JPS606564B2 - dielectric filter - Google Patents

dielectric filter

Info

Publication number
JPS606564B2
JPS606564B2 JP53063361A JP6336178A JPS606564B2 JP S606564 B2 JPS606564 B2 JP S606564B2 JP 53063361 A JP53063361 A JP 53063361A JP 6336178 A JP6336178 A JP 6336178A JP S606564 B2 JPS606564 B2 JP S606564B2
Authority
JP
Japan
Prior art keywords
conductor
inner conductor
case
metal
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53063361A
Other languages
Japanese (ja)
Other versions
JPS54154959A (en
Inventor
拓朗 佐藤
敦司 深沢
純 足羽
実 筧
達夫 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP53063361A priority Critical patent/JPS606564B2/en
Publication of JPS54154959A publication Critical patent/JPS54154959A/en
Publication of JPS606564B2 publication Critical patent/JPS606564B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block

Description

【発明の詳細な説明】 本発明は、殊にVHF帯から比較的低周波のマイクロ波
帯に使用して好適する誘電体フィル夕の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a dielectric filter suitable for use particularly in a VHF band to a relatively low frequency microwave band.

従来この種の小形化を目的とした譲露体フィル夕として
は、同軸共振器や半同軸共振器を用いたものが知られて
いる。例えば従来の半同軸共振器を用いた誘電体フィル
外ま、一般にケースを兼ねた外導体と、この外導体に一
端が短絡され池端が開放条件にある所定長の内導体と、
これら内、外導体間に挿入された誘電体コアとによって
構成されている(第3図参照)。またこのような議電体
フィル外こおいては、軽量比および低コスト化のために
は内、外導体を表面に導体被覆をほどこした樹脂モール
ドで製作することが効果的であると考えられる。しかる
にこのような構造の誘電体フィル夕においては、周知の
通り議電体コアと内導体および外導体との間に加工公差
にもとづく空隙が生じられこの空隙の影響による共振器
の共振周波数のばらつきが極めて大きくなるという問題
があった。
Conventionally, as this type of compact filter for the purpose of miniaturization, those using a coaxial resonator or a semi-coaxial resonator are known. For example, outside the dielectric fill using a conventional semi-coaxial resonator, there is generally an outer conductor that also serves as a case, and an inner conductor of a predetermined length whose one end is short-circuited to this outer conductor and whose end is open.
It is composed of a dielectric core inserted between the inner and outer conductors (see FIG. 3). In addition, it is considered effective to manufacture the inner and outer conductors with a resin mold with a conductor coating on the surface in order to reduce the weight and cost of the outside of the electrical conductor film. . However, in a dielectric filter having such a structure, as is well known, a gap is created between the electromagnetic core and the inner and outer conductors due to processing tolerances, and this gap causes variations in the resonant frequency of the resonator. The problem was that it became extremely large.

