JPS6065702A - Continuous production of bromine - Google Patents

Continuous production of bromine

Info

Publication number
JPS6065702A
JPS6065702A JP58175488A JP17548883A JPS6065702A JP S6065702 A JPS6065702 A JP S6065702A JP 58175488 A JP58175488 A JP 58175488A JP 17548883 A JP17548883 A JP 17548883A JP S6065702 A JPS6065702 A JP S6065702A
Authority
JP
Japan
Prior art keywords
bromine
chlorine
column
aqueous solution
reactive distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58175488A
Other languages
Japanese (ja)
Inventor
Shigeru Jinno
甚野 滋
Akira Funaki
舩木 章
Wataru Naono
直野 弥
Atsukazu Iwata
岩田 篤和
Ryoichi Furuya
古屋 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58175488A priority Critical patent/JPS6065702A/en
Publication of JPS6065702A publication Critical patent/JPS6065702A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:The feed of chlorine is controlled so that the oxidation-reduction potential of the cleaning solution for the exhaust gas, as a starting material, is kept constant to effect effective recovery of excess chlorine and enable continuous production of bromine in high yield. CONSTITUTION:An aqueous solution containing bromine ion B and chlorine A are fed from the column top and the intermediate point or bottom of the reactive distillation column 1, respectively, and steam C is continuously inctroduced from the column bottom and the steam from the top is condensed in the condenser 2 to separated into the condensate containing bromine and uncondensing gas. The exhausted gas is led into the cleaning column 4 in which the gas is brought into contact with a part of the aqueous solution B to allow the unreacting Cl in the gas to react with Br ion, then, the feed of chlorine is controlled so that the oxidation-reduction potential according to the meter 5 becomes constant. In the meantime, the condensate is led into the dechlorination column 3 to contact with a part of the aqueous solution B to remove Cl and Br ion in the Br condensate by allowing them to react with each other, then the separated Br solution is recovered into the tank 6 and the aqueous solution B is recycled to the column 1.

Description

【発明の詳細な説明】 本発明は、臭素酸塩、臭化水素酸等の臭素イオンを含有
する水溶液(以下、臭素イオン含有水溶液という)に塩
素を作用させ、遊離しtコ臭素を蒸留回収することによ
り臭素を連続的に製造する方法に関する。
Detailed Description of the Invention The present invention involves applying chlorine to an aqueous solution containing bromine ions such as bromate or hydrobromic acid (hereinafter referred to as a bromide ion-containing aqueous solution), and distilling and recovering the liberated bromine. The present invention relates to a method for continuously producing bromine.

従来、臭素の製造方法として、反応蒸留塔の塔頂部より
臭素イオン含有水溶液を供給し、塔底部より供給する塩
素との反応によって遊離した臭素を、塔底部から水蒸気
を吹き込むことによって塔頂部から留出させ、これを冷
却凝縮して回収する方法はよく知られている。
Conventionally, as a method for producing bromine, an aqueous solution containing bromine ions is supplied from the top of a reactive distillation column, and the bromine liberated by reaction with chlorine supplied from the bottom of the column is distilled from the top of the column by blowing steam from the bottom of the column. The method of cooling and condensing and recovering this is well known.

ところで、この方法では、通常原料臭素イオンの反応率
を高めるために化学理論上必要な量よりも過剰量の塩素
が使用される。このため回収臭素や凝縮後の排ガス中な
どに過剰分の塩素が混入し、かかる塩素は、通常たとえ
ば回収臭素中の塩素は蒸留等による脱塩素処理により、
また排カス中の塩素は排ガスの除害処理等によりそれぞ
れ廃棄される。
By the way, in this method, chlorine is usually used in an excess amount than is chemically theoretically necessary in order to increase the reaction rate of raw material bromine ions. For this reason, an excess amount of chlorine is mixed into the recovered bromine and the exhaust gas after condensation, and such chlorine is usually removed by dechlorination treatment such as distillation.
In addition, chlorine in the exhaust gas is disposed of through exhaust gas abatement treatment, etc.

