J31.1:1はトリメチルガリウム(′l″MG :
 (CI)3Ga )、I・リメチルアルミニウム(T
MA : (CH3)!、AL)、アルノン(AsI1
3)、pl’ ” ン) : ” 工”J−ル!llj
鉛(DEZ :(C2)]−5)2Zn )、nドーz
e 71− :セレン化水素(H2Se )で、成長速
度は(1,25Lμm7’rn I 11 〕で6−Z
だ。なお、第1回目の結晶成長′Ctよ必ずしもΔ40
− CVD法を用いる必要trJ:ない〃・、大面Uf
で均一1」−の良い結晶成長が可能なhhJ −CVT
)法を用いることは、情意化を考えた当合1、円C法に
比べて有利である。
This f'PjJ-th crystal growth K ('J, MO-C
Using the VD method, 4* conditions &': J: lagoon, p'5
1750 [°C], V/III = 2 o, flow rate of Koyaria Sosu (H2) ~] OLl/1ninl, J
J31.1:1 is trimethyl gallium ('l''MG:
(CI)3Ga), I-remethylaluminum (T
MA: (CH3)! , AL), arunone (AsI1
3), pl' ”n): ” 工”J-ru!llj
Lead (DEZ: (C2)]-5)2Zn), ndoz
e71-: Hydrogen selenide (H2Se), the growth rate is (1,25Lμm7'rn I11) and 6-Z
is. Note that the first crystal growth 'Ct is not necessarily Δ40.
- No need to use CVD method trJ: No, large surface Uf
hhJ-CVT capable of uniform crystal growth of 1"
) method is more advantageous than the 1st and circle C method, which takes into account emotionalization.

次いで、第2クラツド)曽ノ4−1に(U ] ]、’
 )方向に200〔μIrl〕幅で4 (10j/n+
+Jピ°ッグーの)第1・レノスト・マスク(ン1示ぜ
り)を形成し、リン酸系エッチャントを用い第31:イ
1 (lりに示ずり)1〈止&出+s[Xの第2クン 
・ トノfj 1 4 y): B、!さくJ、 ’5
 tf μ+n 〕(・こなるまでエエラチンした。わ
3、いて、土圧レジスト・マスクiLl’:i?去した
のち、第2回目)結晶IJし長”、l? NO−CVI
J法で11つだ。すなわち、第3図(c)に示す如く第
2クラッド層I4上に電流阻止層15としでN −Ga
As層(n == 1018〜1019cm−3゜J/
、Iみ0.51部m )を成Jそ形成した。その後、電
流阻止、 XQ 15 土にフー、Jl−レジスト・マ
スク(図示せ1)を塗布しく()1丁)方向に幅3.5
〔μm〕、ビ、ヂ30 (l [1uII〕の溝を形成
し、これをマスクとしてリンAj7系エッチャン]・を
用い、第3図(d)に平面図4左−ノ如く゛電流阻止層
I5をエツチングした。こiLにより、電流阻止層I5
には底部で溝幅3 〔ttI]1]のストライプ状溝部
16が形成される。
Then, (U]],'
) direction with a width of 200 [μIrl] 4 (10j/n+
Form a first Renost mask (shown in Figure 1) using a phosphoric acid etchant, and apply a 31st Lennost mask (shown in Figure 1) using a phosphoric acid etchant. 2nd Kun
・ Tono fj 1 4 y): B,! Saku J, '5
tf μ+n] (・I erased it until it turned out. After removing the earth pressure resist mask iLl':i?, the second time) I did the crystal IJ and length", l? NO-CVI
There are 11 in the J method. That is, as shown in FIG. 3(c), a current blocking layer 15 is formed on the second cladding layer I4, and N-Ga is formed on the second cladding layer I4.
As layer (n == 1018~1019cm-3゜J/
, 0.51 part m ) was formed. After that, to block the current, apply a Jl-resist mask (1 shown in the figure) to the XQ 15 soil.
A trench of [μm], V, 30 (l [1uII]) was formed, and using this as a mask, a phosphorus Aj7-based etchant was used. The current blocking layer I5 was etched by this iL.
A striped groove portion 16 having a groove width of 3 [ttI]1 is formed at the bottom.