また上述のように樹脂モールド化した場合には、樹脂の
温度特性、特に樹脂の線膨張係数の問題が生じられる。
上記空隙の問題に対しては、その空隙(特に内導体と誘
電体コアとの間の空隙)に導蚤性接着剤を充電して空隙
を除去する方法が考えられる。しかしこのようにすると
、内導体表面に流れる電流と接着剤の有する抵抗にもと
づき極めて大きな電気的損失が生じられてしまうという
欠点が生起される。そこでこのような現象を避けるため
に、譲露体コアに金属被覆をほどこしてこの金属被覆と
内導体とを半田付けすることも考えられる。しかしこの
場合には、半田付けのために発生する熱に対して上記樹
脂モールドが変形を起さず且つ上記金属被覆が剥離しな
い等の条件が必要となる。しかし実際にはこのことは極
めて困難であり、そのために従来この種高周波譲電体フ
ィル夕の樹脂モールドによる製造は不可能であると考え
られていた。また実際に上記のような半田付けを行なっ
たとしても譲雷体フィル夕の損失のうち特に内導体の損
失が支配的であるにもかかわらず空隙に半田のフラツク
スが残留したり半田付けが困難などのため実際には損失
があまり改善されないという難点があった。本発明はか
かる実情に基いてなされたもので、極めて温度特性の悪
い樹脂材料を効果的に使用して温度特性の厳しい高規格
を有し且つ安価で軽量に製作し得る譲露体フィル夕を提
供することを目的とする。
Furthermore, when molded with resin as described above, problems arise with the temperature characteristics of the resin, particularly the linear expansion coefficient of the resin.
One possible solution to the above-mentioned gap problem is to remove the gap by charging the gap (particularly the gap between the inner conductor and the dielectric core) with a flea-conducting adhesive. However, this method has the disadvantage that extremely large electrical losses occur due to the current flowing on the surface of the inner conductor and the resistance of the adhesive. Therefore, in order to avoid such a phenomenon, it is conceivable to apply a metal coating to the conductor core and to solder the metal coating to the inner conductor. However, in this case, conditions are required such that the resin mold does not deform due to the heat generated for soldering and the metal coating does not peel off. However, in reality, this is extremely difficult, and for this reason, it was conventionally thought that it was impossible to manufacture this type of high-frequency power transfer filter by resin molding. Furthermore, even if the above-mentioned soldering is actually performed, solder flux remains in the void and soldering is difficult, even though the loss in the inner conductor is the dominant loss in the transfer body filter. For these reasons, there was a problem in that losses were not actually improved much. The present invention has been made based on the above-mentioned circumstances, and it is possible to effectively use a resin material with extremely poor temperature characteristics to provide a transparent filter that has a high standard of temperature characteristics and can be produced at low cost and lightweight. The purpose is to provide.

以下添付図面を参照しながら本発明の実施例を詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

先づその実施例に先立って誘電体フィル夕の温度特性を
決定する構成要因について考えると、{1’内導体の温
度による膨張、{2)誘電体コアの譲亀率の温度変化お
よび熱膨区張、【3’ケースを兼ねた外導体の熱膨張の
3つが考えられる。
First, considering the constituent factors that determine the temperature characteristics of the dielectric filter prior to the example, {1' expansion due to temperature of the inner conductor, {2) temperature change in yield rate of the dielectric core and thermal expansion. There are three possible causes: thermal expansion of the outer conductor that also serves as the case.

而して先ず誘電体コアの材質をセラミックに選定した場
合には、その線膨張は8脚′℃程度でしかもそのばらつ
きも極めて小さい。
First, when ceramic is selected as the material for the dielectric core, its linear expansion is about 8'°C, and its variation is extremely small.

他方樹脂の熱膨張は、大きな熱膨張係数を有するばかり
でなくその熱膨張係数が方向によって異なりしかもそれ
らの値のばらつきが極めて大きいという欠点がある。そ
のため共振器の内、外導体を樹脂を用いて構成すると、
上述したように温度特性が極めて悪くしかもそのばらつ
きが極めて大きく適当な手段による温度補償も不可能で
あった。そこで温度変化に対する共振器の作用に関して
第1図および第2図に示した同軸共振器の断面図および
平面図を用いて理論的に考察すると、図中1は内導体、
2は外導体、第2図中の実線矢印は電界分布、同破線矢
印は磁界分布を夫々示す。
On the other hand, the thermal expansion of resin has the disadvantage that it not only has a large coefficient of thermal expansion, but also that the coefficient of thermal expansion differs depending on the direction, and the dispersion of these values is extremely large. Therefore, if the inner and outer conductors of the resonator are made of resin,
As mentioned above, the temperature characteristics are extremely poor, and the variation thereof is extremely large, making it impossible to compensate for the temperature by appropriate means. Therefore, when considering the effect of the resonator on temperature changes theoretically using the cross-sectional view and plan view of the coaxial resonator shown in Figs. 1 and 2, 1 in the figure is the inner conductor,
2 is an outer conductor, solid arrows in FIG. 2 indicate electric field distribution, and broken arrows indicate magnetic field distribution.