このため、かかる方法においては塩素の損失が生じるば
かりでなく、廃棄塩素に同伴される臭素をも損失するこ
ととなって臭素回収率が低下し、更には、原料液量ある
いは原料液の臭素イオン濃度の変化に伴う塩素供給量の
調節が困難であり、操作が煩雑となって塩素供給量の過
不足をおこし易く、廃棄塩素量の増大あるいは臭素回収
率の低下を招く結果となる。
Therefore, in such a method, not only chlorine is lost, but also bromine accompanying the waste chlorine is lost, reducing the bromine recovery rate. It is difficult to adjust the amount of chlorine supplied as the concentration changes, and the operation becomes complicated, which tends to cause excess or deficiency in the amount of chlorine supplied, resulting in an increase in the amount of waste chlorine or a decrease in the bromine recovery rate.

このようなことから、本発明者らはかかる欠点を克服し
、簡単な常圧操作で塩素を安定的に供給し、過剰塩素を
有効に回収し、高い収率で臭素を製造すべく検討の結果
、本発明を完成するに至った。
Therefore, the present inventors have conducted studies to overcome these drawbacks, supply chlorine stably with simple normal pressure operation, effectively recover excess chlorine, and produce bromine with high yield. As a result, the present invention was completed.

すなわち本発明は、反応蒸留塔の塔頂部より臭素イオン
含有水溶液を、!#rm部もしくは塔中間部より塩素を
、塔底部より水蒸気を導入し、遊離した臭素を蒸留回収
することにより臭素を連続的に製造する方法において、
@頂部よりの留出蒸気を凝縮させて未凝m排ガスと凝縮
臭素を含む凝縮液に分離し、原料臭素イオン含有水溶液
の一部を未凝縮排ガスと接触させて該排ガス中に含まれ
る未反応塩素々・臭素イオンと反応させたのち反応蒸留
塔内へ導入するとともに、上記接触処理後の臭素イオン
含有水溶液の酸化還元電位が一定となるように反応蒸留
塔への塩素供給量を調節し、一方、原料臭素イオン含イ
」水溶液の残部の一部または全部を凝縮液と接触させて
凝縮臭素中の溶存塩素を臭素イオンと反応させることに
より除去したのち臭素液を分離し、接触処理後の臭素イ
オン含有水浴液を反応蒸留塔内へ導入する上記各操作を
連続的に行うことを特徴とする臭素の連続製造法を提供
するものである。
That is, in the present invention, a bromide ion-containing aqueous solution is extracted from the top of a reactive distillation column! In a method for continuously producing bromine by introducing chlorine from the #rm section or the middle part of the column and steam from the bottom of the column, and recovering the liberated bromine by distillation,
@The distilled vapor from the top is condensed and separated into uncondensed m exhaust gas and condensed liquid containing condensed bromine, and a part of the raw material bromide ion-containing aqueous solution is brought into contact with the uncondensed exhaust gas to remove unreacted components contained in the exhaust gas. After reacting with chlorine and bromide ions, the chlorine is introduced into the reactive distillation column, and the amount of chlorine supplied to the reactive distillation column is adjusted so that the redox potential of the bromide ion-containing aqueous solution after the contact treatment is constant. On the other hand, part or all of the remainder of the raw material bromine ion-containing aqueous solution is brought into contact with the condensed liquid to remove dissolved chlorine in the condensed bromine by reacting with the bromine ions, and then the bromine liquid is separated. The present invention provides a method for continuous production of bromine, characterized in that each of the above operations of introducing a bromide ion-containing water bath into a reactive distillation column is performed continuously.

以下、本発明を841図に例ボしたフローシートに基い
て説明する。
The present invention will be explained below based on a flow sheet shown in FIG. 841 as an example.

本発明は、基本的には反応蒸留塔1の塔頂部より原料臭
素イオン含有水溶液Bを、塔底部もしくは塔中間部より
塩素Aを、塔底部より水蒸気Cをそれぞれ連続的に導入
し、蒸留Jb内で塩素との反応により遊離した臭素をt
&頂部より連続的に留出させることにより行われる。
Basically, in the present invention, a raw material bromide ion-containing aqueous solution B is introduced from the top of the reactive distillation column 1, chlorine A is introduced from the bottom or the middle of the column, and steam C is introduced from the bottom of the column. Bromine liberated by reaction with chlorine in
& It is carried out by continuously distilling from the top.

