JPS606599A - Controller for battery forklift - Google Patents

Controller for battery forklift

Info

Publication number
JPS606599A
JPS606599A JP58114376A JP11437683A JPS606599A JP S606599 A JPS606599 A JP S606599A JP 58114376 A JP58114376 A JP 58114376A JP 11437683 A JP11437683 A JP 11437683A JP S606599 A JPS606599 A JP S606599A
Authority
JP
Japan
Prior art keywords
cargo handling
power source
switch means
electric motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114376A
Other languages
Japanese (ja)
Inventor
菊地 清喜
邦明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58114376A priority Critical patent/JPS606599A/en
Priority to KR1019840003571A priority patent/KR850000356A/en
Priority to PCT/JP1984/000328 priority patent/WO1985000147A1/en
Priority to DE19843490306 priority patent/DE3490306T1/en
Publication of JPS606599A publication Critical patent/JPS606599A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、パッチリフオフリフト制御装置、特に走行用
電動機と荷役用電動機との電源が共通バッテリ電源であ
る場合に好適なバッチリフオフリフト制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a patch lift-off control device, and particularly to a batch lift-off control device suitable for a case where a common battery power source is used as a power source for a traveling electric motor and a cargo handling electric motor. .

〔発明の背景〕[Background of the invention]

2つのチョッパ制御装置を並行運転するものとして例え
ば特開昭57−2014号公報がおる、バッテリ7オク
リフト装置は、装置自体の走行の他に荷役作業をも行う
。走行は、走行用電動機の駆動によって行い、荷役は、
荷役用電動機の駆動によって行う。各電動機の駆動用電
源にはバッテリを使用する。バッテリの数の減少をはか
る目的で、走行用電動機と荷役用電動機とで共通なバッ
テリを使用する場合が多い。
For example, a seven-battery lift device, which is disclosed in Japanese Unexamined Patent Publication No. 57-2014, which operates two chopper control devices in parallel, performs cargo handling work in addition to running the device itself. Traveling is performed by the drive of a traveling electric motor, and cargo handling is
This is done by driving an electric motor for cargo handling. A battery is used as a power source for driving each electric motor. In order to reduce the number of batteries, a common battery is often used for the traveling electric motor and the cargo handling electric motor.

第1図に、かかる共通バッテリを使用したパッチリフオ
フリフト制御装置の回路構成を示す。バッテリ1は、走
行と荷役とで共通に使用する共通バッテリである。走行
用電動機20は、電機子20Bと励磁コイル20Aよ構
成シ、荷役用電動機30は電機子30Bと励磁コイル2
OAより成る。
FIG. 1 shows a circuit configuration of a patch lift-off control device using such a common battery. The battery 1 is a common battery used for traveling and cargo handling. The traveling electric motor 20 consists of an armature 20B and an excitation coil 20A, and the cargo handling electric motor 30 consists of an armature 30B and an excitation coil 2.
Consists of OA.

この電動機20,301C直列に電流検出器21゜31
を接続する。
A current detector 21°31 is connected in series to this motor 20, 301C.
Connect.

トランジスタ22はチョッパ用トランジスタであり、チ
ョッパ制御回路2がチョッパ制御を行う。
The transistor 22 is a chopper transistor, and the chopper control circuit 2 performs chopper control.

サイリスタ33と34とはチョッパ用サイリスクで1、
チョッパ制御回路3がチョッパ制御を行う。サイリスタ
33は主サイリスタ、34は補助サイリスタである。更
に、ダイオード35、コイル36、コンデンサ37を設
けている。コンデンサ37は、転流用コンデンサをなす
Thyristors 33 and 34 are chopper thyristors 1,
A chopper control circuit 3 performs chopper control. Thyristor 33 is a main thyristor, and 34 is an auxiliary thyristor. Furthermore, a diode 35, a coil 36, and a capacitor 37 are provided. The capacitor 37 serves as a commutation capacitor.