次いで、上^己しジスト マスクを除去し、第:う回目
の結晶成長をMO−CVD法で行い、第3図(e)に示
す如< □iA 偵)n ’ 7としてP −GaLl
、55”0.45As)a (p = I 018cr
n−’ 、厚み1.1lrn )、コンタクト層18と
してP −GaAo (p = 1019on−’ +
厚み2μm)を順次成長形成した。ここで、第2回目以
降の結晶成長な」1、璧気中に晒された篩いALa度を
有する層上への成長のため、従来のLPE法では成長で
きずMO−CVD法が必要とされる。
Next, the upper resist mask was removed, and the second crystal growth was performed using the MO-CVD method, as shown in Fig. 3(e).
, 55"0.45As) a (p = I 018cr
n-', thickness 1.1lrn), and the contact layer 18 is P-GaAo (p = 1019on-' +
2 μm thick) were sequentially grown. Here, for the second and subsequent crystal growth, 1. Because the crystal growth is on a layer with a sieve ALa exposed to the atmosphere, it cannot be grown using the conventional LPE method, and the MO-CVD method is required. Ru.

次いで、第3図(f)に示す如< J二部電4fi、1
9としてCr/A u、下部電極20としてA、13G
+!/AIJを蒸着し、オーミックコンタクトをとった
。その後、この試料をへき開によって分割することによ
り、前記第2図に示ず如きレーザが完成することになる
Next, as shown in FIG. 3(f),
9 is Cr/A u, lower electrode 20 is A, 13G
+! /AIJ was deposited and ohmic contact was made. Thereafter, by dividing this sample by cleavage, a laser as shown in FIG. 2 is completed.

かくして作成されたレーザにおいて、共振器長に対する
屈折率ガイド部の割合を神々変化させてみたところ、屈
折率ガイド部(第2クラッド層14の厚みが薄い部分)
が45 C13以上の場合非点収差3〔μrr+)す、
下、縦単一モード、戻り光による出力変動邦、10〔循
〕以上で力IIシ1率ガイドレーザの性質を示した。M
!、 Jar″$力゛イド力作41部45 [%]の場
合、非点収差5〜] 0 [/1m]、縦多モード、戻
シ光による出力変動、ハ↑J〔%〕以下と屈折率・利得
両ガ・f1゛型の1に1゛t′fを示した。
In the thus created laser, when we tried to vary the ratio of the refractive index guide part to the cavity length, we found that the refractive index guide part (the thinner part of the second cladding layer 14)
When is 45 C13 or higher, astigmatism is 3 [μrr+),
Below, the characteristics of a power II/1 ratio guided laser are shown in a longitudinal single mode with output fluctuation due to return light of more than 10 [cycles]. M
! , Jar"$ force id tour de force 41 part 45 [%], astigmatism 5 ~] 0 [/1 m], vertical multi-mode, output fluctuation due to return light, H ↑ J [%] or less and refractive index・1゛t′f is shown for 1 of the gain type ・f1゛.

また、屈折率ガイ)9部が5〔幻以下の場合、非点収差
20〔μm3以上、縦多モード、戻り光による出力変動
h’、 J [係〕以下と利得ガイド型の性質を示した
。したがって、例えば共振器長260[7ZITl :
] 、両端の屈折率ガイド部をそれぞれ30〔μm〕ず
つとすれば、屈折率ガイド?〜ISの割合が23〔係〕
となり、非点収差の点でも戻り光による出力変動の点で
もツC7″イスク用半導体レーザとして好適する(1:
、)性がイzIられることになる。
In addition, when the refractive index (G) is less than 5 [mirror], astigmatism is more than 20 [μm3, longitudinal multimode, and output fluctuation due to returned light h', J [correspondence] or less, showing the property of gain guide type. . Therefore, for example, the cavity length is 260[7ZITl:
] If the refractive index guide portions at both ends are each 30 [μm], then the refractive index guide? ~The proportion of IS is 23 [persons]
Therefore, it is suitable as a semiconductor laser for a C7'' disk in terms of astigmatism and output fluctuation due to returned light (1:
,) Sexuality will be violated.

このようItC本実本実施工れば、非点収差が小さいと
云う!1j1長を失うことなく、戻り光ノイズによる悪
影響′f3.’−1分小さくすることができ、光−フ′
づスフ用つ°0諒とし°C極め″Cイ1用である。甘だ
、MO−CVD法で形IJkできるので、太+(j生産
にも極めて有効である。
It is said that astigmatism is small if the ItC is actually implemented like this! 1j1 Without losing the length, the adverse effect due to the return light noise'f3. '-1 minute smaller, the light beam'
It is for zusufu use, 0 yen, and 0°C, and 1 for 1. It is sweet, because the MO-CVD method can produce IJk, and it is also extremely effective for producing TA+(j).