本発明を実施するにあたり、原料臭素イオン含有水溶液
は2分割され、その各々は後述する排ガス洗浄塔4およ
び脱塩素塔3をそれぞれ経由して塔内に供給される。
In carrying out the present invention, the raw material bromide ion-containing aqueous solution is divided into two parts, each of which is supplied into the tower via an exhaust gas cleaning tower 4 and a dechlorination tower 3, which will be described later.

反応蒸留搭lの塔頂部より留出する臭素蒸気は未反応塩
素および水蒸気を伴って凝縮器2に導かれ、ここで臭素
蒸気および水蒸気は凝縮され°Cs @ Ha臭素を含
む6M液と主として未反応塩素からなり一部同伴される
臭素を含む未凝縮排カスとに分離される。
The bromine vapor distilled from the top of the reactive distillation column is led to the condenser 2 together with unreacted chlorine and water vapor, where the bromine vapor and water vapor are condensed into a 6M liquid containing °Cs @ Ha bromine and mainly unreacted chlorine. It is separated into uncondensed waste, which consists of reactive chlorine and partially contains bromine.

未凝縮排カスは排カス洗浄塔に導かれ、ここで原料臭素
イオン含有水溶液の一部と接触させる。
The uncondensed waste is led to the waste waste cleaning tower, where it is brought into contact with a portion of the raw material bromide ion-containing aqueous solution.

接触方法自体には特に制限されないが、接触効率の点で
充填塔が多く使用され、@士部より未凝縮排カスを、塔
頂部より臭素イオン含有水浴液を導入する向流法が好適
である。
Although there are no particular restrictions on the contact method itself, packed columns are often used in terms of contact efficiency, and a countercurrent method in which uncondensed waste is introduced from the bottom and a bromide ion-containing bath liquid is introduced from the top of the column is suitable. .

かかる排カス洗浄塔内において、排カス中の未反応塩素
は臭素イ副ン含イJ水だ液中の臭素イオンの一部と反応
して臭素を遊離し、ここで遊離した臭素および排カス中
に同伴されてきた臭素は流下する臭素イオン含η水浴液
中に溶解され、該水溶液はそのまま反応蒸留塔へ供給さ
れるため、排カス中の未反応塩素は臭素イオンとの反応
に消費され、臭素製造の1こめに有効に回収、オリ用さ
れることとなる。
In the waste sludge cleaning tower, unreacted chlorine in the waste sludge reacts with a part of the bromine ions in the bromine-containing saliva to liberate bromine, and the liberated bromine and waste sludge are The bromine entrained in the filtrate is dissolved in the flowing bromide ion-containing aqueous bath liquid, and the aqueous solution is supplied as is to the reactive distillation column, so the unreacted chlorine in the waste is consumed in reaction with bromide ions. , it will be effectively recovered and used in the first stage of bromine production.

ところで、上記排ガス洗浄塔からの流出液の酸化還元電
位は溶解臭素量に関係し、この溶すη′臭素量は排ガス
中の未反応塩素量に関係する。
Incidentally, the oxidation-reduction potential of the effluent from the exhaust gas cleaning tower is related to the amount of dissolved bromine, and the amount of dissolved η' bromine is related to the amount of unreacted chlorine in the exhaust gas.

また、排ガス中の未反応塩素量は反応蒸留塔内に供給さ
れる塩素量に影響される。従って反応蒸留塔に供給され
る塩素量の過不足は刊カス洗浄塔に導かれる拮ガス中の
未反応塩素量とこれに同伴される臭素量の変化となり、
その変化は排ガス洗浄塔から流出する流出液の酸化還元
電位で感知することができる□ 従って、この流出液の酸化還元電位を測定、監視し、酸
化還元電位が一定となるように反応蒸留塔へ供給される
塩素量を調節することにより、反応蒸留塔内の塩素量と
臭素イオンとのノくランスも一定となって、安定して臭
素を連続的に製造することができる。
Furthermore, the amount of unreacted chlorine in the exhaust gas is influenced by the amount of chlorine supplied into the reactive distillation column. Therefore, excess or deficiency in the amount of chlorine supplied to the reactive distillation column will result in a change in the amount of unreacted chlorine in the antagonistic gas led to the scum cleaning column and the amount of bromine entrained therein.
The change can be detected by the redox potential of the effluent flowing out from the exhaust gas cleaning tower. Therefore, the redox potential of this effluent is measured and monitored, and the redox potential of the effluent is measured and transferred to the reactive distillation tower so that the redox potential is constant. By adjusting the amount of chlorine supplied, the ratio between the amount of chlorine and bromine ions in the reactive distillation column becomes constant, and bromine can be produced stably and continuously.