かかる構成で、チョッパ偏御回路2と3とは、非同期に
作動するδ従って、運転者の走行指令(アクセル指令)
によってチョッパ制御回路2け作動してトランジスタ2
2の0N−OFFを行い、該走行指令に直接に関係しな
い、運転者の荷役指令(ハンドルやスイッチ指令)によ
ってチョッパ制御回路3はサイ′リスタ33,34のO
N−0FFを行う。
With this configuration, the chopper bias circuits 2 and 3 operate asynchronously δ, so that the driver's driving command (accelerator command)
2 chopper control circuits are activated and transistor 2 is activated.
2, and the chopper control circuit 3 turns the thyristors 33 and 34 off in response to the driver's cargo handling command (handle or switch command), which is not directly related to the travel command.
Perform N-0FF.

トランジスタ22のON時には、バッテリ1から走行用
電動機20に電流が供給され、走行を行う。サイリスタ
33(又は34)のON時には、バッテリ1から荷役用
電動機30に電流が供給され、荷役作業を行う。
When the transistor 22 is turned on, current is supplied from the battery 1 to the electric motor 20 for driving, and the vehicle runs. When the thyristor 33 (or 34) is turned on, current is supplied from the battery 1 to the cargo handling motor 30 to perform cargo handling work.

サイリスタ33(又は34)の消弧時には、ダイオード
35、コイル36を介してコンデンサ37への充電が行
われておシ、充電完了後は一定電圧に維持される。サイ
リスタ33(又は34)の点弧開始後の所定時間後にコ
ンデンサ37の電荷は放電し、消弧電圧時にサイリスタ
33(又は34)をONからOFFに消弧させる。
When the thyristor 33 (or 34) is turned off, the capacitor 37 is charged via the diode 35 and the coil 36, and after charging is completed, the voltage is maintained at a constant voltage. The electric charge of the capacitor 37 is discharged after a predetermined time after the ignition of the thyristor 33 (or 34) starts, and the thyristor 33 (or 34) is turned off from ON to OFF at the extinguishing voltage.

かかる従来回路での動作波形を第2図に示す。FIG. 2 shows operating waveforms in such a conventional circuit.

走行用モータ電流(走行用電動機駆動電流)Lは、トラ
ンジスタ22のチョッパ動作に応じた電流である。一方
、荷役用モータ電流(荷役用電動機駆動電流)J2はサ
イリスタ33’ (34)のチョッパ動作に応じた電流
である。前述した如く走行と荷役とは非同期である故に
、電流11 と工2とは共に非同期をなす。コンデンサ
8の両端電圧vcけ、ザイリスタOFF時には一定電圧
に充電されておシ、放電によって消弧電圧に達した時点
でライリスク、33.34をOFF (消弧)させる。
The travel motor current (travel motor drive current) L is a current that corresponds to the chopper operation of the transistor 22. On the other hand, the cargo handling motor current (cargo handling motor drive current) J2 is a current corresponding to the chopper operation of the thyristor 33' (34). As described above, since travel and cargo handling are asynchronous, both current 11 and work 2 are asynchronous. When the voltage across the capacitor 8 is vc, it is charged to a constant voltage when the Zyristor is OFF, and when it reaches the arc-extinguishing voltage by discharging, the relay 33.34 is turned OFF (arc-extinguishing).

址だ、図では、補助サイリスタ34のアノード電圧■、
全開示し7ている。
In the figure, the anode voltage of the auxiliary thyristor 34 is
Full disclosure7.

さて、走行と荷役とが重なった場合、バッテリ電源の容
量には限界があるため、走行と荷役、特に荷役作業が暴
走することがある。第2図をもとに説明する。
Now, when traveling and cargo handling overlap, there is a limit to the capacity of the battery power source, so traveling and cargo handling, especially cargo handling, may go out of control. This will be explained based on FIG.

