JPS6064489A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPS6064489A
JPS6064489A JP17380783A JP17380783A JPS6064489A JP S6064489 A JPS6064489 A JP S6064489A JP 17380783 A JP17380783 A JP 17380783A JP 17380783 A JP17380783 A JP 17380783A JP S6064489 A JPS6064489 A JP S6064489A
Authority
JP
Japan
Prior art keywords
layer
referred
cladding
active
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17380783A
Other languages
Japanese (ja)
Inventor
Haruo Tanaka
田中 治夫
Masahito Mushigami
雅人 虫上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP17380783A priority Critical patent/JPS6064489A/en
Publication of JPS6064489A publication Critical patent/JPS6064489A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive to stabilize the longitudinal modes of laser beam and to accurately control the film thickness of a clad layer by a method wherein the longitudinal modes of an active layer are locked in the longitudinal modes of a photo waveguide layer formed on the active layer and the photo waveguide layer is set at Y'<0.45. CONSTITUTION:A clad layer 4 is formed on an active layer 3. The clad layer 4 consists of an n type AlZ'Gs1-Z'As layer 41, an n type AlZ''Ga1-Z''As layer 42 and an n type AlY'Ga1-Y'As photo waveguide layer (Y'<Z', Y'<Z'', Y<Y', Y'<0.45Z''>0.45) 43, and the layer 43 is formed between the layer 41 and the layer 42. The photo waveguide layer 43 is set at an interval that the layer 43 generates no laser oscillation by the operating current. By this constitution, the longitudinal modes of the active layer 3 can be locked in the longitudinal modes of the photo waveguide layer 43. Accordingly, stabilization of the longitudinal modes of laser beams can be contrived and the film thickness of the clad layer 4 can be accurately controlled.

Description

【発明の詳細な説明】 本発明は、■)(またはn)−GaAs基板上に1)(
またはn)−AlxGa、−xAs層(第1クラッド層
という)と、ノンドープまたはp(またはn)−A l
yGaI−yA!、層(活性層トイウ)ト、11(主た
は!)ンーノ\1zGa、−zAs層(第2クラッド層
と0う)とを形1反してなるストライプ形の半導体レー
ザおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for forming 1)(
or n)-AlxGa, -xAs layer (referred to as the first cladding layer) and non-doped or p (or n)-Al
yGaI-yA! The present invention relates to a stripe-shaped semiconductor laser formed by forming layers (active layer), 11 (main) layers, -zAs layers (second cladding layer), and a method for manufacturing the same.

第1図は、従来例の半導体レーザの発光面方1r11か
ら見た構造断面図である。11図にお(・で、符号1は
、(またはn)−GaAs基板、2は1)(また1土1
1)−へ1xGa1−xAs層(第1クラ・ノド層と−
う)、:(はノンドープまたは1)またはn−l\1y
ciaI−Vi\s )m (i8性層というただしy
<x、y<z)、41土、11(またlよ1))−Al
zGal−zAs層(tj、2クラ・ノド層と(1う)
、5は11+(また1土p” )−GaAsJM、61
土1’i層、71土AuJM、81土AuGcJ督であ
る。このような半導1本レーザでは、連続発振動作時に
はスペクトル(+り lこシングルモードで発振するが
高速変調時のノドならずレーザ光の戻り光が変化する場
イ目こ1土!!’I R己シングルモードではレーザ発
振しな−)場合力Cある。これを解決するものとして従
来から例え(!′分布L11還型、分布反射型、二重共
振器型等の半導体レーザが開発されている。しかしなが
ら、こjtら従来のものではいずれも構造が複雑である
ために量産には不向きであり、かつ製造コストも高くつ
という欠点があった。また、この半導体レーザでは活性
層3の9の部分に光を良好に閉じ込めるために、第2ク
ラッド層4をストライプ領域10を除いて、所定の膜厚
にエツチングするようにしている。ところが、特性のそ
ろった半導体レーザを得るには、各層の成長膜厚を精密
にフン[ロールする必要がある他に、第2クラッド層4
のエツチングも精密にコントロールする必要があるが、
このエツチングのコントロールは極めて難しく、このた
めイオンミリング等の非常に高価なエツチング手段を要
していた。
FIG. 1 is a structural sectional view of a conventional semiconductor laser as seen from the light emitting surface direction 1r11. In Figure 11, the code 1 is (or n)-GaAs substrate, 2 is 1) (and 1 is 1).
1) - to 1xGa1-xAs layer (first crano layer and -
), :(is non-doped or 1) or n-l\1y
ciaI-Vi\s )m (i8 sex layer y
<x, y<z), 41 soil, 11 (also lyo 1)) - Al
zGal-zAs layer (tj, 2-kura-nod layer and (1)
, 5 is 11 + (also 1 Sat p”) - GaAsJM, 61
Soil 1'i layer, 71st soil AuJM, and 81st soil AuGcJ layer. In such a single semiconductor laser, during continuous wave operation, the spectrum oscillates in a single mode, but when high-speed modulation is performed, the return light of the laser beam changes without a throat. If the IR does not oscillate as a laser in single mode, there is a force C. Semiconductor lasers such as distributed L11 type, distributed reflection type, and double cavity type have been developed to solve this problem. However, all of these conventional types have complicated structures. Therefore, it is unsuitable for mass production and has the drawbacks of high manufacturing costs.Furthermore, in this semiconductor laser, in order to effectively confine light in the portion 9 of the active layer 3, a second cladding layer 4 is used. is etched to a predetermined thickness except for the stripe region 10. However, in order to obtain a semiconductor laser with uniform characteristics, it is necessary to precisely control the thickness of the grown film of each layer. , second cladding layer 4
It is also necessary to precisely control the etching of
Controlling this etching is extremely difficult, and therefore requires very expensive etching means such as ion milling.