ここで、酸化還元電位の測定は通常の方法で行われ、一
般には酸化還元電位が1100〜1250mV(これは
臭素濃度として0.5〜2チ程度に相当する)となるよ
うに塩素供給量が調節されるが、勿論これに限定される
ことはなく、それぞれの条件に応じて一定に保つべき酸
化還元電位は決められる。
Here, the oxidation-reduction potential is measured by a normal method, and the amount of chlorine supplied is generally adjusted so that the oxidation-reduction potential is 1100 to 1250 mV (this corresponds to a bromine concentration of about 0.5 to 2 g). Although the voltage is adjusted, it is of course not limited to this, and the redox potential to be kept constant is determined depending on each condition.

伺、本発明において、酸化還元電位が一定であるとは特
定の一点となることを必すしも意味せず、それぞれの操
作条件において許容し得る範囲内において成る巾をもつ
ものであってもよいことはいうまでもない。
However, in the present invention, the oxidation-reduction potential being constant does not necessarily mean that it is at one specific point, but may have a range within an allowable range under each operating condition. Needless to say.

この酸化還元電位の測定は、排ガス洗浄塔からの流出液
が反応蒸留塔に導入されるまでの任意の工程で行われる
This redox potential measurement is performed at any step before the effluent from the exhaust gas cleaning tower is introduced into the reactive distillation tower.

一方、凝縮器2で凝縮された凝縮液は凝縮臭素と凝縮水
からなるが、凝縮臭素中には未反応塩素が溶存している
ため、溶存塩素の除去のために、凝縮臭素を凝縮水とと
もに脱塩素83に導入【7、原料臭素イオン含有水溶液
と接触させる。
On the other hand, the condensate condensed in the condenser 2 consists of condensed bromine and condensed water, but since unreacted chlorine is dissolved in the condensed bromine, condensed bromine is mixed with the condensed water in order to remove the dissolved chlorine. Introduced to dechlorination 83 [7. Contact with raw material bromide ion-containing aqueous solution.

ここで用いる脱塩素塔は充填塔式でも単なる管式(縦型
)でもよく、処理方式としては塔頂部より凝縮液を流下
させ、借下部より原料臭素イオン含有水溶液の残部を上
向きに導入し、臭素液を塔下部より取り出すとともに、
塔上部J・り流出する臭素イオン含有水溶液および凝縮
水は反応蒸留塔の塔頂部に導入することにより行われる
The dechlorination tower used here may be a packed tower type or a simple pipe type (vertical type), and the treatment method is to allow the condensate to flow down from the top of the tower, and introduce the remainder of the raw material bromide ion-containing aqueous solution upward from the lower part. While taking out the bromine liquid from the bottom of the tower,
The bromide ion-containing aqueous solution and condensed water flowing out from the top of the column are introduced into the top of the reactive distillation column.

かかる処理により、塔頂部より流下した凝縮液のうち凝
縮臭素は比ル、差により塔内を落下し、この間に凝縮臭
素は上昇してくる臭素イオン含有水溶液と接触し、溶存
塩素を臭素イオンと反応させながら臭素を遊離し、脱塩
素される。凝縮水は塔内で臭素イオン含有水溶液と混合
され、凝縮水中の未反応塩素の一部はここで臭素イオン
と反応するが、残部は脱塩素塔上部からの流出液に含有
されて反応蒸留塔内ヘリサイクルされる。
Through this process, the condensed bromine in the condensate that has flowed down from the top of the tower falls through the tower due to the difference in ratio. During this time, the condensed bromine comes into contact with the rising aqueous solution containing bromide ions, converting dissolved chlorine into bromine ions. During the reaction, bromine is liberated and dechlorinated. The condensed water is mixed with an aqueous solution containing bromide ions in the tower, and part of the unreacted chlorine in the condensed water reacts with the bromide ions here, but the rest is contained in the effluent from the top of the dechlorination tower and is sent to the reactive distillation tower. It is recycled inside.