第2図で、P点で荷役用電流■2が立上ると、サイリス
タ33はONする。このONになっている中で、9点で
走行用モータ電流■!が立上るとトランジスタ22はO
Nとなる。電流II と■。
In FIG. 2, when the cargo handling current 2 rises at point P, the thyristor 33 is turned on. While this is ON, the driving motor current at 9 points ■! rises, the transistor 22 becomes O
It becomes N. Current II and ■.

とはバッテリ1から供給されるため、両者が重なるとバ
ッテリ電圧が急激に低下となる。この結果、コンデンサ
37への充11流が低下し充電電圧も上昇せず、サイリ
スタの転流失敗を招く。この転流失敗によシ、電流工、
は点線Sの如くならずに、図のaの方向のように上昇し
、荷役作業の暴走を招く。
and is supplied from the battery 1, so when the two overlap, the battery voltage will drop rapidly. As a result, the charging current to the capacitor 37 decreases and the charging voltage does not increase, resulting in failure of commutation of the thyristor. Due to this commutation failure, the electrical engineer
does not rise as indicated by the dotted line S, but instead rises in the direction of a in the figure, leading to runaway cargo handling operations.

〔発明の目的〕[Purpose of the invention]

本発明は、荷役用13.f13J1機電流の防止をはか
つてなるバッチリフオフリフト制御装置を提供するにあ
る。
The present invention is for cargo handling 13. The purpose of preventing f13J1 machine current is to provide a batch lift-off control device.

〔発明の概要〕 本発明は、走行指令と荷役指令とが少なくとも一部の時
間帯で同時発生状態にある時には、走行指令を禁止させ
た点におる。具体的には、サイリスタ7ノード電圧を走
行用の制御回路に入力させ該アノード電圧のレベルに応
じて走行指令を発生させないようにした。
[Summary of the Invention] The present invention is characterized in that the travel command is prohibited when the travel command and the cargo handling command occur simultaneously during at least part of the time. Specifically, the thyristor 7 node voltage is input to the driving control circuit so that the driving command is not generated in accordance with the level of the anode voltage.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の7オクリフト制御装置の実施例図を示
す。チョッパ制御回路2には、補助サイリスタアノード
電圧の信号を取込ませた。更に、チョッパ制御装置2の
内部構成はその取込みに伴って変更してなる。チョッパ
制御回路3の内部構成は従来と変りない。
FIG. 3 shows an embodiment of the 7-oclift control device of the present invention. The chopper control circuit 2 was made to receive a signal of the auxiliary thyristor anode voltage. Furthermore, the internal configuration of the chopper control device 2 has been changed in accordance with its introduction. The internal configuration of the chopper control circuit 3 is the same as before.

チョッパ制御回路2は、通常−二チョツパ制御回路3と
非同期に動作している。然るに、荷役用電流■2が流れ
た時には、チョッパ制御回路2がトランジスタ22をO
Nにすべく動作中でめっでも、この荷役用電流■2によ
ってチョッパ制御回路2のON動作指令の停止を行わせ
る。即ち、両者作動榮件になった時には、走行用電動機
への電流供給をやめ、荷役用電動機にのみ電流を流させ
ようとしたものである。
The chopper control circuit 2 operates asynchronously with the normal-two chopper control circuit 3. However, when the cargo handling current ■2 flows, the chopper control circuit 2 turns the transistor 22 off.
Even if the chopper control circuit 2 is in operation to be set to N, the load handling current (2) causes the ON operation command of the chopper control circuit 2 to be stopped. In other words, when both are in operation condition, the current supply to the traveling electric motor is stopped and the current is made to flow only to the cargo handling electric motor.

第4図に、チョッパ制御回路2を中心とするフオクリ7
ト制御装置の実施例図を示す。チョッパ制御−(路2は
、バッテリ電圧(例えば48V)を受けて所定の一定電
圧(例えば101を得、この一定電圧を各種の1自流電
源として供給せしめる定遺I圧回路40を持つ。アクセ
ル回路41は、走行時に運転者のアクセス操作に対応し
たアクセル信号を発生する。
FIG. 4 shows a forklift 7 centered on the chopper control circuit 2.
An example diagram of a control device is shown. Chopper control (path 2 has a constant I voltage circuit 40 that receives a battery voltage (for example, 48V) to obtain a predetermined constant voltage (for example, 101) and supplies this constant voltage as a free current power source for various types.Accelerator circuit 41 generates an accelerator signal corresponding to the driver's access operation during driving.

