JPS6065405A - Sheetlike elastic conductive plate - Google Patents

Sheetlike elastic conductive plate

Info

Publication number
JPS6065405A
JPS6065405A JP58173659A JP17365983A JPS6065405A JP S6065405 A JPS6065405 A JP S6065405A JP 58173659 A JP58173659 A JP 58173659A JP 17365983 A JP17365983 A JP 17365983A JP S6065405 A JPS6065405 A JP S6065405A
Authority
JP
Japan
Prior art keywords
sheet
conductive
plate
conductive plate
elastic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58173659A
Other languages
Japanese (ja)
Inventor
裕介 伊藤
及川 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58173659A priority Critical patent/JPS6065405A/en
Publication of JPS6065405A publication Critical patent/JPS6065405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、シート状弾性導電板、詳しくは、面積が広く
、その割には厚みが薄いシート状の導電板又はシート状
の電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a sheet-like elastic conductive plate, and more particularly to a sheet-like conductive plate or a sheet-like electrode that has a large area and a relatively thin thickness.

〔従来技術とその問題点〕[Prior art and its problems]

シート状導電板の用途の一つとして、燃料電池のセパレ
ート板などの積層構造で使用されるノート状電極が考え
られる。この種の用途では、シート面に平行方向の他に
、垂直方向(換言すれば厚み方向)の導電性が要求され
る。特に、後者の垂直方向の導電性は、電池の出力゛又
は効率に直接影響を及ばず。また、近年、燃料電池の高
出力化の要請から、シート状電極は次第に大面積化の傾
向にある。
One possible use of the sheet-like conductive plate is as a notebook-like electrode used in a laminated structure such as a separate plate of a fuel cell. In this type of application, conductivity is required not only in a direction parallel to the sheet surface but also in a direction perpendicular to the sheet surface (in other words, in the thickness direction). In particular, the latter vertical conductivity does not directly affect the battery's power output or efficiency. In addition, in recent years, due to the demand for higher output of fuel cells, sheet electrodes have gradually become larger in area.

この垂直方向の導電性を左右する因子は、一つには使用
する材料の導電度であり、他の一つけ積層時の接触抵抗
の度合である。
The factors that influence this vertical conductivity are, on the one hand, the conductivity of the materials used, and on the other hand, the degree of contact resistance when laminating one layer at a time.

一方、シート状電極は、燃料電池のタイプによって異な
るが、高温度で積層され、加圧状態で長期間にわたって
使用されるために圧縮特性が良好であることが要求され
る。
On the other hand, although sheet electrodes differ depending on the type of fuel cell, they are required to have good compression characteristics because they are laminated at high temperatures and used under pressure for long periods of time.

従来、この種のシート状電極としては、りん酸型電池を
例に述べると、タンタル板(金属板)、フェノール樹脂
含浸黒鉛焼結板、又は黒鉛粉分散フェノール樹脂成形板
などが考えられる。これらは、材料としての導電度や高
温時の圧縮特性には優れているものの、積層時の接触抵
抗の大きいことが検討の結果明らかとなった。
Conventionally, as this type of sheet-like electrode, taking a phosphoric acid type battery as an example, a tantalum plate (metal plate), a phenol resin-impregnated graphite sintered plate, a graphite powder-dispersed phenol resin molded plate, etc. can be considered. Although these materials have excellent electrical conductivity and compression properties at high temperatures, studies have revealed that they have high contact resistance when laminated.