本発明は、簡単な構造で量産に適し、製造コストを低減
しその上、縦モードの安定性を良くするとともにこのよ
うなエツチングを安価な方法で精密にかつ容易におこな
えるようにすることを目的とする。
The object of the present invention is to have a simple structure suitable for mass production, to reduce manufacturing costs, to improve the stability of the longitudinal mode, and to enable such etching to be performed precisely and easily at a low cost. shall be.

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。この実施例は屈折率導波塑半導体レーザに適用し
て説明する。第2図はこの実施例の(1v?造断面図で
あり、第1図とJ=1応する部分には同一の符号を(=
Iす。第2図において符号1は1)(またはo ) −
G uΔS基板、2は1)(まtこは11)−八l x
 (i a 1−xAsJVI(第1クラッド層という
)、3はノンドープまたはI)または11−八1yGa
+−y、AsJ−(活性層というただしy < x、 
y < z)、4は第2クラッド層である。この第2ク
ラッド層4は該第2クラッド層4と同伝導型で11(ま
たはp)−Alz’Ga+−z’AsJt4! 41と
11(またはp)−Alz”Ga+−z”AsJ142
との間に11(またはp)−AIy’Ga、−y’As
層43(ただし1 <Zl、 yl<zII、y<y’
、y’< 0.45、Z゛〉(1,45)を形成してな
る。二のn(まtこは1+)−j\IS”(IQ+−3
”/\5層43は、光導波Mであり、この光導波層43
は111j記活性)1り3との間隔を互いに光学的に作
用しあうとともに前記光導波Jf/J43が動作電流に
よりレーザ発振を起こさない間隔に設定される。したが
って、この実施例によれば2つの10共振器3,43を
有することになる。両者3,43はへきかい而が同一の
ため同し共振器Et l−、を右するが屈折率nl、n
2が異なることになる。ここで7アブリ・ペロー反射型
半導体レーザの縦モードについて説明する。縦モードと
は波長よりも非常に長い共振器長を有するレーザ発振器
では異なる多数の波長の波が共振可能になるが、このモ
ードのことを縦モードといい、軸モードともいう。した
がって、縦モードにおいては多数の波長の波が存在する
がスペクトル的にシングルモードとはこれらの波から1
つだけの波が選択されているモードである。各波長の差
(縦モード間隔)を八λとすると、この縦モード間隔は
次式であられされることが知られている。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. This embodiment will be explained by applying it to a refractive index guided plastic semiconductor laser. Figure 2 is a cross-sectional view of this embodiment (1v?), and parts corresponding to Figure 1 and J =
I. In Fig. 2, the symbol 1 is 1) (or o) -
GuΔS substrate, 2 is 1) (Matoko is 11) - 8l x
(i a 1-xAsJVI (referred to as first cladding layer), 3 is non-doped or I) or 11-81yGa
+-y, AsJ- (active layer y < x,
y < z), 4 is the second cladding layer. This second cladding layer 4 has the same conductivity type as the second cladding layer 4 and has the same conductivity type as 11 (or p)-Alz'Ga+-z'AsJt4! 41 and 11 (or p)-Alz"Ga+-z"AsJ142
11 (or p)-AIy'Ga, -y'As between
Layer 43 (where 1 < Zl, yl < zII, y <y'
, y′<0.45, Z゛〉(1,45). 2n(Matkoha1+)-j\IS”(IQ+-3
”/\5 The layer 43 is an optical waveguide M, and this optical waveguide layer 43
(Activation 111j) 1 and 3 are set to such a distance that they optically interact with each other and that the optical waveguide Jf/J43 does not cause laser oscillation due to the operating current. Therefore, according to this embodiment, there are two 10 resonators 3,43. Since both 3 and 43 have the same distance, they are the same resonator Et l-, but the refractive index nl and n
2 will be different. Here, the longitudinal mode of the 7Avry-Perot reflective semiconductor laser will be explained. What is a longitudinal mode? A laser oscillator with a resonator length that is much longer than the wavelength can resonate waves of many different wavelengths, and this mode is called a longitudinal mode, also called an axial mode. Therefore, in the longitudinal mode, there are waves of many wavelengths, but spectrally a single mode is one of these waves.
Only one wave is in the selected mode. It is known that if the difference between each wavelength (longitudinal mode spacing) is 8λ, this longitudinal mode spacing can be expressed by the following equation.