発振回路42け、アクセル回路41の出力であるアクセ
ル信号を入力とし、そのアクセル信号に対応したデユテ
ィ比を持つパルス信号を発生する。
The oscillation circuit 42 receives the accelerator signal output from the accelerator circuit 41 as input, and generates a pulse signal having a duty ratio corresponding to the accelerator signal.

デユティ比の他に発振周波数をアクセル信号に応じて変
更させる回路でおってもよい。
In addition to the duty ratio, a circuit that changes the oscillation frequency according to the accelerator signal may be used.

ゲート回路44け、タイマ回路、又はシュミットトリガ
回路である。ベース電流制御回路43はトランジスタ2
20ペース電流供給制御を行う。
44 gate circuits, timer circuits, or Schmitt trigger circuits. The base current control circuit 43 is the transistor 2
20 pace current supply control is performed.

更に、補助サイリスタ34のアノード電圧は、ダイオー
ド45、抵抗46、インバータ51、抵抗52、ダイオ
ード53を介してゲート回路44の入力となる。ここで
、抵抗46と50とは分圧用抵抗用ダイオード45は整
流用、ダイオード53は逆流阻止用の役割を持つ。コン
デンサ48は高周波除去用の役割を持つ。ダイオード4
9は、補助サイリスタの7)−ド電圧が過大(IOV以
上)の時に、この過大電圧分を除去する機能を持つ。
Furthermore, the anode voltage of the auxiliary thyristor 34 becomes an input to the gate circuit 44 via a diode 45, a resistor 46, an inverter 51, a resistor 52, and a diode 53. Here, among the resistors 46 and 50, the voltage dividing resistor diode 45 has the role of rectifying, and the diode 53 has the role of blocking reverse flow. The capacitor 48 has the role of high frequency removal. diode 4
9 has a function of removing the excessive voltage when the voltage at the auxiliary thyristor 7) is excessive (more than IOV).

動作を第5図のタイムチャートを利用して説明する。ア
クセル回路41は、運転者のアクセル操作に応じてアク
セル操作量対応のアクセル信号を発生ずる。発振回路4
2は、そのアクセル信号の大きさに応じてデユティ比(
又は周波数)の異なるパルスを発生し、この信号がゲー
ト回路44、ベース電流制御回路43を介してトランジ
スタ22のONとOFFとを行う。このトランジスタ2
2のONとOFFとによシ第5図に示す如き、走行用モ
ータ電流I、が流れる。
The operation will be explained using the time chart shown in FIG. The accelerator circuit 41 generates an accelerator signal corresponding to the amount of accelerator operation in response to the driver's accelerator operation. Oscillation circuit 4
2 is the duty ratio (
This signal turns on and off the transistor 22 via the gate circuit 44 and the base current control circuit 43. This transistor 2
2, a traveling motor current I flows as shown in FIG.

一方、荷役用チョッパ制御回路(図示略)は、走行用チ
ョッパ制御回路2とは非同期に動作しており、運転者の
荷役指示によシ、荷役用モータ電流■2は第5図の如く
流れる。補助サイリスタアノード電圧■、も、この荷役
用モータ電流■2に応じてH,!=Lとを繰返す。
On the other hand, the cargo handling chopper control circuit (not shown) operates asynchronously with the traveling chopper control circuit 2, and the cargo handling motor current 2 flows as shown in Fig. 5 in accordance with the driver's cargo handling instructions. . The auxiliary thyristor anode voltage ■, also depends on this cargo handling motor current ■2, H,! =L is repeated.

さて、P位置で荷役用モータ電流■2が立上シ。Now, at the P position, the cargo handling motor current ■2 starts up.