このような同軸共振器を用いた同軸線路における内導体
1から同軸線路側をみたときの同軸線路インピーダンス
ZLは、下式によって表される。・zL=i豪・1者{
1十(Q2−Q・)T}. ・・.・・.・・・‘11
m/2‐PL上式tl)中りは固有インピーダンス、竹
は円周率、8は同軸線路の伝播定数、r,は内導体1の
半径、r2は外導体2の半径、Q,は内導体1の線膨張
率、Q2は外導体2の線膨張率、Tは変化する温度、1
,は内導体1の高さを夫々示す。
The coaxial line impedance ZL when looking from the inner conductor 1 to the coaxial line side in a coaxial line using such a coaxial resonator is expressed by the following formula.・zL=i Australia・1 person {
10 (Q2-Q・)T}.・・・.・・・. ...'11
m/2-PL above formula tl) The middle is the specific impedance, bamboo is the pi, 8 is the propagation constant of the coaxial line, r is the radius of the inner conductor 1, r2 is the radius of the outer conductor 2, Q is the inner The coefficient of linear expansion of conductor 1, Q2 is the coefficient of linear expansion of outer conductor 2, T is the changing temperature, 1
, respectively indicate the height of the inner conductor 1.

ここで内導体1の半径r,と高さ1,とは同じ材質で作
製されるため、同じ線膨張率を有する。
Here, since the radius r and the height 1 of the inner conductor 1 are made of the same material, they have the same coefficient of linear expansion.

また内導体1と外導体2の線膨張率Q,,Q2が異なる
場合でもその線膨張率は通常数十×10‐6程度と極め
て小さいため、上話m式の右辺中に含まれるlnき{1
十(Q2−Q・)T}なる部分は下式のようにほぼ一定
となる。ln号{1十(Q2−Q・)T}ごln土‐‐
‐‐‐…‐【2}rl従って上記{11式は、近似的に
下式のように表され得る。
Furthermore, even if the coefficients of linear expansion Q, Q2 of the inner conductor 1 and the outer conductor 2 are different, the coefficients of linear expansion are usually extremely small, on the order of several tens of times 10-6. {1
10(Q2-Q・)T} is approximately constant as shown in the equation below. ln issue {10 (Q2-Q・)T} ln Sat--
---...-[2}rl Therefore, the above equation {11 can be approximately expressed as the following equation.

・ zL〒i券・ln2・ ・.・・.・・.糊r,m/
2‐81,しかるに半同軸共振器の設計においては、通
常菅−B11ご0として設計されるため内導体1の高さ
1,の温度による僅かな変化で(11式に示した同軸線
路インピーダンスZしは、大きな変化をする。
・zL〒i ticket・ln2・ ・.・・・.・・・. glue r, m/
2-81, However, in the design of a semi-coaxial resonator, since it is usually designed as Suga-B11go0, a slight change in the height 1 of the inner conductor 1 due to temperature (the coaxial line impedance Z shown in equation 11) I will make a big change.

上述したように外導体2の温度変化による影響はほぼ無
視することができ、温度変化による影響は殆んど内導体
1の膨張によることが理解されるであろう。本発明はこ
のような点に着目してなされたもので、第3図はその一
実施例の半同軸共振器を用いた誘電体フィル夕の概略的
断面図である。
As mentioned above, it will be understood that the influence of temperature changes on the outer conductor 2 can be almost ignored, and that the influence of temperature changes is mostly due to the expansion of the inner conductor 1. The present invention has been made with attention to such points, and FIG. 3 is a schematic cross-sectional view of a dielectric filter using a semi-coaxial resonator according to an embodiment thereof.