伺、この脱塩素塔の下部で臭素液が欣高の臭素層を形成
するように臭素抜き取りを調節し、臭素イオン含有水溶
液をこの臭素層を通過するように導入することにより臭
素中の塩素除去効果は更に向上する。
The bromine removal is adjusted so that the bromine solution forms a high bromine layer at the bottom of this dechlorination tower, and the bromine ion-containing aqueous solution is introduced so as to pass through this bromine layer, thereby removing chlorine from the bromine. The effect is further improved.

以上述べた排ガス洗浄処理、脱塩素処理はこれらの処理
後の流出液が臭素製造のための原料液となるため、反応
蒸留塔への塩素および水蒸気と共に該原料液が連続的に
供給されるように、連続的に同時的に行われる。
In the exhaust gas cleaning treatment and dechlorination treatment described above, the effluent after these treatments becomes the raw material liquid for bromine production, so it is necessary to continuously supply the raw material liquid together with chlorine and steam to the reactive distillation column. are carried out simultaneously and consecutively.

同、上記説明においては原料である臭素イオン含有水溶
液を排ガス洗浄塔を経由するものと脱塩素塔を経由する
ものとに2分割する場合について述べたが、その分割比
は未凝縮排ガスおよび凝縮臭素中に含まれる塩素の処理
効率等によって適宜決定され、また、場合によっては上
記塩素処理が可能な範囲でこれを3分割し、1分割分に
ついてはそのまま直接的に反応蒸留塔に導入し、残り2
分割分について上記処理を施してもよい。
In the above explanation, we have described the case where the bromide ion-containing aqueous solution that is the raw material is divided into two parts: one that passes through the exhaust gas cleaning tower and one that passes through the dechlorination tower. It is determined as appropriate depending on the treatment efficiency of chlorine contained in the chlorine, and in some cases, it is divided into three parts within the range where the above chlorine treatment is possible, and one divided part is directly introduced as it is into the reactive distillation column, and the remaining part is 2
The above processing may be performed on the divided portions.

かくして、本発明の方法によれば原料となる排ガス洗浄
液の酸化還元電位が一定になるように塩素供給量を調節
するという安全かつ容易な操作で、原料臭素イ詞ン量の
変化に対してもそれに対応して安定的に塩素を供給する
ことができ、しかも、特別の困難を伴うことなく過剰塩
素が有効に再オリ用され、塩素含量の少ない臭素を好収
率で製造することができる。
Thus, according to the method of the present invention, the amount of chlorine supplied is adjusted safely and easily so that the oxidation-reduction potential of the raw material exhaust gas cleaning liquid becomes constant, and even when the amount of bromine in the raw material changes, Correspondingly, chlorine can be supplied stably, excess chlorine can be effectively reused without any particular difficulty, and bromine with a low chlorine content can be produced at a good yield.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 塔径0.5m、塔高9.8mの反応蒸fti塔(1イン
チ磁製ラシヒリング充填)を用いて臭素イオン濃[10
%の臭化水素酸と臭化すl−’Jウムの混合水溶液11
 Q Q 1(vHより臭素を回収するにあたり、塔径
0.15m、塔高2.2mの排ガス洗浄#!ir(!−
インチ磁製うシピリング充填)と内径0.1 m塔高2
.5mの管式脱塩素塔を第1図に示すように設け、原料
臭素イオン含有液を各々550 Kf/Hの速度で前者
の塔の上部と後者の塔の下部よりそれぞれ供給した。排
ガス洗浄塔経由の液は排ガス洗浄塔下部より流下させた
後、酸化還元電位計にて酸化還元電位を測定して反応蒸
留塔へ供給し、脱塩素塔下部の液は伝熱面積15m2の
凝縮器で凝縮した臭素と向流接触させて反応蒸留塔へ供
給した。反応蒸留塔下部より塩素49Kg/El、水蒸
気820助/H(圧力8.5 Kg/備2(ゲージ))
を供給したところ、 定常状態で臭素109 Kf/■
(回収率99チ)が回収されその臭素中の塩素量は0.
Olチであった。この時の塩素流量制御は酸化還元電位
計の電位が約1150mVで一定となるようにおこなっ
た。
Example 1 Bromine ion concentration [10
% of hydrobromic acid and l-'Jium bromide mixed aqueous solution 11
Q Q 1 (When recovering bromine from vH, exhaust gas cleaning #!ir(!-
inch porcelain pilling) and inner diameter 0.1 m tower height 2
.. A 5 m tubular dechlorination tower was installed as shown in FIG. 1, and the raw material bromine ion-containing liquid was supplied from the upper part of the former tower and the lower part of the latter tower at a rate of 550 Kf/H, respectively. The liquid passing through the exhaust gas cleaning tower is allowed to flow down from the bottom of the exhaust gas cleaning tower, and then the redox potential is measured with an oxidation-reduction potentiometer and supplied to the reactive distillation tower.The liquid at the bottom of the dechlorination tower is condensed in a heat transfer area of 15m2. It was brought into countercurrent contact with the bromine condensed in the reactor and fed to the reactive distillation column. Chlorine 49Kg/El, steam 820Kg/H from the bottom of the reaction distillation column (pressure 8.5Kg/Mei 2 (gauge))
When bromine was supplied in steady state, 109 Kf/■
(Recovery rate: 99cm) was recovered, and the amount of chlorine in the bromine was 0.
It was an office worker. At this time, the chlorine flow rate was controlled so that the potential of the oxidation-reduction potentiometer was kept constant at about 1150 mV.

