JPS6065747A - Cooling of optical fiber - Google Patents

Cooling of optical fiber

Info

Publication number
JPS6065747A
JPS6065747A JP58171001A JP17100183A JPS6065747A JP S6065747 A JPS6065747 A JP S6065747A JP 58171001 A JP58171001 A JP 58171001A JP 17100183 A JP17100183 A JP 17100183A JP S6065747 A JPS6065747 A JP S6065747A
Authority
JP
Japan
Prior art keywords
optical fiber
cooling medium
cylinder
cooling
gyrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58171001A
Other languages
Japanese (ja)
Inventor
Akira Iino
顕 飯野
Masayuki Nishimoto
西本 征幸
Kazunori Senda
千田 和憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP58171001A priority Critical patent/JPS6065747A/en
Publication of JPS6065747A publication Critical patent/JPS6065747A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To carry out the quenching of an optical fiber obtained by the thermal elongation and spinning of a preform rod, and to keep the spun optical fiber in a stable state free from meandering and fluctuation, by quenching the fiber with a gyrating cooling medium. CONSTITUTION:The preform rod 7 is inserted slowly into the spinning furnace 1, and the lower end of the heated and softened rod 7 is drawn at a high speed to produce an optical fiber 8, which is quenched with a quenching means 2. A gyrating flow of a cooling medium is applied to the outer circumference of the optical fiber 8 passing through the cylinder 4 of the quenching means 2 by the following manner. When a cooling medium is introduced into the cylinder 4 through the plural injection nozzles 51-54 opened at the outer circumference of the cylinder 4 at the part 4a having large diameter, the cooling medium descends under gyration along the inner surface of the part 4a having large diameter to form a gyrating flow S. The flow is accelerated at the tapered part 4b, and further accelerated with the rotating blades 6 at the part 4c having small diameter. The optical fiber 8 passing through the cylinder 4 maintained to the above state is quenched, aligned at the center of the gyrating flow, and held at a definite position.

Description

【発明の詳細な説明】 本発明は紡糸後の光ファイバを冷却する方法薔こ関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling optical fiber after spinning.

既知の通り、光ファイバはプリフォームロッド(光フア
イバ用母材)を加熱延伸手段で紡糸することζこより製
造され、当該紡糸後の光フアイバ外周には、1次コート
が形成される。
As is known, an optical fiber is manufactured by spinning a preform rod (an optical fiber base material) using a heated drawing means, and a primary coat is formed on the outer periphery of the optical fiber after the spinning.

上記の紡糸法により光ファイバの高速製造を実施すると
き、紡糸直後の光ファイバは清浄な空気を噴射するとい
った冷却手段により急冷されるが、この際の冷却が不充
分であると、その後の1次コーティング(有機物コーテ
ィング)は良好に行なえない。
When performing high-speed production of optical fibers using the above-mentioned spinning method, the optical fibers immediately after spinning are rapidly cooled by cooling means such as jetting clean air, but if the cooling at this time is insufficient, the subsequent The next coating (organic coating) cannot be performed well.

一般的に採用されている光ファイバの冷却では、光ファ
イバの走行方向と直交する方向から該光ファイバに向け
て清浄な空気を積極的に吹きつけるといった手段がとら
れているが、この方法では噴射空気の衝突力により光フ
ァイバに揺れが生じ、元ファイバが蛇行してしまう。
A commonly used method for cooling optical fibers is to actively blow clean air toward the optical fiber from a direction perpendicular to the direction in which the optical fiber runs. The collision force of the injected air causes the optical fiber to shake, causing the original fiber to meander.

空気の噴射条数を増し、これらバランスよく配置しても
、現実【こはかなりの光ファイバ振れが生じており、上
記の問題を技術的に解決する【こは至っていlい〇 もちろん光ファイバにこのようl揺動、蛇行が生じると
、ダイスコータを介して行なう爾後01次コーティング
時、その1次コート1こ偏肉が生じ、はなはだしいとき
は光ファイ/くがコーティングダイスと接触し、これに
起因した光ファイバの断線事故が発生する。
Even if we increase the number of air injection lines and arrange them in a well-balanced manner, in reality, considerable optical fiber deflection occurs, and it is impossible to technically solve the above problem. If such oscillation and meandering occur, uneven thickness of the first coat will occur during the subsequent first coating performed via a die coater, and if the thickness is extreme, the optical fiber will come into contact with the coating die and cause this. This causes an optical fiber disconnection accident.

