JPS6065562A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS6065562A
JPS6065562A JP58173198A JP17319883A JPS6065562A JP S6065562 A JPS6065562 A JP S6065562A JP 58173198 A JP58173198 A JP 58173198A JP 17319883 A JP17319883 A JP 17319883A JP S6065562 A JPS6065562 A JP S6065562A
Authority
JP
Japan
Prior art keywords
well
type well
type
memory cell
shallow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58173198A
Other languages
Japanese (ja)
Inventor
Kimiaki Sato
公昭 佐藤
Tomio Nakano
中野 富男
Yoshihiro Takemae
義博 竹前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58173198A priority Critical patent/JPS6065562A/en
Publication of JPS6065562A publication Critical patent/JPS6065562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Abstract

PURPOSE:To prevent a software error due to alpha-ray by individually altering the depths of a well of a peripheral circuit and a memory cell, thereby reducing the number of implantation to an inverting layer of induced electrons due to the alpha-ray. CONSTITUTION:In a memory cell, a shallow P type well 2 is formed, and NMOS memory cells 4-6 are formed in the well 2. In a peripheral circuit, a deep P type well 2' is formed, an N type substrate 1 is formed with PMOS 5, 6, and P type well 2' is formed with NMOS 4, 6. Accordingly, the P type well 2 of the memory cell can be shallowed to the degree that a punch-through is not produced, and the depth of the P type well 2' of a peripheral circuit can be formed to the degree that a latchup does not occur.

Description

【発明の詳細な説明】 発明の技術分野 本発明は半導体記憶装置、特に0MO8構造のダイナミ
ックRAMに関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a semiconductor memory device, and particularly to a dynamic RAM having an 0MO8 structure.

技術の背景 通常の0MO8構造においては、N形基板にP形つェル
全形成し、N形基板にPMO8’e形成し。
Background of the Technology In a normal 0MO8 structure, all P-type wells are formed on an N-type substrate, and PMO8'e is formed on an N-type substrate.

P形つェルにN−MOSを形成するが、これとは別にN
形基板に大きなP形つェルを形成し、このP形つェル内
にNMOSメモリセルを形成するものが知られている。
N-MOS is formed in the P-type well, but in addition to this, N-MOS is formed in the P-type well.
It is known that a large P-type well is formed on a shaped substrate, and an NMOS memory cell is formed within this P-type well.

このよりなNMOSメ・モリセルはα線のソフトエラー
に強くなる。
This stiff NMOS memory cell becomes resistant to α-ray soft errors.

第1図にはN形基板1にP形つェル2を形成し。In FIG. 1, a P-type well 2 is formed on an N-type substrate 1.

このP形つェル2にNMOSメモリセルを形成しである
。ここで、3はフィールド酸化膜、4はソースもしくは
ドレインとしてのN 形不純物拡散領域、5は電荷蓄積
部としての反転層もしくはぐ形不純物拡散領域、6はゲ
ート電極もしくはキャパシタの対向電極としての金属層
、Bはビット線。
An NMOS memory cell is formed in this P-type well 2. Here, 3 is a field oxide film, 4 is an N type impurity diffusion region as a source or drain, 5 is an inversion layer or square impurity diffusion region as a charge storage part, and 6 is a metal as a gate electrode or a counter electrode of a capacitor. layer, B is the bit line.