次いでQ位置6で走行用モータ電流11が点線の如くN
l−ヒる場合を想定する。荷役用モータ電流I2により
、補助ザイリスタアノード電圧即ち転流電圧■、は、荷
役用モータ電流工、の巾τ0 (転流区間中)だけHか
らLとなる。この巾τ0の区間では、インバータ51の
出力VlはHとなシ、それ以外ではインバータ51の出
力V+はLとなる。
Next, at Q position 6, the running motor current 11 becomes N as shown by the dotted line.
Assume a case where l-hies occur. Due to the cargo handling motor current I2, the auxiliary Zyristor anode voltage, that is, the commutation voltage 2, changes from H to L by the width τ0 (during the commutation section) of the cargo handling motor current I2. In this interval of width τ0, the output Vl of the inverter 51 is H, and otherwise the output V+ of the inverter 51 is L.

今、ゲルト回路44の入力(ダイオード53を介しての
出力及び抵抗55を介しての出力)がHの時、トランジ
スタ22がOFF、どちらかの出力がLの時にトランジ
スタ22がONになるものとゲート回路44、制御回路
43が構成されているとする。この構成によれば1区間
τ。ではトランジスタ22はOFFとなる。従って、走
行用モータ電流I!は流れず、荷役用モータ電流工2の
みが流れる。従って、従来の如きコンデンサ充電電圧が
不足することなく、正規の転流制御を可能とする。区間
τ0以後、即ち時刻t2 (Q1位置)以後では、イン
バータ51の出力V1は、HからLとなシ、ゲート回路
44は、発振回路55のパルスの中で、t2以後につい
てのみのパルス(区間τ! )を取込み、このパルスに
従ってトランジスタ22をONにさせる。尚、走行用モ
ータ亀流I!は、1パルス分のみで”、!I:<、71
分のみの区間の電流I+ となり、チョッパ制御回路2
内での本来のパルス区間よシ短いパルス区間の信号とな
る。従って、若干の誤差が生ずるが、荷役用と走行用と
が同時に指令することは多くないため、問題は生じ方い
Now, when the input of the Gert circuit 44 (the output via the diode 53 and the output via the resistor 55) is H, the transistor 22 is OFF, and when either output is L, the transistor 22 is ON. It is assumed that a gate circuit 44 and a control circuit 43 are configured. According to this configuration, one section τ. Then, the transistor 22 is turned off. Therefore, the driving motor current I! does not flow, and only the cargo handling motor electric current 2 flows. Therefore, normal commutation control is possible without the capacitor charging voltage being insufficient as in the conventional case. After the interval τ0, that is, after time t2 (Q1 position), the output V1 of the inverter 51 changes from H to L, and the gate circuit 44 outputs pulses from the oscillation circuit 55 only after t2 (interval τ!) and turns on the transistor 22 according to this pulse. In addition, the driving motor Kameryu I! is only for one pulse",!I:<,71
The current I+ in the section of only
It becomes a signal with a shorter pulse interval than the original pulse interval within. Therefore, a slight error occurs, but since it is not often that cargo handling and traveling commands are given at the same time, problems tend to occur.

更に、第5図では、P位置とQ位置とを一致させる事例
を示したが、P位置の後にQ位置が生ずるような場合に
も(第2図の如き場合)、本発明は適用できることは云
うまでもない。
Furthermore, although FIG. 5 shows an example in which the P position and Q position match, the present invention can also be applied to a case where the Q position occurs after the P position (as in FIG. 2). Needless to say.

同、以上の実施例でゲート回路44の入力段に入れる信
号を制御する構成としたが、発振回路の発振出力を制御
するやシ方、ベース電流制御回路を制御するやり方をも
適用できる。
Similarly, in the above embodiment, the configuration is such that the signal input to the input stage of the gate circuit 44 is controlled, but the method of controlling the base current control circuit can also be applied as soon as the oscillation output of the oscillation circuit is controlled.