本発明は上記の問題に対処すべく、渦流状態とした冷却
媒体を介して紡糸後の光ファイノ(を冷却スることによ
り、光ファイバを効率ヨく、かつ、安定して冷却せんと
するもので、以下その具体的方法を図示の実施例1こよ
り説明する。
In order to solve the above problems, the present invention attempts to efficiently and stably cool an optical fiber after spinning through a cooling medium in a vortex state. The specific method will be explained below with reference to the first embodiment shown in the drawings.

第1図において、1は既知の電気加熱炉からなる紡糸炉
、2は該紡糸炉1の下位fこ同炉1とできるだけ近接し
て配置された冷却手段、3は該冷却手段2の下位に配置
されたダイスコータナトのコーティング手段である。
In FIG. 1, 1 is a spinning furnace consisting of a known electric heating furnace, 2 is a cooling means arranged as close as possible to the lower part of the spinning furnace 1, and 3 is a lower part of the cooling means 2. A means for coating the arranged dice coater.

上記における冷却手段2は第2図、第3図に明示した通
り、上方の径大部4aと中間の傾斜部4bと下方の径小
部4Cとを有する円筒4と、その径大部4aの外周に開
口連結された複数本の冷媒噴射管6□、6□、53,5
.と、その径小部4c内の軸心位置に回転自在に備えつ
けられた回転翼体6とからなる0 上記において、径大部4aの外周に等間隔で連結されて
いる各冷媒噴射管6、〜64は、これらが径大部4aの
接線方向へ沿い、かつ、下向きに傾斜する状態となって
おり、一方、径小部4c内の回転翼体6は、図示のごと
くその軸心部が開通されており、既知の軸受を介して回
転自在に支持されている0 本発明では第1図に例示するように、プリフォームロッ
ド7を低速状態で紡糸炉1内に挿入し、ここで加熱軟化
された該ロッド7の下端を高速で延伸することにより光
ファイノく8をつくり、この紡糸直後の光ファイバ8を
冷却手段21こより冷却してこれをつぎのコーティング
手段3へと送り、該コーティング手段3では光ファイバ
8の外周に1次コートを形成して1次被覆光ファイバ9
とするが、上記冷却手段2では円筒4内を通過する光フ
ァイバ8の外周に冷却媒体による渦流を生ぜしめて該光
ファイバ8を冷却する。
As clearly shown in FIGS. 2 and 3, the cooling means 2 described above includes a cylinder 4 having an upper large-diameter portion 4a, an intermediate inclined portion 4b, and a lower small-diameter portion 4C, and the large-diameter portion 4a of the cylinder 4. A plurality of refrigerant injection pipes 6□, 6□, 53, 5 connected to the outer periphery with openings
.. and a rotary blade body 6 rotatably installed at the axial center position within the small diameter portion 4c. - 64 are in a state in which they are inclined downward along the tangential direction of the large diameter portion 4a, while the rotor body 6 in the small diameter portion 4c has its axial center as shown in the figure. In the present invention, as illustrated in FIG. 1, the preform rod 7 is inserted into the spinning furnace 1 at a low speed and heated there. An optical fiber 8 is created by drawing the softened lower end of the rod 7 at high speed, and the optical fiber 8 immediately after spinning is cooled by a cooling means 21 and sent to the next coating means 3, where it is coated. In means 3, a primary coat is formed on the outer periphery of the optical fiber 8 to form a primary coated optical fiber 9.
However, the cooling means 2 cools the optical fiber 8 passing through the cylinder 4 by generating a vortex flow around the outer periphery of the optical fiber 8 due to the cooling medium.