Wはワード線である。第1図の装置に点線に示すごとく
α線が入射すると、その軌跡周囲に多量の電子、ホール
対が誘起する。この結果、誘起電子は電界に沿って電荷
蓄積部である反転層5あるいはN形基板lに注入され9
反転層5に注入された電子によって反転層5に蓄積され
ている電子数が少ない情報たとえば1″′は電子数が多
い情報″0゛′に反転することがある。この場合、α線
が横切る電界で、誘起した電子を反転層5内に注入させ
るものは1本来9反転層5とP形つェル2との間に存在
する空乏層だけに存在するので反転層5に注入される電
子数は該空乏層内で誘起した電子だけに限られるはずで
あるが、実際には、″Funneling″現象のため
に該空乏層下の数μrjL筐で一時的に疑似電界が拡が
る。従って、かなり深い所の誘起電子が反転層5 VC
注入され、この結果、”Funneling”現象によ
る注入′電子数は全注入電子数のかなりの割合いを占め
る。しかしながら、N形基板l上のP形ウェル2にNM
OSメモリセルを形成すると。
W is a word line. When α rays are incident on the device of FIG. 1 as shown by the dotted line, a large number of electron and hole pairs are induced around the trajectory of the α rays. As a result, induced electrons are injected into the inversion layer 5 or the N-type substrate l, which is a charge storage part, along the electric field 9
Due to the electrons injected into the inversion layer 5, information stored in the inversion layer 5 with a small number of electrons, such as 1'', may be inverted to information with a large number of electrons, ``0''. In this case, the electrons that are induced to be injected into the inversion layer 5 by the electric field crossed by the α rays exist only in the depletion layer that exists between the inversion layer 5 and the P-type well 2. The number of electrons injected into the layer 5 should be limited to only the electrons induced within the depletion layer, but in reality, due to the "Funneling" phenomenon, temporary pseudo The electric field expands. Therefore, the induced electrons in a fairly deep place are transferred to the inversion layer 5 VC
As a result, the number of injected electrons due to the "Funneling" phenomenon accounts for a considerable proportion of the total number of injected electrons. However, in P-type well 2 on N-type substrate l, NM
When an OS memory cell is formed.

第2図に示すように、P形ウェル2が電位障壁を形成す
るので、疑似電界の拡がりつる深さは限定され、距離d
以内で発生した誘発電子のみが反転層5に注入され、距
離d以外で発生した誘発電子は基板1に注入される。
As shown in FIG. 2, since the P-type well 2 forms a potential barrier, the depth to which the pseudo electric field spreads is limited, and the distance d
Only the induced electrons generated within the distance d are injected into the inversion layer 5, and the induced electrons generated outside the distance d are injected into the substrate 1.

従って、α線による誘発電子の反転層5への注入数を減
少させるには、P形ウェル2の厚さを減少させればよい
。しかしながら、P形ウェル2の厚さ全減少し過ぎると
、N形基板1に形成されたPMO8とP形ウェル2に形
成されたNM6S とにより構成される周辺回路では、
NPNP素子すなわち寄性サイリスタがオンするという
ラッチアップ現象が発生する。
Therefore, in order to reduce the number of electrons induced by α rays injected into the inversion layer 5, the thickness of the P-type well 2 may be reduced. However, if the total thickness of the P-type well 2 is reduced too much, the peripheral circuit constituted by the PMO8 formed in the N-type substrate 1 and the NM6S formed in the P-type well 2,
A latch-up phenomenon occurs in which the NPNP element, that is, the parasitic thyristor turns on.

従って、従来は9周辺回路のラッチアップが発生しない
程度にP形ウェル2の厚さを設定しているので、α線に
よる誘起電子の反転層5への注入数の減少が不充分とな
り、従って、α線によるソフトエラー発生防止も不充分
であるという問題点があった。
Therefore, conventionally, the thickness of the P-type well 2 is set to such an extent that latch-up of the 9 peripheral circuits does not occur, so that the number of electrons induced by α rays injected into the inversion layer 5 is insufficiently reduced. There was also a problem in that prevention of soft errors caused by alpha rays was insufficient.

発明の目的 本発明の目的は、上述の従来形における問題点に鑑み1
周辺回路のウェルの深さとメモリセル部のウェルの深さ
とを別々に変えるという構想にもとづき、メモリセル部
のウェルをできる限りすなわちパンチスルーが起らない
程度に浅くしてα線による誘起電子の反転層への注入数
を減少させてα線によるソフトエラーを十分に防止する
ことにある。
Purpose of the Invention The purpose of the present invention is to solve the following problems in view of the problems in the conventional type described above.
Based on the idea of changing the well depth of the peripheral circuit and the well depth of the memory cell section separately, the well of the memory cell section is made as shallow as possible, that is, to the extent that punch-through does not occur, to prevent electrons induced by α rays. The objective is to sufficiently prevent soft errors caused by α rays by reducing the number of injections into the inversion layer.

発明の構成 上述の目的を達成するために本発明によれば。Composition of the invention According to the present invention to achieve the above objects.