即ち、相手側材料として多孔質カーボン板を用い、タン
タル板、フェノール樹脂含浸黒鉛焼結板及び黒鉛粉分散
フェノール樹脂成形板のそれぞれの抵抗を加圧力を変え
て測定した。その結果を第1図に示す。この図において
それぞれ1,2及び3がこれらの材料の結果である。上
記の3種の材料と多孔質カーボン板の抵抗・値(比較指
数)は、加圧力が小さい範囲では若干差があるものの、
加圧力を増すにつれその差は少くなるが、本来の目標と
する抵抗値までは低下せず、約3 Kg / ctlの
カロ圧で多孔質カーボン板は破壊するに至った。このた
め多孔質カーボン板と上記3種の材料の機械力ロ工精度
をあげ、再度検討を行ったが、期待した11どの効果は
得られなかった。また、機械加工を行うにしても、大面
積でかつ薄い板加工は安易な方法では必ずしも効果がな
く、厚みの均−性及び板のそり変形の防止を図るには特
殊な加工方法〃;必要であることがわかった。
That is, using a porous carbon plate as the mating material, the respective resistances of a tantalum plate, a phenol resin-impregnated graphite sintered plate, and a graphite powder-dispersed phenol resin molded plate were measured while changing the pressing force. The results are shown in FIG. 1, 2 and 3 in this figure are the results for these materials, respectively. Although there is a slight difference in the resistance/value (comparison index) of the above three materials and the porous carbon plate in the range of small pressurizing force,
As the pressure was increased, the difference decreased, but the resistance did not decrease to the original target value, and the porous carbon plate was destroyed at a Calo pressure of about 3 Kg/ctl. For this reason, the mechanical strength of the porous carbon plate and the three materials mentioned above was improved, and the study was conducted again, but none of the expected effects could be obtained. In addition, even when machining is performed, simple methods are not necessarily effective when processing large-area and thin plates, and special processing methods are required to ensure uniformity of thickness and to prevent warping of the plate. It turned out to be.

〔発明の目的〕[Purpose of the invention]

本発明は、上述のような欠点を除去し、隣接する導電板
との接触抵抗が低くかつ加圧された状態で使用した場合
の圧縮クリーブ特性75(良く、変形が少いシート状弾
性導電板を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks, and provides a sheet-like elastic conductive plate that has low contact resistance with adjacent conductive plates and has good compressive cleave characteristics (75) and less deformation when used under pressure. The purpose is to provide

〔発明の要点〕[Key points of the invention]

本発明によるシート状弾性導電板は、導電性充填材を分
散混合してなるコ゛ム組成物を積層時圧縮変形の少い導
電性シート状物の両面に存在せしめることによって構成
される。
The sheet-like elastic conductive plate according to the present invention is constructed by allowing a comb composition formed by dispersing and mixing a conductive filler to exist on both sides of a conductive sheet that undergoes little compressive deformation during lamination.

即ち、本発明は、接触抵抗の改善策として小さな加圧力
で隣接板と良くなじむようにゴム組成物を使用し、そし
てこのゴム組成物を使用することで逆に欠点となる圧縮
クリープなどの圧縮特性を大面積で薄肉という形状率(
受圧面積と自由表面積との比)を高めるとともに圧縮変
形の少い材料を中間層に配してサンドイッチ構造をとる
ようにすることによって向上させたことが大きな特徴で
ある。
That is, the present invention uses a rubber composition that can fit well with adjacent plates with a small pressing force as a measure to improve contact resistance, and the use of this rubber composition conversely prevents disadvantages such as compression creep. The characteristic is the shape ratio of large area and thin wall (
The main feature is that this improvement was achieved by increasing the ratio of pressure receiving area to free surface area and by placing a material with little compressive deformation in the intermediate layer to create a sandwich structure.

本発明において、導電性充填材を分散混合されるゴム組
成物としては、ポリテトラフルオルエチレン、ポリへキ
サフルオルプロピレン、ポリクロルl−1)フルオルエ
チレン、ヘギサフルオルプロピレンとフッ化ビニリデン
との共重合体、テトラフルオルエチレンとへキサフルオ
ルプロピレンとの共重合体のようなフッ素系ゴムが耐熱
性の点で好ましい。しかし、使用要求の条件が緩和され
るならば、ポリイソプレン、ブタジェンスチレンゴム、
アクリロニ) l)ルゴム、ブチルゴム、ネオプレン、
ポリブタジェンなどのゴムも用いることができる。
In the present invention, the rubber composition in which the conductive filler is dispersed and mixed includes polytetrafluoroethylene, polyhexafluoropropylene, polychlorol-1) fluoroethylene, hexafluoropropylene, and vinylidene fluoride. From the viewpoint of heat resistance, fluororubbers such as a copolymer of tetrafluoroethylene and hexafluoropropylene are preferred. However, if the usage requirements are relaxed, polyisoprene, butadiene styrene rubber,
acryloni) l) Rubber, butyl rubber, neoprene,
Rubbers such as polybutadiene can also be used.