第4図の実施例で、トランジスタ22の代シにサイリス
タを設け、このサイリスタを別個に設けたサイリスタチ
ョッパ制御回路によってチョッパ制御を行うフオクリフ
ト制御装置にも適用可能である。
In the embodiment of FIG. 4, a thyristor is provided in place of the transistor 22, and the present invention can also be applied to a forklift control device in which chopper control is performed by a thyristor chopper control circuit provided separately with this thyristor.

〔関門の効果〕[Barrier effect]

に生じた場合でも、荷役指令を優先できる構成としたた
め、転流失敗を防止でき、荷役の暴走を防止できた。
Even in the event of a failure, the cargo handling command can be prioritized, thereby preventing failure of commutation and preventing runaway cargo handling.

【図面の簡単な説明】 第1図は従来のフオクリフト制御装置の構成図、第2図
はそのタイムチャート、第3図は本発明の7オクリ7ト
制御装置の実施例図、第4図は本発明のチョッパ制御回
路2を中心とする実施例図、第5図はそのタイムチャー
トを示す。 1・・・バッテリ、20・・・走行用電動機(モータ)
、30・・・荷役用電動機(モーZ)、22・・・トラ
ンジスタ、33.34・・・サイリスタ、2・・・トラ
ンジスタチョッパ制御回路、3・・・サイリスタチョツ
ノ(制御回路、41・・・アクセル回路、42・・・発
振回路、43・・・ベース電流制御回路、44・・・ゲ
ート回路、51・・・インバータ。 代理人 弁理士 秋本正実
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a configuration diagram of a conventional forklift control device, Fig. 2 is a time chart thereof, Fig. 3 is a diagram of an embodiment of a 7-off lift control device of the present invention, and Fig. 4 is a diagram of a conventional forklift control device. FIG. 5, which is an embodiment diagram centered on the chopper control circuit 2 of the present invention, shows its time chart. 1... Battery, 20... Travel electric motor (motor)
, 30... Cargo handling electric motor (MOZ), 22... Transistor, 33.34... Thyristor, 2... Transistor chopper control circuit, 3... Thyristor chopper (control circuit, 41...・Accelerator circuit, 42...Oscillation circuit, 43...Base current control circuit, 44...Gate circuit, 51...Inverter. Agent: Masami Akimoto, patent attorney

Claims (1)

【特許請求の範囲】 1、単一のバッテリ電源と、該バッテリ電源を電源とす
る走行用電動機と、上記バッテリ電源を電源とする荷役
用電動機と、上記走行用電動機に上記バッテリ電源を介
して走行用駆動電流を流すべくオン、オフする第1のス
イッチ手段と、該第1のスイッチ手段のオン、オフ駆動
を運転者の走行指令に応じて制御する第1のチョッパ手
段と、上記荷役用電動機に上記バッテリ電源を介して荷
役用駆動電流を流すべくオン、オフするサイリスタより
成る第2のスイッチ手段と、該第2のスイッチ手段のオ
ン、オフ駆動を運転者の荷役指令に応じて制御する第2
のチョッパ手段とを備えると共に、上記第2のチョッパ
手段は、第2のスイッチ手段のサイリスタの転流電圧を
取り込み、該転流区間中にあっては上記第1−のスイッ
チ手段をオフにさせる構成としたバッチリフオフリフト
制御装置べ。 2 上記第1のスイッチ手段は、トランジスタよ構成る
特許請求の範囲第1項記載のバッチリフオフリフト制御
装置。 3 上記第1のスイッチ手段は、サイリスクよ構成る特
許請求の範囲第1項記載のバッチリフオフリフト制御装
置。
[Claims] 1. A single battery power source, a traveling electric motor using the battery power source as a power source, a cargo handling electric motor using the battery power source as a power source, and a single battery power source connected to the traveling electric motor via the battery power source. a first switch means for turning on and off to flow a drive current for running; a first chopper means for controlling on/off driving of the first switch means in accordance with a running command from a driver; a second switch means consisting of a thyristor that turns on and off in order to flow a cargo handling drive current to the electric motor via the battery power supply; and controlling the on and off driving of the second switch means in accordance with a cargo handling command from a driver. Second to do
chopper means, and the second chopper means takes in the commutation voltage of the thyristor of the second switch means and turns off the first switch means during the commutation period. Batch ref-off control device configured as follows. 2. The batch lift-off control device according to claim 1, wherein the first switch means is constituted by a transistor. 3. The batch lift-off control device according to claim 1, wherein the first switch means is constituted by SIRISK.
JP58114376A 1983-06-27 1983-06-27 Controller for battery forklift Pending JPS606599A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58114376A JPS606599A (en) 1983-06-27 1983-06-27 Controller for battery forklift
KR1019840003571A KR850000356A (en) 1983-06-27 1984-06-23 Control of Poor Craft
PCT/JP1984/000328 WO1985000147A1 (en) 1983-06-27 1984-06-25 Apparatus for controlling forklift
DE19843490306 DE3490306T1 (en) 1983-06-27 1984-06-25 Control system for forklifts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114376A JPS606599A (en) 1983-06-27 1983-06-27 Controller for battery forklift