以下これ1こつき詳述すると、各冷媒噴射管6□〜64
を介して円筒4内へ冷却媒体を吹きこんだ場合、その冷
却媒体は径大部4aの内面に沿って旋回下降しながら渦
流Sを生ずるようになり、こうして発生した渦流Sは傾
斜部4bにおいてその流速を漸増させながら径小部4C
へ至る〇 一方、径小部4cではモータMを介して回転する回転翼
体61こより、前記渦流Sがさらに増速される。
To explain this in detail below, each refrigerant injection pipe 6□~64
When a cooling medium is blown into the cylinder 4 through the cylinder 4, the cooling medium swirls downward along the inner surface of the large-diameter portion 4a and generates a vortex S. While gradually increasing the flow velocity,
On the other hand, in the small diameter portion 4c, the speed of the vortex S is further increased by the rotary blade body 61 which is rotated via the motor M.

上記冷却媒体Gこよる渦流発生状態の円筒4内を通過す
る光ファイバ8は、これの外周に接触する高速渦流すな
わち冷却媒体により急冷されるが、この際光ファイバ8
は瞬時にして渦流の中心へ捕捉され、−たん渦の中心に
入りこんだ光ファイバ8はその中心から脱することなく
流体力学的な作用により定位置(渦流の中心)に保持さ
れて蛇行、横振れのない状態を呈する。
The optical fiber 8 passing through the cylinder 4 in which a vortex is generated due to the cooling medium G is rapidly cooled by the high-speed vortex, that is, the cooling medium, which contacts the outer periphery of the optical fiber 8.
The optical fiber 8 is instantly captured at the center of the vortex, and the optical fiber 8 that has entered the center of the vortex is held at a fixed position (the center of the vortex) by hydrodynamic action without escaping from the center, meandering and moving laterally. It exhibits a state of no shake.

したがって上記のごとく冷却媒体を渦流状態とし、その
渦流Sの中心コこ光ファイバ8を保持して当該光ファイ
バ8を冷却するときは、これが単に急冷できるだけでな
く、光ファイノ(8の走行状態が安定し、その結果、急
冷後の光ファイバ8をコーティング手段31こよりコー
ティングするとき、200 m/yritn以上の高線
速としても光ファイバ8が安定していることにより偏肉
コートの問題とか、光ファイノ(8の損傷、断線事故な
どが殆ど発生しなくなる0 なお、上記において用いられる冷却媒体はもちろん流体
が望ましく、具体的にはフィルりにより浄化した空気を
冷却したもの、L N 2、LHeなどの液化ガスを気
化させたもの、その他揮発生の高い液体などが用いられ
る。
Therefore, when the cooling medium is made into a vortex state as described above, and the optical fiber 8 is held at the center of the vortex S to cool the optical fiber 8, not only can this be rapidly cooled, but also the running state of the optical fiber (8) can be cooled. As a result, when the optical fiber 8 after quenching is coated by the coating means 31, even at a high linear speed of 200 m/yritn or more, the optical fiber 8 is stable, which eliminates the problem of uneven coating thickness. Phyno (8 damage, disconnection accidents, etc. will almost never occur) Note that the cooling medium used in the above is of course preferably a fluid, specifically one that cools air purified by filling, LN2, LHe, etc. Vaporized liquefied gases and other liquids with high volatilization are used.

また、上述した円筒4を介して冷却媒体の渦流Sを発生
させる場合、当該円筒4を前後方向、左右方向昏こ移動
調整するための調整機’IN+こより支持しておけば、
コーティング手段3などに対スル光ファイバ8のセンタ
リングがより精活に行なえる。
In addition, when generating the vortex S of the cooling medium through the cylinder 4 described above, if the cylinder 4 is supported by an adjustment device 'IN+ for adjusting the movement in the front and rear directions and the left and right directions,
The optical fiber 8 can be more accurately centered on the coating means 3 and the like.

さらに冷却媒体として揮発性の低い液体を用いる場合、
円筒4の径小部4c下1こ受器を配置し、該受器と各冷
媒噴射管61〜64とを、ポンプ、フィルタなどを備え
た配管により接続して循環系を構成すればよい〇 冷媒噴射管61〜64の数は図示例よりも多くしたり、
少なくすることがある。
Furthermore, when using a liquid with low volatility as a cooling medium,
It is sufficient to arrange a receiver under the small diameter portion 4c of the cylinder 4, and connect the receiver and each of the refrigerant injection pipes 61 to 64 with piping equipped with a pump, a filter, etc. to configure a circulation system. The number of refrigerant injection pipes 61 to 64 may be increased than in the illustrated example, or
It may be less.