なお、本発明は土xトした実施例に限χピされるもので
はない。例えt:J:、前記各層の成長方法はMO−C
VD法に限らずMBE法であってもよい。また、各層の
組成比QJ:伺ら実施例に限定されるものではなく、仕
様に応じて適宜変更可能である。
It should be noted that the present invention is not limited to the specific embodiments. For example, t:J:, the growth method of each layer is MO-C
The method is not limited to the VD method, but may be the MBE method. Moreover, the composition ratio QJ of each layer is not limited to the example, and can be changed as appropriate according to the specifications.

例えば、前記第2クラッド層のAt組成を”hl=O−
35とし、光ガイド層として機能させることもてきる。
For example, if the At composition of the second cladding layer is "hl=O-
35, and can function as a light guide layer.

この場合、光の滲み出しか大きくなるため、利得ガイド
部で光が屈折率差を感じないように利得ガイド部での第
2クラッド層を2〔μm ]以上と厚ぐする必要がちる
。このようにして、ビームの広がり角やアスペクト比を
改善したり、高出力化をはカすることもn1能である。
In this case, the leakage of light increases, so that it is necessary to thicken the second cladding layer in the gain guide part to 2 [μm] or more so that the light does not feel the difference in refractive index in the gain guide part. In this way, it is possible to improve the beam spread angle and aspect ratio, and to increase the output power.

づ−だ、半導体材t1としては、GaAtAsの他にに
aInAsPやGaAtAsSb等の化合物半導体拐竿
゛1を用いることができる。さらに、基板としてN型の
代りにP型基板を用い、各層の導電型を逆にすることも
T5J能である。また、活性層f 、−/hむタノ゛ル
ヘデロ接合構逓は対称3層構造に限らず、非対称や3層
以上の多層抱造にしてもよい。その他、小発明の要旨な
逸脱しない範囲で、行々変形し一〇実施することができ
る。
As the semiconductor material t1, in addition to GaAtAs, a compound semiconductor rod 1 such as aInAsP or GaAtAsSb can be used. Furthermore, it is also possible to use a P-type substrate instead of an N-type substrate and reverse the conductivity type of each layer. Further, the tanohedero junction structure of the active layers f, -/h is not limited to a symmetrical three-layer structure, but may be asymmetrical or multilayered with three or more layers. In addition, it is possible to make various modifications and implement ten without departing from the gist of the minor invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は内部ストライブ自己整合型レーザの概略t′I
8造を示す断面1図、第2図(aJ〜(c)はそれぞれ
本発明の一実施例に係わる゛1岑体レーザの概略構造を
示す断rBr図、第31:’4+ (aJ〜(f)は上
記実施例レーザの製造工程を示す断面図及び平面図であ
る。 J l =−N −GaAs基板、” ”・N−GaO
,5!l”[1,45A8第1クラヅド層、13・・・
アンド−fGao、8μ。、1≠8活性層、14・= 
P −Gatl、55”4]、45A’ m 2クラシ
ト層、1.5− N −GaAs ’iJi:流阻止層
、I 6−ストライブ状溝部、17 ”−P−Gao、
55Aja0.45AR被ω層、18・・P−GaAa
コンタクト層、19.20・・・電極。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 11−31−1
Figure 1 shows a schematic diagram t'I of an internal stripe self-aligned laser.
Figures 1 and 2 (aJ-(c) are cross-sectional views showing the schematic structure of a 1-piece laser according to an embodiment of the present invention, respectively. Figure 31:'4+ (aJ-( f) is a cross-sectional view and a plan view showing the manufacturing process of the above example laser. J l =-N-GaAs substrate, “ ”・N-GaO
,5! l”[1,45A8 first cladding layer, 13...
And-fGao, 8μ. , 1≠8 active layers, 14·=
P-Gatl, 55"4], 45A' m2 crasito layer, 1.5-N-GaAs'iJi: flow blocking layer, I6-stripe groove, 17"-P-Gao,
55Aja0.45AR ω layer, 18...P-GaAa
Contact layer, 19.20... electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 11-31-1

Claims (2)