実施例2 内径19鵡、高さ600語のガラス管にガラス製充填物
を充填して反応蒸留塔とし、これにガラス製凝縮器、内
径191111B、高さ200鶏のガラス管にガラス製
充填物を充填した排ガス洗浄塔および内径(i’ tp
a 、高さ590Bのガラス管製脱塩素塔をガラス管に
て第1図のよう嘗こ接続した。排ガス洗浄塔下部がらの
流下液を150艷のカラス容器に酸化還元電位計の電極
を挿入したものに受け、オーバーフローで反応蒸留塔へ
供給するようにし、その酸化還元電位が約1150 m
Vで一定となるように、塩素供給量を調節した。臭素イ
オン濃度9.8%の臭化水素酸水溶液を平均18 ff
/mで排ガス洗浄塔上部に供給し、平均t 2 Si’
/I+iで脱塩素塔下部へ供給した。反応蒸留塔下部よ
り塩素を約1.3稔でふき込み、塔頂温度が90℃とな
るように反応蒸留塔下部へ水蒸気を約lOV分で吹き込
んだ。定常状態で回収臭素量2.9v分(回収率99チ
)回収臭素中の塩素量0.01チであった。酸化還元電
位計の電位を一定とするよう塩素量を調節したが臭化水
素酸水溶液量を変化させても制御可能で回収率、回収臭
素中の塩素量ともに食上はなかった。
Example 2 A glass tube with an inner diameter of 19 mm and a height of 600 mm was filled with glass packing to make a reactive distillation column, and a glass condenser was installed in this, and a glass tube with an inner diameter of 191111 B and a height of 200 mm was filled with glass packing. The exhaust gas cleaning tower filled with
a. A glass tube dechlorination tower with a height of 590 B was connected as shown in FIG. 1 using glass tubes. The liquid flowing from the bottom of the exhaust gas cleaning tower is received by a 150-bar glass container with a redox potential meter electrode inserted, and the overflow is supplied to the reactive distillation tower, so that the redox potential is approximately 1150 m
The amount of chlorine supplied was adjusted to be constant at V. An average of 18 ff of hydrobromic acid aqueous solution with a bromide ion concentration of 9.8%
/m to the upper part of the exhaust gas cleaning tower, and the average t 2 Si'
/I+i was supplied to the lower part of the dechlorination tower. Chlorine was blown into the bottom of the reactive distillation column at a rate of about 1.3 mol, and water vapor was blown into the bottom of the reactive distillation column at a rate of about 1OV so that the top temperature was 90°C. In a steady state, the amount of recovered bromine was 2.9 volts (recovery rate 99 inches) and the amount of chlorine in the recovered bromine was 0.01 inches. The amount of chlorine was adjusted to keep the potential of the oxidation-reduction potentiometer constant, but it was controllable even if the amount of the hydrobromic acid aqueous solution was changed, and there was no increase in either the recovery rate or the amount of chlorine in the recovered bromine.