Publications (1)

Publication Number Publication Date
JPS606599A true JPS606599A (en) 1985-01-14

Family

ID=14636136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114376A Pending JPS606599A (en) 1983-06-27 1983-06-27 Controller for battery forklift

Country Status (4)

Country Link
JP (1) JPS606599A (en)
KR (1) KR850000356A (en)
DE (1) DE3490306T1 (en)
WO (1) WO1985000147A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007538A1 (en) * 1988-02-19 1989-08-24 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control and display device of battery car

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004394A1 (en) * 1984-03-26 1985-10-10 Kyowa Hakko Kogyo Co. Ltd. Alkynol compounds and alcohol separating agents
DE19922137A1 (en) * 1999-05-12 2000-11-16 Still & Saxby Sarl Industrial truck with a battery pack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829305A (en) * 1981-08-14 1983-02-21 Hitachi Ltd Controlling circuit for motor for electric motor vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007538A1 (en) * 1988-02-19 1989-08-24 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control and display device of battery car
EP0360870A1 (en) * 1988-02-19 1990-04-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control and display device for a battery powered forklift truck
US5065320A (en) * 1988-02-19 1991-11-12 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control and display system for a battery powered vehicle
EP0360870B1 (en) * 1988-02-19 1995-11-29 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control and display device for a battery powered forklift truck

Also Published As

Publication number Publication date
WO1985000147A1 (en) 1985-01-17
KR850000356A (en) 1985-02-26
DE3490306T1 (en) 1986-06-26

Similar Documents

Publication Publication Date Title
JP2547544B2 (en) Semiconductor power circuit
JPH0461580B2 (en)
US4084119A (en) Chopper control system
US3555389A (en) Direct current motor control system
US3903465A (en) Chopper control system
JPS606599A (en) Controller for battery forklift
JPH0250518A (en) Driving circuit for static induced type self-arc extinction element and inverter device static induced type self-arc-suppressing element
JPH077807A (en) Electric motor car controller
US3993942A (en) Forced commutation chopper having current limit
JP2624524B2 (en) Motor overload detection device
US3428880A (en) Motor reversing and speed control apparatus
US4005348A (en) Control system for DC motors
KR100331831B1 (en) Controlling circuit for power device of inverter
JPH05300669A (en) Power supply to electric load for vehicle
JPH0436084Y2 (en)
JPS6111996Y2 (en)
JP2513733B2 (en) Control circuit for acceleration power supply
JPS642557Y2 (en)
JPH062479Y2 (en) Motor control circuit
JPS6311905Y2 (en)
SU1192095A1 (en) Device for controlling velocity of induction motor
SU892632A1 (en) Electric drive for electric motor car
JPS6031430Y2 (en) DC motor control device
JPH0328918B2 (en)
JPH01209972A (en) Regenerative control circuit for motor