第1の導電形の半導体基板内に該第1の導電形と反対の
第2の導電形の深いウェルと浅いウェルとを形成し、該
浅いウェルにメモリセル部を形成し。
A deep well and a shallow well of a second conductivity type opposite to the first conductivity type are formed in a semiconductor substrate of a first conductivity type, and a memory cell portion is formed in the shallow well.

前記深いウェルと前記半導体基板とに周辺回路を形成し
た半導体記憶装置が提供される。
A semiconductor memory device is provided in which a peripheral circuit is formed in the deep well and the semiconductor substrate.

発明の実施例 以下、図面により本発明の詳細な説明する。Examples of the invention Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は本発明に係る半導体記憶装置の一実施例を示す
断面図である。第3図において、右側がメモリセル部で
あり、左側が周辺回路である。メモリセル部においては
、浅いP形ウェル2が形成され、このウェル2にNMO
Sメモリセル4〜6が形成されている。他方1周辺回路
部においては。
FIG. 3 is a sectional view showing an embodiment of a semiconductor memory device according to the present invention. In FIG. 3, the right side is the memory cell section, and the left side is the peripheral circuit. In the memory cell section, a shallow P-type well 2 is formed, and NMO is formed in this well 2.
S memory cells 4 to 6 are formed. On the other hand, in the first peripheral circuit section.

深いP形つェル2′が形成され、そして、N形基板1に
PMO86,7が形成きれ、P形つェル2′にNMO8
4,6が形成される。従って、メモリセk 部(D P
 形ウェル2はバンチスルーが生じない程度まで浅くで
き1周辺回路のP形つェル2′の深さはラッチアップが
生じない程度にできる。
A deep P-type well 2' is formed, and PMOs 86 and 7 are completely formed on the N-type substrate 1, and NMO8 is formed on the P-type well 2'.
4 and 6 are formed. Therefore, memory section k (D P
The depth of the P-type well 2' of the peripheral circuit 1 can be made shallow enough to prevent bunch-through from occurring, and the depth of the P-type well 2' of the peripheral circuit 1 can be made to an extent that latch-up does not occur.

第3図に示す深さが異なるウェルは種々の製造方法によ
り形成される。以下、その製造方法を説明する。
The wells having different depths shown in FIG. 3 can be formed by various manufacturing methods. The manufacturing method will be explained below.

始めに、第4図(A)〜(C1について説明する。第4
図因に示すように、N形基板l上にレジストパターン4
1を形成して所定ドーズ量のBイオンを注入し、レジス
トパターン41を除去する。次いで。
First, FIGS. 4(A) to (C1) will be explained.
As shown in the figure, a resist pattern 4 is placed on an N-type substrate l.
1 is formed, a predetermined dose of B ions is implanted, and the resist pattern 41 is removed. Next.

第4図(B)に示すように、新たなレジストパターン4
2金形成して所定量のBイオンを注入し、レジストパタ
ーン42を除去する。この結果、高濃度領域2′と低濃
度領域2とが形成される。次いで。
As shown in FIG. 4(B), a new resist pattern 4 is created.
2 gold is formed, a predetermined amount of B ions are implanted, and the resist pattern 42 is removed. As a result, a high concentration region 2' and a low concentration region 2 are formed. Next.

ランニング(非酸化雰囲気における熱処理)を行うと、
第4図(C)に示すように、深いP形つェル2′と浅い
P形ウェル2とが形成されることになる。
When running (heat treatment in a non-oxidizing atmosphere),
As shown in FIG. 4(C), a deep P-type well 2' and a shallow P-type well 2 are formed.

なお、第4図(5)〜(Oに示す製造方法はP形基板に
深いN形ウェルと浅いN形ウェルとを形成する場合にも
適用できる。この場合には、Bイオンの代りに、Pイオ
ンあるいはAsイオンを用いる。
The manufacturing method shown in FIGS. 4(5) to 4(O) can also be applied to the case of forming a deep N-type well and a shallow N-type well in a P-type substrate.In this case, instead of B ions, P ions or As ions are used.