比較例 内径19tm、高さ760鵡のガラス管にガラス製充填
物を充填して反応蒸留塔とし、これにガラス製凝縮器及
びその凝縮液側に臭素と凝縮水の分離槽を設は臭素回収
を行った。
Comparative Example A glass tube with an inner diameter of 19 tm and a height of 760 m is filled with glass packing to form a reactive distillation column, and a glass condenser and a bromine and condensed water separation tank are installed on the condensate side to recover bromine. I did it.

反応蒸留塔上部より臭化水素酸と臭化ナトリウムの臭素
イオン濃度5.2′sの混合水溶液(臭化水素酸と臭化
ナトリウムの臭素イオン比2:l〕を平均48.6 V
分で供給し反応蒸留塔下部より塩素を約1に分でふき込
み、塔頂温度が90℃となるようにヒーターで反応蒸留
塔下部を加熱した。定常状態で回収臭素2.2P/e、
臭素中の塩素1.7 %であって、臭素回収率97チで
あった。原料の臭素イオン含有液量を変化させ計算量で
塩素量の調節を行ったが、過不足が生じ、未凝縮ガスと
じて塩素、臭素がかなり損失し、不足分も含めて臭素回
収率は92−程度であった。また未凝縮ガスを10%苛
性ソーダ水溶液で吸収させた臭素を回収臭素に加えても
回収率は96チであった。
A mixed aqueous solution of hydrobromic acid and sodium bromide with a bromide ion concentration of 5.2's (bromine ion ratio of hydrobromic acid and sodium bromide of 2:l) was heated at an average of 48.6 V from the top of the reaction distillation column.
Chlorine was introduced from the bottom of the reactive distillation column in about 1 minute, and the bottom of the reactive distillation column was heated with a heater so that the temperature at the top of the column reached 90°C. Bromine recovered in steady state 2.2P/e,
The chlorine in bromine was 1.7%, and the bromine recovery rate was 97%. The amount of chlorine was adjusted by calculating the amount of bromide ion-containing liquid in the raw material, but there was an excess or deficiency, resulting in a considerable loss of chlorine and bromine as uncondensed gas, and the bromine recovery rate including the shortage was 92. - It was about -. Further, even when bromine obtained by absorbing uncondensed gas with a 10% caustic soda aqueous solution was added to the recovered bromine, the recovery rate was 96%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する場合の代表例をフロー
シートで示したものである。図において1は反応蒸留塔
、2は凝縮器、3は脱塩素塔、4は排ガス洗浄塔、5は
酸化還元電位計、6は臭素貯留槽、Aは塩素、Bは臭素
イ芽ン含有水溶液、Cは水蒸気、Dはドレンである。
FIG. 1 is a flow sheet showing a typical example of carrying out the method of the present invention. In the figure, 1 is a reactive distillation column, 2 is a condenser, 3 is a dechlorination column, 4 is an exhaust gas cleaning column, 5 is a redox electrometer, 6 is a bromine storage tank, A is chlorine, and B is an aqueous solution containing bromine ions. , C is water vapor, and D is drain.

Claims (1)