Δλ=λ2Δm/2nL[1−(入/n)(dn/dλ
)1ここで、Illは次数、■は屈折率、λは波長であ
る。
Δλ=λ2Δm/2nL[1-(in/n)(dn/dλ
)1 Here, Ill is the order, ■ is the refractive index, and λ is the wavelength.

このように縦モード間隔があられされるので活性7I3
と光導波層43とは屈折率が異なることから両者の縦モ
ード間隔は異なるが、両者が互いに光学的に結合されて
いるので両者が一致した波長でのみ共振する。二のため
、活性層3がMとにより他の近接した縦モードへ飛ぼう
としてら該縦モードでは光導波層43とは共振できない
ため該活性層3の縦モードはこの光導波層l[3のそれ
にロックされることになる。、−うしてこの実施例の半
尋体レーザでは縦モードの安定化が計れる。
Since the longitudinal mode interval is reduced in this way, the active 7I3
Since the and optical waveguide layer 43 have different refractive indexes, their longitudinal mode intervals are different, but since they are optically coupled to each other, they resonate only at the same wavelength. 2, when the active layer 3 tries to jump to another adjacent longitudinal mode due to M, the longitudinal mode cannot resonate with the optical waveguide layer 43, so the longitudinal mode of the active layer 3 is transferred to the optical waveguide layer l[3 It will be locked to that. , -Thus, in the semicircular body laser of this embodiment, the longitudinal mode can be stabilized.

次に、この実施例では、分子線エピタキシャル成長法等
により前記各層が形成される。第2クラッド層の光導波
N43はy’<(+、・15とされる。こコテ、Ah、
Ga1−zAsのエツチング速度4ij性を第3図に示
す。第3図は、熱塩酸によυ〕\1zGa+−7Asを
エツチングする場合のlの値をJjQ軸に、またエツチ
ング速度を縦軸に示す線図である。第3図よりあきらか
なように、z<0.45においてはノ\1zGa、−z
AsはLyチングされず、z>0.45においては、×
の値に比例するエツチング速度でA I 7. G a
 、 −y、 A s I土エツチングされる、−と1
こなる。
Next, in this embodiment, each layer is formed by molecular beam epitaxial growth or the like. The optical waveguide N43 of the second cladding layer is set as y'<(+,・15.Here, Ah,
FIG. 3 shows the etching rate 4ij of Ga1-zAs. FIG. 3 is a diagram showing the value of l on the JjQ axis and the etching rate on the vertical axis when etching υ]\1zGa+-7As with hot hydrochloric acid. As is clear from Fig. 3, when z<0.45, \1zGa, -z
As is not Lychched, and when z>0.45, ×
A I 7. with an etching rate proportional to the value of . Ga
, -y, A s I soil etched, - and 1
This will happen.