即ちケースを兼ねる外導体2と底板3は例えばポリカー
ボンのような適当な樹脂材を用いて成型法により一体に
作製される。一方金属製内導体1は金属薄板11にかし
めにより固定された後上記の樹脂ケースに加熱圧入され
らる。また内導体1、外導体2および底板3の表面を殊
に銀のような低抵抗金属5で第3図に示されているよう
に一様に連続して導体被覆する。そして内導体1と外導
体2との間の空隙に譲竜体コア4を充填挿入する。ここ
で内導体他・線路内波長を^gとすると羊gの長さを有
するように形成されて図示の如くその一端は外導体2に
短絡され他端は開放条件にあるようにして設置される。
尚上記金属薄板11は電気的には無関係で単に内導体1
の機械的保持のためのみの目的で使用される。また、図
中6は隣接共振器間の結合のために外導体2に設けられ
た穴、7aは外導体2と誘導体コア4との間の空隙、7
bは内導体1と誘電体コア4との間の空隙、8は周波数
調整ねじ、9aは入力端ループ、9bは出力端ループ、
10は遮蔽板である。このように構成された誘電体フィ
ル夕によれば、所定の高周波磁界が入力端ループ9aか
ら励磁されると、内導体1の表面および外導体2と底板
3に設けられた導体被覆としての低抵抗金属5(以下導
体被覆という)には高周波電流が流れる。
That is, the outer conductor 2, which also serves as a case, and the bottom plate 3 are integrally manufactured by a molding method using a suitable resin material such as polycarbon. On the other hand, the metal inner conductor 1 is fixed to the thin metal plate 11 by caulking, and then heated and press-fitted into the resin case. Further, the surfaces of the inner conductor 1, outer conductor 2 and bottom plate 3 are uniformly and continuously coated with a low resistance metal 5 such as silver, as shown in FIG. Then, the gap between the inner conductor 1 and the outer conductor 2 is filled with the flexible body core 4 and inserted. Here, if the wavelength of the inner conductor and other lines is ^g, it is formed to have a length g, and as shown in the figure, it is installed so that one end is short-circuited to the outer conductor 2 and the other end is open. Ru.
Note that the metal thin plate 11 is electrically unrelated and is simply an inner conductor 1.
used for the sole purpose of mechanical retention. Further, in the figure, 6 is a hole provided in the outer conductor 2 for coupling between adjacent resonators, 7a is a gap between the outer conductor 2 and the dielectric core 4, and 7 is a hole provided in the outer conductor 2 for coupling between adjacent resonators.
b is the air gap between the inner conductor 1 and the dielectric core 4, 8 is the frequency adjustment screw, 9a is the input end loop, 9b is the output end loop,
10 is a shielding plate. According to the dielectric filter configured in this way, when a predetermined high-frequency magnetic field is excited from the input end loop 9a, the low A high frequency current flows through the resistance metal 5 (hereinafter referred to as conductor coating).

この導体被覆5に必要なメッキ厚は下式に示した表皮深
さ6の数情以上あれば十分である。6=、E妻云;急;
…・‐‐‐‐‐‘41上記(4}式中の‘ま使用角周波
数、山oは真空の透磁率、〇はメッキ金属の導電率を示
す。
The plating thickness required for this conductor coating 5 is sufficient if it is equal to or greater than the skin depth 6 shown in the formula below. 6=, E Tsumaun; sudden;
...-----'41 In the above formula (4), the angular frequency is used, the crest o indicates the vacuum magnetic permeability, and the circle indicates the electrical conductivity of the plated metal.

かくして第3図に示した実施例では、得られた共振器の
無負荷Qは1600〜2200であった。
Thus, in the example shown in FIG. 3, the unloaded Q of the obtained resonator was 1600-2200.