【特許請求の範囲】[Claims] 反応蒸留塔の塔頂部より臭素イオン含有水溶液を、塔底
部もしくは塔中間部より塩素を、塔底部より水蒸気を導
入し、遊離した臭素を蒸留回収することにより臭素を連
続的に製造する方法において、塔頂部よりの留出蒸気を
凝縮させて未凝縮排ガスと凝縮臭素を含む凝縮故に分離
し、原料臭素イ月ン含有水浴液の一部を未凝縮排ガスと
接触させて該排ガス中に含まれる未反応塩素を臭素イオ
ンと反応させtコのち反応蒸留塔内へ導入するとともに
、上記接触処理後の臭素イオン含有水溶液の酸化還元電
位が一定となるように反応蒸留塔への塩素供給量を調節
し、一方、原料臭素イオン含を水浴液の残部の一部また
は全部を凝縮液と接触させて凝縮臭素中の溶存塩素を臭
素イオンと反応させることにより除去したのち臭素液を
分離し、接触処理後の臭素イオン含有水溶液を反応蒸留
塔内へ導入する上記各操作を連続的に行うことを特徴と
する臭素の連続製造法
In a method for continuously producing bromine by introducing a bromide ion-containing aqueous solution from the top of a reactive distillation column, introducing chlorine from the bottom or middle part of the column, and introducing steam from the bottom of the column, and recovering liberated bromine by distillation, Distilled vapor from the top of the column is condensed and separated from uncondensed flue gas containing condensed bromine, and a portion of the raw material bromine-containing water bath liquid is brought into contact with the uncondensed flue gas to remove uncondensed waste gas contained in the flue gas. The reactive chlorine is reacted with bromide ions and then introduced into the reactive distillation column, and the amount of chlorine supplied to the reactive distillation column is adjusted so that the redox potential of the bromide ion-containing aqueous solution after the contact treatment is constant. On the other hand, the raw material bromine ions are removed by contacting some or all of the remainder of the water bath solution with the condensate to react the dissolved chlorine in the condensed bromine with the bromine ions, and then the bromine solution is separated, and after the contact treatment. A method for continuous production of bromine, characterized in that each of the above operations of introducing an aqueous solution containing bromide ions into a reactive distillation column is performed continuously.
JP58175488A 1983-09-21 1983-09-21 Continuous production of bromine Pending JPS6065702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175488A JPS6065702A (en) 1983-09-21 1983-09-21 Continuous production of bromine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175488A JPS6065702A (en) 1983-09-21 1983-09-21 Continuous production of bromine

Publications (1)

Publication Number Publication Date
JPS6065702A true JPS6065702A (en) 1985-04-15

Family

ID=15996918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175488A Pending JPS6065702A (en) 1983-09-21 1983-09-21 Continuous production of bromine

Country Status (1)

Country Link
JP (1) JPS6065702A (en)

Similar Documents

Publication Publication Date Title
US3635664A (en) REGENERATION OF HYDROCHLORIC ACID PICKLING WASTE BY H{11 SO{11 {0 ADDITION, DISTILLATION AND FeSO{11 {0 Precipitation
US5174865A (en) Process for purifying crude hydrochloric acid
JPS6011217A (en) Continuous manufacture of silicon tetrafluoride gas in vertical column
JP6887959B2 (en) Process for the preparation of hydrobromic acid
CN108276315A (en) A kind of purification process of trifluoromethanesulfonic acid
US3386892A (en) Purification of fluosilicic acid solution by distillation with phosphoric acid solution
US4154804A (en) Novel calcium chloride scrubbing bath
US3455797A (en) Procedure for the preparation of olefin oxides
US4029732A (en) Preparation of bromine
US4978518A (en) Continuous vacuum process for recovering vromine
US5032371A (en) Process for the continuous recovery of hydrogen fluoride gas
US3968155A (en) Process for prepared perchloromethyl mercaptan by chlorination of carbon disulfide
JP5629776B2 (en) Method for producing chlorine dioxide
JPS61268635A (en) Production of ethane dichloride
JPS6065702A (en) Continuous production of bromine
RU2357923C2 (en) Polycrystalline silicon process
US3059035A (en) Continuous process for producing methyl chloroform
JP4454223B2 (en) Method for producing HCl gas containing almost no HBr and aqueous HCl solution containing almost no HBr
JP4968207B2 (en) A method for purifying hydrogen sulfide gas.
US2321282A (en) Dry hydrogen chloride
JP2011178586A (en) Method for refining polycrystalline silicon
EP0143864B1 (en) Process for the production of 1,1,2-trichloro-2,2-difluoroethane
JPS6054905A (en) Continuous preparation of bromine
CN106748739A (en) A kind of trichloro-acetic chloride production technology
US4422913A (en) Process for the production of 1,1,2-trichloro-2,2-difluoroethane