例えば、シん酸型燃料電池のような耐熱性の要求される
用途には好ましくは上記のフッ素系ゴムが用いられる。
For example, the above-mentioned fluororubber is preferably used for applications that require heat resistance, such as silicic acid fuel cells.

これらは、通常、水ディスパーンョン又はペーストの形
で用いられる。ゴム組成物に導電性を付与する充填材と
しては、黒鉛、カーボンブラック、カーボン繊維、導電
性金属粉及び繊維などがあげられる。これらの導電性充
填材の種類及び使用量は、使用時の要求条件により容易
に決定することができる。充填材の使用量は、一般に2
0〜80重世%、好ましくは30〜70重量%である。
These are usually used in the form of water dispersions or pastes. Examples of the filler that imparts conductivity to the rubber composition include graphite, carbon black, carbon fiber, conductive metal powder, and fiber. The type and amount of these conductive fillers can be easily determined depending on the requirements during use. The amount of filler used is generally 2
The amount is 0 to 80% by weight, preferably 30 to 70% by weight.

本発明のシート状弾性導電板において中間層として配置
されるシート又は板材は、上記ゴム組成物に比べて圧縮
変形が少なくかつ導電性のものであればよく、シたがっ
てこの意味では導電性金属板、導電性プラスチックシー
ト又は4板、黒鉛焼結体及びその樹脂含浸物、カーボン
繊維シートなどが有効である。
The sheet or plate material disposed as an intermediate layer in the sheet-like elastic conductive plate of the present invention may be any material as long as it has less compressive deformation than the rubber composition and is electrically conductive. A plate, a conductive plastic sheet or four plates, a graphite sintered body and its resin-impregnated material, a carbon fiber sheet, etc. are effective.

上記導電性シート状物の両面へのコ゛ム組成物の適用は
、通常の加圧ロール法、圧縮成形法などによシ容易に行
うことができる。導電性シート状物及びゴム組成物の厚
みは必要に応じて適当に選定することができる。
The comb composition can be easily applied to both sides of the conductive sheet by a conventional pressure roll method, compression molding method, or the like. The thickness of the conductive sheet material and the rubber composition can be appropriately selected as required.

〔実施例〕〔Example〕

以下、本発明を具体的実施例により説明する。 The present invention will be explained below using specific examples.

黒鉛75重量部、フッ素ゴムラテックス(ポリテトラフ
ルオルエチ、レン水溶液、濃度50重量%) 50重量
部からなる導電性ペースト状ゴム組成物を加圧ロール法
や圧縮成形法で予備成形し、乾燥処理などを行ってシー
ト状物を得た。
A conductive pasty rubber composition consisting of 75 parts by weight of graphite and 50 parts by weight of fluororubber latex (polytetrafluoroethyl, ren aqueous solution, concentration 50% by weight) was preformed by a pressure roll method or compression molding method, and dried. A sheet-like material was obtained by processing.

このシート状物をタンタル板の両面に配置し、加熱硬化
して、タンタル板の上下両面層にゴム組成物を配したレ
ート状弾性導電板を得た。
This sheet-like material was placed on both sides of a tantalum plate and cured by heating to obtain a plate-like elastic conductive plate in which a rubber composition was placed on both upper and lower surfaces of the tantalum plate.

このシート状導電板と多孔質カーボン板を隣接させて、
前述したようにして抵抗値を測定した。
This sheet-like conductive plate and porous carbon plate are placed adjacent to each other,
Resistance values were measured as described above.

結果を第1図に示す。この図において4がその結果を示
す曲線である。
The results are shown in Figure 1. In this figure, 4 is a curve showing the results.