したがって、ストライプ領域10にSi、N4等のマス
クをかぶせC1先ず11+(また1上1+”)−GaA
S層5を選択的に除去するか、または八l Z ” C
+ 81−7゜゛ΔSA8層の一部までを除去した後、
熱塩酸により更にエツチングすると、AIZ”C:a+
−z”As層42が除去される。このため、第2クラッ
ド層4の膜厚はストライプ領域10を除いて41,43
の各膜厚に正確に制御される。
Therefore, by covering the stripe region 10 with a mask of Si, N4, etc.
Selectively remove the S layer 5 or remove the S layer 5 or
+81-7゜゛After removing part of the SA8 layer,
Further etching with hot hydrochloric acid results in AIZ”C:a+
-z"As layer 42 is removed. Therefore, the film thickness of the second cladding layer 4 is 41, 43, except for the stripe region 10.
Each film thickness is precisely controlled.

以上のように本発明によれば第2クラッド層を該@2ク
ラッド層と同伝導型で11(またはp) −A Iz’
Ga1−z’As層とn(または1))−A lz” 
Ga1−z” As層との間に11(またはp)−Al
y’C;a+−y’As層(ただし、ylくZ11y゛
くZ″、y<y’、y’<0.45、Z′’>0.45
、y<x、y<z’、y(、、l l )を形成して構
成し、前記AIy’Ga+−y’As1(先導波層とい
う)と前記活性層との間隔を互いに光学的に作用しあう
とともに前記光導波層が動作電流にょリレーザ発振を起
こさない間隔に設定したので活性層が戻り光りなどによ
り他の縦モードへ飛ぼうとしても該縦モードでは先導波
層とは共振できないため該活性層の縦モードはこの先導
波層のそれにロックされることになり、該縦モードの安
定化が計れる。
As described above, according to the present invention, the second cladding layer is of the same conductivity type as the @2 cladding layer and is 11 (or p) -A Iz'
Ga1-z'As layer and n (or 1))-A lz"
11 (or p)-Al between the Ga1-z” As layer
y'C;a+-y'As layer (however, yl x Z11y x Z'', y<y', y'<0.45, Z''>0.45
, y<x, y<z', y(,, l l ), and the distance between the AIy'Ga+-y'As1 (referred to as a leading wave layer) and the active layer is optically set to each other. In addition to interacting with each other, the optical waveguide layer is set at a spacing that does not cause laser oscillation due to the operating current, so even if the active layer tries to jump to another longitudinal mode due to return light, etc., the longitudinal mode cannot resonate with the leading wave layer. The longitudinal mode of the active layer is locked to that of the leading wave layer, and the longitudinal mode can be stabilized.