一方第3図において外導体2を黄銅で作製し導体被覆5
を銀〆ッキとした場合の無負荷Qは1700〜1800
であった。従ってこれら両者は測定誤差範囲内でよく一
致しており、樹脂を使用したことによる無負荷Qの劣化
はないことが理解されよう。また第3図に示した本発明
の第1の実施例に係る誘電体フィル夕の温度係数は実験
によって18跡′qCと測定され、これは第1図におい
て外導体2を黄鋼で作製した場合と全く同等であった。
On the other hand, in FIG. 3, the outer conductor 2 is made of brass and the conductor coating 5
When it is silver-plated, the unloaded Q is 1700-1800
Met. Therefore, it can be understood that these two values agree well within the measurement error range, and there is no deterioration in the no-load Q due to the use of the resin. Furthermore, the temperature coefficient of the dielectric filter according to the first embodiment of the present invention shown in FIG. It was exactly the same as the case.

このことは上記(11〜【3’式を用いて説明した理論
的考察とよく一致している。従って上述した所より明ら
かなように、外導体2および底板3に樹脂を使用するこ
とによる電気的特性の劣化は起らない。しかも本実施例
に示したようにメッキされた樹脂を使用すると、樹脂の
比重は1.4(ポリカーボンの場合)と金属の比重8(
黄銅の場合)に比べて約1′5に軽量化し得る上に金属
材料を用いた場合におけるような切削のための時間が不
要で量産性のよい均一の誘電体フィル夕を容易に製造し
得る利点がある。
This is in good agreement with the theoretical consideration explained using Equations 11 to [3' above. Therefore, as is clear from the above, the electric power generated by using resin for the outer conductor 2 and the bottom plate 3 is Moreover, when using plated resin as shown in this example, the specific gravity of the resin is 1.4 (in the case of polycarbon) and the specific gravity of metal is 8 (
The weight can be reduced by approximately 1'5 compared to brass (in the case of brass), and there is no need for the cutting time required when using metal materials, making it possible to easily manufacture a uniform dielectric filter that can be easily mass-produced. There are advantages.

またこの結果量産時には外導体2および底板3を金属材
料から機械加工の切削で製造する場合に比べて上述の如
くプラスチックで成型した場合は材料費加工費を含めて
約1′10に低減し得る利点もある。
As a result, in mass production, compared to the case where the outer conductor 2 and the bottom plate 3 are manufactured by machining cutting from metal materials, when molded from plastic as described above, the material cost including processing cost can be reduced to about 1'10. There are also advantages.

尚この種のフィル夕においては、誘電体コア4と内導体
1および外導体2との間の空隙の影響によって当該フィ
ル夕を構成している各共振器の共振周波数にばらつきが
生じられる。
In this type of filter, the resonance frequency of each resonator forming the filter varies due to the influence of the air gap between the dielectric core 4 and the inner conductor 1 and outer conductor 2.

そこで第3図の実施例では、各共振器の共振周波数調整
用として周波数調整ねじ8を設けている。
Therefore, in the embodiment shown in FIG. 3, a frequency adjustment screw 8 is provided for adjusting the resonance frequency of each resonator.

第4図は本発明の他の実施例に係る誘電体フィル夕要部
の概略的断面図である。
FIG. 4 is a schematic cross-sectional view of a main part of a dielectric filter according to another embodiment of the present invention.

即ち上記第3図の実施例では内導体1のみに金属を用い
、外導体2および底板3を樹脂モールドを用いて構成し
たが、第4図の実施例では内導体1と底板3に金属を用
い外導体2のみを樹脂モールドを用いて構成している点
で第3図の実施例と異なる。すなわち、第3図の第1の
実施例のように内導体1を金属、底板3を樹脂モールド
で構成した場合は、長期間使用すると、内導体1と底板
3の接合面に両者の線膨張係数の違いにより生じる歪み
により、導体被覆5に内導体1と底板3との接続部にお
いて亀裂が生じる。
That is, in the embodiment shown in FIG. 3, only the inner conductor 1 is made of metal, and the outer conductor 2 and the bottom plate 3 are made of resin mold, but in the embodiment shown in FIG. 4, the inner conductor 1 and the bottom plate 3 are made of metal. This embodiment differs from the embodiment shown in FIG. 3 in that only the outer conductor 2 used is constructed using a resin mold. In other words, when the inner conductor 1 is made of metal and the bottom plate 3 is made of resin mold as in the first embodiment shown in FIG. Due to the distortion caused by the difference in coefficients, cracks occur in the conductor coating 5 at the connection between the inner conductor 1 and the bottom plate 3.