第1図から、本発明に従うシート状導電板4では、比較
的小さな加圧力の下で材料が本来もたらす小さい抵抗値
を得ることが可能となることがわかる。即ち、積層時の
接触抵抗は、比較的小さい加圧力の下ではほとんど考え
る必要がなく、無視できるものとなる。
From FIG. 1, it can be seen that in the sheet-like conductive plate 4 according to the present invention, it is possible to obtain a low resistance value originally provided by the material under a relatively small pressing force. That is, the contact resistance during lamination does not need to be considered under a relatively small pressing force and can be ignored.

他方、ゴム組成物を積層した場合に問題となる圧縮変形
特性に対しては、 (1)従来の検討例に比較して加圧力が極めて小さい領
域で小さい抵抗値が得られること、(2)圧縮変形の少
い素材板又はシートを中間層にサンドイッチしているた
めに変形が少いこと、 (3) ゴム組成物あっても、薄くかつ大面積の形体と
なっているため形状率が大きく、圧縮変形は極めて少い
構造であること などにより、通常のゴム組成物から予想されるような圧
縮変形は認められない。
On the other hand, regarding the compressive deformation characteristics that are a problem when laminating rubber compositions, (1) a small resistance value can be obtained in a region where the pressing force is extremely small compared to the conventional study example; (2) (3) Even with a rubber composition, the shape ratio is large because it is thin and has a large area. Since the composition has a structure with very little compression deformation, no compression deformation as expected from ordinary rubber compositions is observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、積層時圧縮変形の少い導電性シート状
物の両面に導電性充填材を分散混合させたゴム組成物を
存在させたことによシ、隣接する導電板との接触抵抗が
低くかつ加圧された状態で・使用した場合の圧縮変形が
少ないシート状弾性導電板が得られる。
According to the present invention, since a rubber composition in which a conductive filler is dispersed and mixed is present on both sides of a conductive sheet material that undergoes little compressive deformation during lamination, contact resistance with adjacent conductive plates is reduced. It is possible to obtain a sheet-like elastic conductive plate that has a low deformation due to compression when used in a pressurized state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各種の導電板と多孔質カーボン板との間の抵
抗と加圧力との関係を示す曲線である。 ここで、1,2及び3は比較例の導電板の曲線を、4は
本発明に従う導電板の曲線を示す。 特許出願人 株式会社 富七■総舗醇m同 富士電機製
造株式会社 答1國 1v丘力θ弘kyy12)
FIG. 1 is a curve showing the relationship between resistance and pressing force between various conductive plates and porous carbon plates. Here, 1, 2, and 3 indicate the curves of the conductive plate of the comparative example, and 4 indicates the curve of the conductive plate according to the present invention. Patent Applicant: Tomishichi Co., Ltd. Sohofuji Fuji Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】 1)圧縮変形の/)ない導電性シート状物の両面に導電
性充填材を分散混合させたゴム組成物を存在せしめたこ
とを特徴とするシート状弾性導電板。 2、特許請求の範囲第1項記載のシート状弾性導電板に
おいて、導電性シート状物がカーボン繊維クロス、導電
性フェノール樹脂含浸焼結板、導電性黒鉛粉分散フェノ
ール成形板又は導電性金属であることを特徴とするシー
ト状弾性導電板。 3)特許請求の範囲第1項記載のシート状弾性導電板に
おいて、導電性充填材が黒鉛、カーボンブラック、カー
ボン繊維、金属粉又は金属繊維であることを特徴とする
シート状弾性導電板。 4)特許請求の範囲第1項記載のシート状弾性導電板に
おいて、面積が大きく、厚みが薄いことを特徴とするシ
ート状弾性導電板。
[Scope of Claims] 1) A sheet-like elastic conductive plate, characterized in that a rubber composition in which a conductive filler is dispersed and mixed is present on both sides of a conductive sheet-like material that is not compressively deformed. 2. In the sheet-like elastic conductive plate according to claim 1, the conductive sheet material is carbon fiber cloth, a conductive phenolic resin-impregnated sintered plate, a conductive graphite powder-dispersed phenol molded plate, or a conductive metal. A sheet-like elastic conductive plate characterized by the following. 3) The sheet-like elastic conductive plate according to claim 1, wherein the conductive filler is graphite, carbon black, carbon fiber, metal powder, or metal fiber. 4) The sheet-like elastic conductive plate according to claim 1, which has a large area and a small thickness.
JP58173659A 1983-09-19 1983-09-19 Sheetlike elastic conductive plate Pending JPS6065405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173659A JPS6065405A (en) 1983-09-19 1983-09-19 Sheetlike elastic conductive plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173659A JPS6065405A (en) 1983-09-19 1983-09-19 Sheetlike elastic conductive plate