以上説明した通り、本発明方法によるときは、プリフォ
ームロッドを加熱延伸することにより紡糸した光ファイ
バを冷却する方法において、紡糸後の光フアイバ外周に
冷却媒体による渦流を発生させ、当該冷却媒体によ#)
元ファイバを冷却するとともにその渦流の中心に光ファ
イバを保持することを特徴としているから、上記渦流状
態の冷却媒体警こより光ファイバが急冷できるのはもち
ろん、当該冷却時の光ファイバをその渦流により蛇行や
揺動のσい安定した状態に保持でき、しかも冷却手段が
光ファイバの保持手段をも兼ねるので、これの実施が経
済的に行なえる。
As explained above, in the method of the present invention, in the method of cooling an optical fiber spun by heating and drawing a preform rod, a vortex is generated by a cooling medium around the outer circumference of the optical fiber after spinning, and the cooling medium is Yo#)
Since it is characterized by cooling the original fiber and holding the optical fiber at the center of the vortex, not only can the optical fiber be rapidly cooled by the cooling medium in the vortex state, but also the optical fiber during cooling can be cooled by the vortex. It can be maintained in a stable state with little meandering or wobbling, and since the cooling means also serves as a holding means for the optical fiber, this can be done economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1実施例を略示した説明図、第2
図、第3図は同上の方法1こおける冷却手段の縦断面図
と平面図である0 1 ・・・・・紡糸炉 2 ・・・・・冷却手段 4 ・・・・・円筒 4a・・・・・円筒の径大部 4b・・・・・円筒の傾斜部 4c・・・・・円筒の径小部 51〜64・・・・・冷媒噴射管 6 ・・・・・回転翼体 7−・・・・フリフオームロッド 8 ・・・・・光ファイバ S ・・・・・渦流 第 /E 第 2 図 第3図
FIG. 1 is an explanatory diagram schematically showing one embodiment of the method of the present invention, and FIG.
Fig. 3 is a vertical cross-sectional view and a plan view of the cooling means in method 1 of the above. ...Cylindrical large diameter portion 4b...Cylindrical inclined portion 4c...Cylindrical small diameter portions 51 to 64...Refrigerant injection pipe 6...Rotor blade body 7 -...Fliform rod 8...Optical fiber S...Eddy current No./E Fig. 2 Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)フリ7オームロンドを加熱延伸することにより紡
糸した光ファイバを冷却する方法にお嘔)いて、紡糸後
の光フアイバ外周に冷却媒体による渦流を発生させ、当
該冷却媒体により光ファイバを冷却するとともにその渦
流の中心薔こ光ファイバを保持する光ファイバの冷却方
法。
(1) Using a method of cooling spun optical fiber by heating and drawing a 7-ohm rond, a vortex is generated by a cooling medium around the outer circumference of the optical fiber after spinning, and the optical fiber is cooled by the cooling medium. At the same time, there is an optical fiber cooling method that maintains the vortex in the center of the optical fiber.
(2) 冷却媒体は気体である特許請求の範囲第1項記
載の光ファイバの冷却方法。 (31冷却媒体は揮発性の高い液体である特許請求の範
囲第1項記載の光ファイバの冷却方法。
(2) The method for cooling an optical fiber according to claim 1, wherein the cooling medium is a gas. (31) The optical fiber cooling method according to claim 1, wherein the cooling medium is a highly volatile liquid.
JP58171001A 1983-09-16 1983-09-16 Cooling of optical fiber Pending JPS6065747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58171001A JPS6065747A (en) 1983-09-16 1983-09-16 Cooling of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58171001A JPS6065747A (en) 1983-09-16 1983-09-16 Cooling of optical fiber

Publications (1)

Publication Number Publication Date
JPS6065747A true JPS6065747A (en) 1985-04-15

Family

ID=15915266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58171001A Pending JPS6065747A (en) 1983-09-16 1983-09-16 Cooling of optical fiber

Country Status (1)