一方、導体被覆5に流れる高周波電流密度は、内導体1
と底板3との接続部において最大となる。したがって、
この接続部において前記のように導体被覆5に亀裂が生
じると、抵抗損失が増大し、共振器の無負荷Qが低下す
る。これに対して、第4図の第2の実施例によれば、内
導体1とともに底板3も金属で構成しているから、長期
間使用しても、線膨張係数の違いによる歪みによる、内
導体1と底板3の接続部における導体被覆5の亀裂を防
止でき「その結果、抵抗損失の増大を無くして各共振器
に長期間安定した高い無負荷Qを得ることができる。な
お、外導体2は樹脂モールドであり、この外導体2と金
属の底板3との接合部において導体被覆5に亀裂が生じ
る恐れがあるが、その接合部において導体被覆5に流れ
る高周波電流密度が小さいため、亀裂が生じても、抵抗
損失の増大ひいては各共振器の無負荷Qの低下に与える
影響は少ない。このように、第4図の第2の実施例によ
れば、軽量化などの点で若干第1の実施例より劣るかも
知れないが、従来に比較すれば第1の実施例と同様の効
果を得られる上に、導体被覆5の亀裂による共振器の無
負荷Qの低下を防ぐことができる。以上詳述したように
本発明によれば、極めて温度特性の悪い樹脂材料を効果
的に使用して電気的特性を劣化させることなく軽量、低
コストで量産性にすぐれた誘電体フィル夕を提供し得る
利点がある。また本発明によれば、ケース内側面、内底
面、及び内導体の各表面を金属で一様に連続して被覆し
ているので、組立てにもとづく点接触部分がなくなり、
接触抵抗が発生しないように構成される。従って、フィ
ル夕を構成する各共振器の無負荷Qが増大し、フィル夕
の挿入損失が減少する。また、この構成によって、フィ
ル夕を構成する共振器の無負荷Qのバラッキを少なくす
ることができる。また本発明では、誘電体コアが挿入さ
れているので、勿論フィル夕の小型化を達成できる。さ
らに、内導体とともにケースの底面を金属で構成すれば
、内導体とケース底面の接続部における被覆金属の亀裂
を防止して抵抗損失の増大を防止できるから、各共振器
の無負荷Qを長期間安定して高く維持できる。
On the other hand, the high frequency current density flowing through the conductor coating 5 is
It is maximum at the connection part between the bottom plate 3 and the bottom plate 3. therefore,
If a crack occurs in the conductor coating 5 at this connection portion as described above, the resistance loss increases and the no-load Q of the resonator decreases. On the other hand, according to the second embodiment shown in FIG. 4, since both the inner conductor 1 and the bottom plate 3 are made of metal, even after long-term use, the inner It is possible to prevent cracks in the conductor coating 5 at the connection between the conductor 1 and the bottom plate 3.As a result, it is possible to eliminate an increase in resistance loss and obtain a high no-load Q that is stable for a long period of time in each resonator. 2 is a resin mold, and there is a risk that cracks will occur in the conductor coating 5 at the joint between the outer conductor 2 and the metal bottom plate 3. However, since the high frequency current density flowing through the conductor coating 5 at that joint is small, the crack will not occur. Even if this occurs, there is little effect on the increase in resistance loss and the decrease in the no-load Q of each resonator.As described above, according to the second embodiment shown in FIG. Although it may be inferior to the first embodiment, when compared with the conventional example, it is possible to obtain the same effect as the first embodiment, and also to prevent a decrease in the no-load Q of the resonator due to cracks in the conductor coating 5. As detailed above, according to the present invention, it is possible to effectively use a resin material with extremely poor temperature characteristics to produce a dielectric filter that is lightweight, low cost, and excellent in mass production without deteriorating electrical characteristics. According to the present invention, since the inner surface of the case, the inner bottom surface, and the inner conductor surface are coated uniformly and continuously with metal, there are no point contact parts during assembly. ,