また、第2クラッド層の先導波層はy’<0. 45と
されたので、熱塩酸により、ストライプ領域にSi3N
、等のマスクをがコζせて、先ずn+ (またはρ” 
) −(誓a A 3層を選択的に除去するか、または
AIZ”C+11−7.”A3層の一部までを除去した
後、熱塩酸により更にエツチングすると、A17.”C
+al−2”As層が除去され、このため、第2クラッ
ド層の膜厚はストライプ領域を除いて所定の各膜厚に正
確に制御される
Further, the leading wave layer of the second cladding layer has y'<0. 45, Si3N was added to the stripe area using hot hydrochloric acid.
, etc., first n+ (or ρ”
) - (A) After selectively removing the 3rd layer or removing up to a part of the AIZ"C+11-7."A3 layer, further etching with hot hydrochloric acid results in A17."C
+al-2"As layer is removed, and therefore the thickness of the second cladding layer is accurately controlled to each predetermined thickness except for the stripe region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構造断面図、第2図は本発明の実施例
の構造断面図、第3図は1〜l z (: a 、 −
z A Sのエツチング速度特性を示す図である。 ]、、、p(またはn ) −(i a A S基板、
2.、、++(または11)−l\1xGa、−xAs
層(第1クラッド層という)、3.0. ノンドープま
たは1)またはn −A l y に a +4As層
(活性層というただしyく\、y<z)、4.。 、11(またはp)−1\1zGa=zAs層(第2ク
ラッド層という)、508.n”(またはll+) C
;+IAS層、6、、、”riJl、7.、、Au層、
800.AuGeJt’)、41.、、n(または1+
)−A I7.’ (ia、−2’ ASJ(11,4
2、、、、n(またはp) Alz”にal−z”As
層、436.、n(またはp)−へly’Gu、−y’
As層(光導波層) 出願人 ローム株式会社 代理人 弁理士 岡田和秀
FIG. 1 is a structural cross-sectional view of a conventional example, FIG. 2 is a structural cross-sectional view of an embodiment of the present invention, and FIG. 3 is a structural cross-sectional view of a conventional example.
FIG. 3 is a diagram showing etching rate characteristics of z AS. ], , p (or n ) −(ia AS substrate,
2. ,,++(or 11)-l\1xGa,-xAs
layer (referred to as first cladding layer), 3.0. Non-doped or 1) or a+4As layer in n-Aly (referred to as active layer, y<z), 4. . , 11 (or p)-1\1zGa=zAs layer (referred to as second cladding layer), 508. n” (or ll+) C
;+IAS layer, 6,,,"riJl,7.,,Au layer,
800. AuGeJt'), 41. ,,n(or 1+
)-A I7. '(ia, -2' ASJ(11,4
2, ,, n (or p) Alz” to al-z”As
layer, 436. , n (or p)-toly'Gu, -y'
As layer (optical waveguide layer) Applicant ROHM Co., Ltd. Agent Patent attorney Kazuhide Okada

Claims (2)

【特許請求の範囲】[Claims] (1)p(またはn)−GaAs基板上にp(またはn
)−AlxGal−xAs層(第1クラッド層という)
と、ノンドープまたはpまたはn−AlyGa+−yA
s層(活性層という)と、n(またはp)−AlzGa
+−zAs層(第2クラッド層という)とが形成される
ストライプ形の半導体レーザにおいて、前記第2クラッ
ド層を該第2クラッド層と同伝導型でn(またはp)−
Alz’Ga+−z’As7ii1とn(またはp)−
Alz”Ga、−z”As層との間にn(またはp)−
AIy’GaI−y’As層(ただし l < zll
、I<zII、y<y’、y’<0.45、z″>0.
45、y<x、y<z’、 y<2”)を形成して構成
し、前記Aly’Ga1−y″As層(先導波層という
)と前記活性層との間隔を互いに光学的に作用しあうと
ともに前記先導波層が動作電流によりレーザ発振を起こ
さない間隔に設定してなる半導体レーザ。
(1) P (or n) on p (or n)-GaAs substrate
)-AlxGal-xAs layer (referred to as first cladding layer)
and undoped or p or n-AlyGa+-yA
s layer (referred to as active layer) and n (or p)-AlzGa
In a striped semiconductor laser in which a +-zAs layer (referred to as a second cladding layer) is formed, the second cladding layer is of the same conductivity type as the second cladding layer and is of n (or p)-
Alz'Ga+-z'As7ii1 and n (or p)-
n (or p)- between Alz"Ga, -z"As layer
AIy'GaI-y'As layer (where l < zll
, I<zII, y<y', y'<0.45, z''>0.
45, y<x, y<z', y<2"), and the distance between the Aly'Ga1-y"As layer (referred to as a leading wave layer) and the active layer is optically set to each other. A semiconductor laser in which the leading wave layer interacts with each other and is set at intervals such that the leading wave layer does not cause laser oscillation due to operating current.
(2)D(またはn)−GaAs基板」二に++(また
はn)−AlxGa、xAs層(第1クラッド層という
)と、ノンドープまたはI)またはn −A 1yGa
1−yAs層(活性層という)と、11(またはp)−
AlzGa+−zAs層(第2クラッド層という)とを
形成してストライプ形の半導体レーザを製造する方法に
おいて、前記第2クラッド層をn(またはp) −A 
Iz’ Ga+−z’ AsIviとn(またはp)−
Alz”Ga、z”As層との間に11(またはp)−
Aly’Ga+−y’As層(ただしyl < 、、 
ll、 l < Zll、y<y’、y’<o、45、
z”>0.45、y<x、y<z’、y< Zl 1 
)を形成して構成し、前記Aly’Ga1−y’As層
(光導波層という)と前記活性層との間隔を互いに光学
的に作用しあうとともに前記先導波層が動作電流により
レーザ発振を起こさない間隔に設定することにより半導
体レーザを製造する方法。
(2) A D (or n)-GaAs substrate, a + (or n)-AlxGa, xAs layer (referred to as the first cladding layer), and a non-doped (or I) or n-A 1yGa
1-yAs layer (referred to as active layer) and 11 (or p)-
In the method of manufacturing a stripe-shaped semiconductor laser by forming an AlzGa+-zAs layer (referred to as a second cladding layer), the second cladding layer is formed of n (or p) -A
Iz'Ga+-z' AsIvi and n (or p)-
11 (or p)- between the Alz"Ga and z"As layers
Aly'Ga+-y'As layer (where yl < ,,
ll, l < Zll, y <y',y'< o, 45,
z">0.45, y<x, y<z', y<Zl 1
), the distance between the Aly'Ga1-y'As layer (referred to as an optical waveguide layer) and the active layer is controlled so that they optically interact with each other, and the waveguide layer causes laser oscillation by an operating current. A method of manufacturing semiconductor lasers by setting intervals that do not cause
JP17380783A 1983-09-19 1983-09-19 Semiconductor laser and manufacture thereof Pending JPS6064489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17380783A JPS6064489A (en) 1983-09-19 1983-09-19 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17380783A JPS6064489A (en) 1983-09-19 1983-09-19 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6064489A true JPS6064489A (en) 1985-04-13