第5図(5)〜(C>について説明する。第5図(5)
に示すように、N形基板1上にレジストパターン51全
形成して所定ドーズ量のBイオンを注入して高濃度領域
2′ヲ形成している。そして、レジストパターン51を
除去する。次いで、第5図の)に示すように、新たなレ
ジストパターン52を形成して所定ドーズ量のBイオン
を注入して低濃度領域2を形成する。そして、レジスト
パターン52t−除去する。次いで、ランニングを行う
と、第5図(Oに示すように、深いP形つェル2′と浅
いP形つェル2とが形成されることになる。
Figure 5 (5) to (C> will be explained. Figure 5 (5)
As shown in FIG. 1, a resist pattern 51 is entirely formed on an N-type substrate 1, and a predetermined dose of B ions is implanted to form a high concentration region 2'. Then, the resist pattern 51 is removed. Next, as shown in FIG. 5), a new resist pattern 52 is formed and a predetermined dose of B ions is implanted to form the low concentration region 2. Then, the resist pattern 52t is removed. Next, when running is performed, a deep P-shaped well 2' and a shallow P-shaped well 2 are formed as shown in FIG.

なお、第5図(4)〜(0に示す製造方法もまたP形基
板に深いN形つェルと浅いN形つェルとを形成する場合
に適用できる。
The manufacturing method shown in FIGS. 5(4) to 5(0) can also be applied to the case where a deep N-type well and a shallow N-type well are formed on a P-type substrate.

第6図囚)〜(0の製造方法は、第5図囚のステップと
第5図(Blのステップとの間でランニング工程を付加
したものであり、つまり、ウェル形成のためのランニン
グ工程′Jt2回行うものである。
The manufacturing method of Fig. 6) to (0) is one in which a running process is added between the step of Fig. 5 and the step of Fig. 5 (Bl), that is, a running process for forming a well. Jt is to be performed twice.

上述の第4図囚〜(C)、第5図囚〜(0,第6図■〜
0に示す製造方法は、ウェル形成のためのイオン注入の
イオンを1種類しか用いていないが、第7図囚〜[F]
)に示すように、2種類のイオンを用いて行うこともで
きる。
The above-mentioned Figure 4 prisoner ~ (C), Figure 5 prisoner ~ (0, Figure 6 ■ ~
Although the manufacturing method shown in Figure 0 uses only one type of ion implantation for forming wells,
), it can also be carried out using two types of ions.

第7図(A)〜0にお論では、P形基板11にN形つェ
ルを形成することを想定している。つまり。
The discussion in FIGS. 7(A) to 0 assumes that an N-type well is formed on the P-type substrate 11. In other words.

第7図においては、基板11上にレジストパターン71
を形成して拡散係数の大きいPイオンを注入して領域1
2”i形成する。そして、レジストパターン71を除去
する。第7図(B)においては、基板ll上に新たなレ
ジストパターン72を形成して拡散係数の小さいAsイ
オンを注入して領域12を形成する。そして、レジスト
パターン12を除去する。この状態でランニングを行う
と、拡散係数の違いから、第7図(0に示すように、深
いN形つェル12′と浅いN形つェル12とが同時に形
成される。次いで、第7図(2)に示すように、深いN
形つェル12′にはPMO8が形成され、浅いN形つェ
ル12にはPMOSメモリセルが形成される。
In FIG. 7, a resist pattern 71 is formed on the substrate 11.
region 1 by forming P ions with a large diffusion coefficient and implanting P ions with a large diffusion coefficient.
2"i is formed. Then, the resist pattern 71 is removed. In FIG. 7(B), a new resist pattern 72 is formed on the substrate 11, and As ions having a small diffusion coefficient are implanted to form the region 12. Then, the resist pattern 12 is removed.If running is performed in this state, a deep N-type well 12' and a shallow N-type well 12' will be formed due to the difference in diffusion coefficients, as shown in FIG. Then, as shown in FIG. 7(2), a deep N
A PMO 8 is formed in the shallow N-type well 12', and a PMOS memory cell is formed in the shallow N-type well 12.

13はフィールド酸化膜である。13 is a field oxide film.

なお、第7図■〜D)に示す製造方法も、適切な拡散係
数の異なるイオンを選べば、N形基板に深いP形つェル
と浅いP形つェルとを形成する場合に適用できる。
The manufacturing method shown in Figure 7 (■ to D) can also be applied to forming deep P-type wells and shallow P-type wells on an N-type substrate by selecting ions with different appropriate diffusion coefficients. can.