Constructed so that no contact resistance occurs. Therefore, the no-load Q of each resonator constituting the filter increases, and the insertion loss of the filter decreases. Further, with this configuration, variations in the no-load Q of the resonators forming the filter can be reduced. Furthermore, in the present invention, since the dielectric core is inserted, the filter can of course be made smaller. Furthermore, if the bottom of the case and the inner conductor are made of metal, it is possible to prevent cracks in the coating metal at the connection between the inner conductor and the bottom of the case, thereby preventing an increase in resistance loss, thereby increasing the no-load Q of each resonator. It can be maintained stably and high for a period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は同軸共振器の断面図、第2図は第1図の共振器
の平面図、第3図は本発明の一実施例に係る譲露体フィ
ル夕の概略的断面図、第4図は本発明の他の実施例に係
る誘電体フィルタ要部の概略的断面図である。 翼……内導体、2・・・・・・外導体、3…・・・底板
、4……誘導体コア「 5・・・・・・低抵抗金属。 第1図第2図 第3図 第4図
FIG. 1 is a sectional view of a coaxial resonator, FIG. 2 is a plan view of the resonator of FIG. The figure is a schematic cross-sectional view of a main part of a dielectric filter according to another embodiment of the present invention. Wings...inner conductor, 2...outer conductor, 3...bottom plate, 4...dielectric core 5...low resistance metal. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 一端が地導体を兼ねたケースの底面に短絡され他端
は開放条件にある所定長の内導体およびこの内導体と前
記ケースとの間に充填される誘導体コアからなる1/4
波長同軸共振器と、この共振器と外部との間または隣接
共振器間の適当な電気的結合手段とを具備して成る一般
的誘電体フイルタにおいて、前記内導体を金属で構成し
、且つ前記ケース全体を樹脂モールドで構成し、更に前
記ケース内側面、内底面、及び内導体の各表面を金属で
一様に連続して被覆することを特徴とする誘電体フイル
タ。 2 一端が地導体を兼ねたケースの底面に短絡され他端
は開放条件にある所定長の内導体およびこの内導体と前
記ケースとの間に充填されらる誘導体コアからなる1/
4波長同軸共振器と、この共振器と外部との間または隣
接共振器間の適当な電気的結合手段とを具備して成る一
般的誘電体フイルタにおいて、前記内導体と該内導体が
短絡された前記ケースの一底面を金属で構成し、且つ前
記ケースの前記底面を除く部分を樹脂モールドで構成し
、更に前記ケース内側面、内底面、及び内導体の各表面
を金属で一様に連続して被覆することを特徴とする誘導
体フイルタ。
[Scope of Claims] 1 Consists of an inner conductor of a predetermined length, one end of which is short-circuited to the bottom of the case that also serves as a ground conductor and the other end is open, and a dielectric core filled between the inner conductor and the case. 1/4
In a general dielectric filter comprising a wavelength coaxial resonator and appropriate electrical coupling means between the resonator and the outside or between adjacent resonators, the inner conductor is made of metal, and the inner conductor is made of metal; 1. A dielectric filter characterized in that the entire case is made of a resin mold, and the inner surface, inner bottom surface, and each surface of the inner conductor of the case are uniformly and continuously coated with metal. 2. A 1/2-meter conductor consisting of an inner conductor of a predetermined length with one end shorted to the bottom of the case that also serves as a ground conductor and the other end open, and a dielectric core filled between this inner conductor and the case.
In a general dielectric filter comprising a four-wavelength coaxial resonator and appropriate electrical coupling means between this resonator and the outside or between adjacent resonators, the inner conductor and the inner conductor are short-circuited. A bottom surface of the case is made of metal, and a portion of the case other than the bottom surface is made of resin mold, and each surface of the case inner surface, inner bottom surface, and inner conductor is made of metal and is uniformly continuous. A derivative filter characterized by being coated with
JP53063361A 1978-05-29 1978-05-29 dielectric filter Expired JPS606564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53063361A JPS606564B2 (en) 1978-05-29 1978-05-29 dielectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53063361A JPS606564B2 (en) 1978-05-29 1978-05-29 dielectric filter