Publications (1)

Publication Number Publication Date
JPS6065405A true JPS6065405A (en) 1985-04-15

Family

ID=15964712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173659A Pending JPS6065405A (en) 1983-09-19 1983-09-19 Sheetlike elastic conductive plate

Country Status (1)

Country Link
JP (1) JPS6065405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029922A1 (en) * 1999-10-21 2001-04-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2003044888A1 (en) * 2001-11-21 2003-05-30 Hitachi Powdered Metals Co.,Ltd. Coating material for fuel cell separator
JP2005209641A (en) * 2003-12-24 2005-08-04 Showa Denko Kk Separator for fuel cell and its manufacturing method
JP2008525982A (en) * 2004-12-29 2008-07-17 ユーティーシー パワー コーポレイション Fuel cell separator plate assembly
JPWO2015008867A1 (en) * 2013-07-18 2017-03-02 東洋炭素株式会社 Sheet-like laminate, sheet-like laminate production method, and sheet-like composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029922A1 (en) * 1999-10-21 2001-04-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US7008714B1 (en) 1999-10-21 2006-03-07 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2003044888A1 (en) * 2001-11-21 2003-05-30 Hitachi Powdered Metals Co.,Ltd. Coating material for fuel cell separator
JP2005209641A (en) * 2003-12-24 2005-08-04 Showa Denko Kk Separator for fuel cell and its manufacturing method
JP2008525982A (en) * 2004-12-29 2008-07-17 ユーティーシー パワー コーポレイション Fuel cell separator plate assembly
JPWO2015008867A1 (en) * 2013-07-18 2017-03-02 東洋炭素株式会社 Sheet-like laminate, sheet-like laminate production method, and sheet-like composite

Similar Documents

Publication Publication Date Title
US6607857B2 (en) Fuel cell separator plate having controlled fiber orientation and method of manufacture
US6451471B1 (en) Conductivity fuel cell collector plate and method of fabrication
EP2192644A2 (en) Molding material for fuel cell separator
JP2008027925A (en) Fuel cell separator
JP6973319B2 (en) Solid-state battery electrodes and solid-state batteries
WO2001071739A1 (en) Polarizable electrode for electric double-layer capacitor
JP7147330B2 (en) Electrodes for solid-state batteries and solid-state batteries
JP3260319B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
JP6962286B2 (en) Solid-state battery electrodes and solid-state batteries
JPS6065405A (en) Sheetlike elastic conductive plate
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
WO2016042961A1 (en) Solid polymer fuel cell and separator
JPS58164170A (en) Cell stack of fuel cell
JPH1079260A (en) Fuel cell
JPH08180892A (en) Manufacture of current collector for fuel cell
JP2002358973A (en) Fuel cell separator member and its manufacturing method
JP2002025572A (en) Separator having groove for solid high polymer molecule fuel cell
JP4508574B2 (en) Fuel cell separator and method for producing fuel cell separator
JP3097305B2 (en) Electric double layer capacitor and method of manufacturing the same
JP2003142117A (en) High polymer electrolyte type fuel cell and its manufacturing device
EP1273064B1 (en) Graphite article useful as an electrode for an electrochemical fuel cell
JPH027144B2 (en)
JPS6398965A (en) Fuel cell
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
TW592968B (en) Material and process useful for preparing embossed flexible graphite article