Country Link
JP (1) JPS6065747A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208345A (en) * 1987-10-14 1989-08-22 Sumitomo Electric Ind Ltd Production of optical fiber and apparatus therefor
JPH01224244A (en) * 1988-03-02 1989-09-07 Furukawa Electric Co Ltd:The Production of optical fiber core wire
EP0466059A2 (en) * 1990-07-11 1992-01-15 kabelmetal electro GmbH Method and apparatus for drawing an optical fibre from a solid preform
JPH0570161A (en) * 1991-09-06 1993-03-23 Fujikura Ltd Production unit for optical fiber
US5383946A (en) * 1992-06-24 1995-01-24 The Furukawa Electric Co., Ltd. Optical fiber production method and production apparatus thereof
US5568728A (en) * 1994-03-05 1996-10-29 Northern Telecom Limited Filament cooler
EP1382581A1 (en) * 2002-07-18 2004-01-21 Samsung Electronics Co., Ltd. Cooling apparatus for high-speed drawing of optical fiber
WO2011149816A1 (en) * 2010-05-27 2011-12-01 Corning Incorporated Method for producing optical fiber using linear non-contact fiber centering

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208345A (en) * 1987-10-14 1989-08-22 Sumitomo Electric Ind Ltd Production of optical fiber and apparatus therefor
JPH01224244A (en) * 1988-03-02 1989-09-07 Furukawa Electric Co Ltd:The Production of optical fiber core wire
EP0466059A2 (en) * 1990-07-11 1992-01-15 kabelmetal electro GmbH Method and apparatus for drawing an optical fibre from a solid preform
JPH0570161A (en) * 1991-09-06 1993-03-23 Fujikura Ltd Production unit for optical fiber
US5383946A (en) * 1992-06-24 1995-01-24 The Furukawa Electric Co., Ltd. Optical fiber production method and production apparatus thereof
US5568728A (en) * 1994-03-05 1996-10-29 Northern Telecom Limited Filament cooler
EP1382581A1 (en) * 2002-07-18 2004-01-21 Samsung Electronics Co., Ltd. Cooling apparatus for high-speed drawing of optical fiber
KR100493085B1 (en) * 2002-07-18 2005-06-03 삼성전자주식회사 Cooling device for high-speed drawing
CN1293009C (en) * 2002-07-18 2007-01-03 三星电子株式会社 Cooling device used for rapid drawing
WO2011149816A1 (en) * 2010-05-27 2011-12-01 Corning Incorporated Method for producing optical fiber using linear non-contact fiber centering
CN102906041A (en) * 2010-05-27 2013-01-30 康宁股份有限公司 Method for producing optical fiber using linear non-contact fiber centering
US8973408B2 (en) 2010-05-27 2015-03-10 Corning Incorporated Method for producing optical fiber using linear non-contact fiber centering

Similar Documents

Publication Publication Date Title
JPS6065747A (en) Cooling of optical fiber
CN1087610A (en) Method and apparatus that mineral wool is produced and the mineral wool of producing thus
KR840001286A (en) Method for improving distribution of device for collecting fiber transported by gas stream and device therefor
KR910000732B1 (en) Method and apparatus for producing optical fiber
US4548632A (en) Process for producing fine fibers from viscous materials
US4539219A (en) Method for coating optical transmission glass fibers
US3030659A (en) Apparatus for producing fibers
US4491463A (en) Laser sizing method and apparatus for fiber optic buffers
US4332764A (en) Methods for producing melt-spun filaments
HU207028B (en) Fibre forming equipment for producing mineral cotton
KR920703889A (en) Method and spinning device for producing microfilament
KR100740822B1 (en) Method of producing a quartz glass tube and drill body for performing the method
US4036568A (en) Machines for manufacture of powders
JPS621335B2 (en)
EP1382581B1 (en) Cooling apparatus for high-speed drawing of optical fiber
US2407456A (en) Method of producing fibrous glass
EP0471822A1 (en) Open bottomed spinner for mineral fibers.
JP3953576B2 (en) Glass preform manufacturing method and manufacturing apparatus
FI58323C (en) FOERFARANDE OCH ANORDNING FOER TILLVERKNING AV GLASFIBER
US2763891A (en) Spinning apparatus
JPH07121820B2 (en) Optical fiber manufacturing method and device
US4153099A (en) Cooling fluid for the manufacture of wire
KR800001120B1 (en) Method for manufacturing glass fibers
JP2522550Y2 (en) Optical fiber manufacturing equipment
KR100278147B1 (en) Fiber optic vibration damper