Family

ID=15967522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17380783A Pending JPS6064489A (en) 1983-09-19 1983-09-19 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6064489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220392A (en) * 1985-07-18 1987-01-28 Sharp Corp Semiconductor laser element
EP0234955A2 (en) * 1986-02-28 1987-09-02 Kabushiki Kaisha Toshiba Semiconductor laser with mesa stripe waveguide structure and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220392A (en) * 1985-07-18 1987-01-28 Sharp Corp Semiconductor laser element
EP0234955A2 (en) * 1986-02-28 1987-09-02 Kabushiki Kaisha Toshiba Semiconductor laser with mesa stripe waveguide structure and manufacturing method thereof
US4835117A (en) * 1986-02-28 1989-05-30 Kabushiki Kaisha Toshiba Manufacturing method for semiconductor laser with mesa stripe

Similar Documents

Publication Publication Date Title
US7327910B2 (en) Twin waveguide based design for photonic integrated circuits
JPH06338659A (en) Laser element
JP3043796B2 (en) Integrated optical coupler
JPS6064489A (en) Semiconductor laser and manufacture thereof
JP2000261093A (en) Distribution feedback type semiconductor laser
JPS60124887A (en) Distributed feedback type semiconductor laser
JPS6097684A (en) Surface luminous laser and manufacture thereof
US20060120428A1 (en) Distributed feedback (DFB) semiconductor laser and fabrication method thereof
JPS61290787A (en) Semiconductor laser device
JPH09148684A (en) Semiconductor optical device and optical network using the same
JP2021189243A (en) Beam deflection system
JP4100792B2 (en) Semiconductor laser device with spot size converter and manufacturing method thereof
GB2298958A (en) Optical integrated semiconductor laser and waveguide
JPH0290583A (en) Multi-wavelength semiconductor laser
JPS61125187A (en) Semiconductor light-emitting device
JP3104801B2 (en) Integrated optical coupler
JP2584606B2 (en) Semiconductor laser
JPH02241075A (en) Semiconductor laser
JP3104800B2 (en) Manufacturing method of integrated optical coupler
JPS6332979A (en) Semiconductor laser
JPS6064488A (en) Semiconductor laser and manufacture thereof
JPH0518052U (en) Short cavity type multi-wavelength semiconductor laser unit
JPS61279191A (en) Semiconductor laser
JPS6064491A (en) Semiconductor laser and manufacture thereof
JPS63117481A (en) Semiconductor laser