発明の詳細 な説明したように本発明によれば、メモリセル部をバン
チスルーが起らない程度の浅いウェルに形成できるよう
になり、従って、α線によるソフトエラー防止に十分役
立つものである。
As described in detail, according to the present invention, the memory cell portion can be formed into a shallow well that does not cause bunch-through, and is therefore sufficiently useful for preventing soft errors caused by alpha rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するためのメモリセル部の
断面図、第2図は第1図の電位特性図。 第3図は本発明に係る半導体記憶装置の一実施例を示す
断面図、第4図(4)〜(C1、第5図■〜(C)、第
6図■〜0.第7図(A)〜0は第3図の装置の製造方
法を説明するための断面図である。 1.11:半導体基板。 2.12:浅いウェル。 2’、 iz’ :深いウェル。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木 朗 弁理士西舘和之 弁理士 内 1)幸 男 弁理士 山 口 昭 之
FIG. 1 is a sectional view of a memory cell portion for explaining the present invention in detail, and FIG. 2 is a potential characteristic diagram of FIG. 1. FIG. 3 is a sectional view showing an embodiment of the semiconductor memory device according to the present invention, FIG. 4 (4) to (C1), FIG. A) to 0 are cross-sectional views for explaining the manufacturing method of the device shown in FIG. 3. 1.11: Semiconductor substrate. 2.12: Shallow well. 2', iz': Deep well. Patent applicant Fujitsu Patent Application Agent Co., Ltd. Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate 1) Yukio Patent Attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1、第1の導電形の半導体基板内に該第1の導電形と反
対の第2の導電形の深いウェルと浅いウェルとを形成し
、該浅いウェルにメモリセル部を形成し、前記深いウェ
ルと前記半導体基板とに周辺回路全形成した半導体記憶
装置。
1. Forming a deep well and a shallow well of a second conductivity type opposite to the first conductivity type in a semiconductor substrate of a first conductivity type, forming a memory cell portion in the shallow well, and forming a memory cell portion in the shallow well; A semiconductor memory device in which a peripheral circuit is entirely formed in a well and the semiconductor substrate.
JP58173198A 1983-09-21 1983-09-21 Semiconductor memory Pending JPS6065562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173198A JPS6065562A (en) 1983-09-21 1983-09-21 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173198A JPS6065562A (en) 1983-09-21 1983-09-21 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS6065562A true JPS6065562A (en) 1985-04-15

Family

ID=15955916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173198A Pending JPS6065562A (en) 1983-09-21 1983-09-21 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS6065562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138756A (en) * 1988-08-26 1990-05-28 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138756A (en) * 1988-08-26 1990-05-28 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US6500705B2 (en) Semiconductor memory device and method of manufacturing the same
US20070013007A1 (en) Semiconductor device and method of fabricating the same
JPH08330541A (en) Semiconductor device
JPS61156862A (en) Semiconductor memory device
JP2581415B2 (en) Method for manufacturing semiconductor memory device
TWI269451B (en) Transistor of volatile memory device with gate dielectric structure capable of trapping charges and method for fabricating the same
JPH0412565A (en) Semiconductor device and its manufacture
US5047818A (en) Semiconductor memory device having buried structure to suppress soft errors
US6268250B1 (en) Efficient fabrication process for dual well type structures
JPS6065562A (en) Semiconductor memory
US4910161A (en) Method of making a semiconductor memory device
JP2933818B2 (en) Semiconductor device and manufacturing method thereof
JPH04118973A (en) Manufacture of semiconductor device
US11302584B2 (en) Semiconductor structures and static random access momories
JP3243885B2 (en) Semiconductor storage device
JPH0556663B2 (en)
JP2735285B2 (en) Semiconductor device
JP2925936B2 (en) Method for manufacturing semiconductor memory device
KR100745930B1 (en) Method for manufacturing semiconductor device
JPH0613562A (en) Manufacture of cmos transistor which enhances junction breakdown voltage
JPS63307724A (en) Manufacture of semiconductor integrated circuit
JPH0536909A (en) Semiconductor integrated circuit
JP2000058676A (en) Manufacturing semiconductor device
JPS63237462A (en) Static type semiconductor memory and manufacture thereof
JPS61164255A (en) Semiconductor device