【特許請求の範囲】[Claims] (1) 化合物千導体拐料からなり、ダブルヘテ0接合
構造を有する仝1を導体レーザ装置において、第1導f
n型の21(導体基板と、この基板上に少なくとも第1
々7屯型の第Jクラッド層、活性層及び第2導電型の第
2クラツ1゛層を順次成長して形成されたダブルへテロ
接合部と、上記第2クラツドH上に成長形成され、かつ
第2クラッド層寸で至るストライフ0状の溝部が形成さ
れた第」4′i電型の奄υir、 i!Ill止層と、
上記溝>SBを含み上記箱: rjii:阻止層上に成
長形成された第2 >it・電型の被わ1層と金具(+
iii I、、i’+iJ記第2クラッド層は1)11
記ストう]プ方向に対し少なくとも2種の厚みを持′−
ノよう形成さノ1ていることf:特徴とする半導体1/
−デ装置。
(1) In a conductor laser device, the first conductor f is made of a compound conductor material and has a double heterojunction structure.
n-type 21 (conductor substrate, and at least a first
a double heterojunction formed by sequentially growing a 7-layer J cladding layer, an active layer, and a second conductivity type second cladding layer; and a double heterojunction formed on the second cladding H; And the 4′i electrotype 奄υir, i!, in which a strife 0-shaped groove extending to the second cladding layer is formed. Ill stop layer;
The above box includes the groove>SB and the metal fitting (+
iii I,,i'+iJ second cladding layer is 1)11
It has at least two types of thickness in the direction of
Formed like this 1 f: Characteristic semiconductor 1/
-de equipment.
(2)i4IJ IJt第2クラ、7ド層は、前記スト
ライプ方向に対し中央部で厚く形成され、かつ少なくと
も共振器端部側の一方で簿く形成されたものであること
を特徴とする特許請求の範囲第1項記載の半導体レーザ
装置。
(2) A patent characterized in that the i4IJ IJt second and seventh layers are formed thickly at the center with respect to the stripe direction, and thinly formed at least on one end side of the resonator. A semiconductor laser device according to claim 1.
JP17536883A 1983-09-22 1983-09-22 Semiconductor laser device Granted JPS6066890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17536883A JPS6066890A (en) 1983-09-22 1983-09-22 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17536883A JPS6066890A (en) 1983-09-22 1983-09-22 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS6066890A true JPS6066890A (en) 1985-04-17
JPS641952B2 JPS641952B2 (en) 1989-01-13

Family

ID=15994866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17536883A Granted JPS6066890A (en) 1983-09-22 1983-09-22 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6066890A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170985A (en) * 1987-01-09 1988-07-14 Hitachi Ltd Semiconductor laser element and its device
JPH02178985A (en) * 1988-12-29 1990-07-11 Sharp Corp Semiconductor laser element
JPH02178986A (en) * 1988-12-29 1990-07-11 Sharp Corp Semiconductor laser element
USRE34297E (en) * 1988-06-08 1993-06-29 Copeland Corporation Refrigeration compressor
US7005680B2 (en) 2000-11-01 2006-02-28 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device including a divided electrode having a plurality of spaced apart conductive members

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170985A (en) * 1987-01-09 1988-07-14 Hitachi Ltd Semiconductor laser element and its device
USRE34297E (en) * 1988-06-08 1993-06-29 Copeland Corporation Refrigeration compressor
USRE37019E1 (en) 1988-06-08 2001-01-16 Copeland Corporation Refrigeration compressor
JPH02178985A (en) * 1988-12-29 1990-07-11 Sharp Corp Semiconductor laser element
JPH02178986A (en) * 1988-12-29 1990-07-11 Sharp Corp Semiconductor laser element
US7005680B2 (en) 2000-11-01 2006-02-28 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device including a divided electrode having a plurality of spaced apart conductive members

Also Published As

Publication number Publication date
JPS641952B2 (en) 1989-01-13

Similar Documents

Publication Publication Date Title
US5416790A (en) Semiconductor laser with a self-sustained pulsation
JPS6110293A (en) Photo semiconductor device
JPH06237046A (en) Rwg type semiconductor laser device and manufacture thereof
JPH02270387A (en) Semiconductor light emitting element
JPH08222815A (en) Manufacture of semiconductor laser device, and semiconductor laser device
KR900000075B1 (en) Semiconductor laser diode
JP2000058981A (en) Gallium nitride based semiconductor light emitting element and fabrication thereof
US5524017A (en) Quantum well semiconductor laser
JP2000294883A (en) Nitride compound semiconductor laser element
JPS6066890A (en) Semiconductor laser device
US4383320A (en) Positive index lateral waveguide semiconductor laser
US5518954A (en) Method for fabricating a semiconductor laser
JPH09237933A (en) Semiconductor laser and manufacturing method thereof
JPH1187764A (en) Semiconductor light-emitting device and its manufacture
US5812575A (en) Semiconductor laser diode
JPH077232A (en) Optical semiconductor device
JP2001358407A (en) Semiconductor laser device
KR100377792B1 (en) semiconductor laser diode and manufasturing method thereof
US6773948B2 (en) Semiconductor light emitting device and method for producing the same
JPH0846290A (en) Photo-semiconductor element
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP3185239B2 (en) Semiconductor laser device
JPS6066891A (en) Semiconductor laser device
JPH02213181A (en) Semiconductor laser and manufacture thereof
JPH08204282A (en) Semiconductor laser