Publications (2)

Publication Number Publication Date
JPS54154959A JPS54154959A (en) 1979-12-06
JPS606564B2 true JPS606564B2 (en) 1985-02-19

Family

ID=13227040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53063361A Expired JPS606564B2 (en) 1978-05-29 1978-05-29 dielectric filter

Country Status (1)

Country Link
JP (1) JPS606564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106472A (en) * 1983-11-14 1985-06-11 株式会社関西ゴルフ Production of head of iron club

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125001U (en) * 1981-01-30 1982-08-04
JPS58114601A (en) * 1981-12-28 1983-07-08 Murata Mfg Co Ltd Distribution constant type filter
JPS5882002U (en) * 1981-11-27 1983-06-03 オムロン株式会社 coaxial switch
FR2534088B1 (en) * 1982-10-01 1988-10-28 Murata Manufacturing Co DIELECTRIC RESONATOR
JPS61156902A (en) * 1984-12-27 1986-07-16 Sony Corp Dielectric filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471081U (en) * 1971-01-21 1972-08-10
JPS5263051A (en) * 1975-10-11 1977-05-25 Nec Corp Re-entrant cylindrical resonator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS471081U (en) * 1971-01-21 1972-08-10
JPS5263051A (en) * 1975-10-11 1977-05-25 Nec Corp Re-entrant cylindrical resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106472A (en) * 1983-11-14 1985-06-11 株式会社関西ゴルフ Production of head of iron club

Also Published As

Publication number Publication date
JPS54154959A (en) 1979-12-06

Similar Documents

Publication Publication Date Title
US3840828A (en) Temperature-stable dielectric resonator filters for stripline
US4963841A (en) Dielectric resonator filter
US7449980B2 (en) Discrete voltage tunable resonator made of dielectric material
JPH0738307A (en) Filter and formation thereof
JP2002524895A (en) Multilayer dielectric evanescent mode waveguide filter
JPH0637521A (en) Resonator structure and high-frequency filter
JPS6211801B2 (en)
US4583064A (en) Strip-line resonator
US6472955B2 (en) Dielectric resonator, filter, duplexer, and communication device
JPS606564B2 (en) dielectric filter
JPS59107603A (en) Resonator and filter composed of same resonator
JPS638641B2 (en)
JPS6325523B2 (en)
US4942377A (en) Rod type dielectric resonating device with coupling plates
US6218914B1 (en) Dielectric filter and dielectric duplexer including a movable probe
JPS63280503A (en) Dielectric resonator
JP2018011256A (en) Dielectric waveguide type resonance component and property adjustment method therefor
US3548344A (en) Stripline gain equalizer
JPH0250502A (en) Dielectric filter
Hawatmeh et al. 2.4 GHz band pass filter architecture for direct print additive manufacturing
JP6011237B2 (en) Dielectric resonant component and manufacturing method thereof
JPH08172302A (en) Plane filter made of synthetic resin with high dielectric constant
JPS6160601B2 (en)
JP3306137B2 (en) Method of adjusting resonance frequency of dielectric filter
JPH0642602B2 (en) Dielectric filter